The Dynamics of Bertrand Price Competition
with Cost-Reducing Investments

Fedor Iskhakov
CEPAR, University of New South Wales

John Rust
Georgetown University

Bertel Schjerning
University of Copenhagen

April, 2014

Abstract: We present a dynamic extension of the classic model of Beftpaice competition, that allows
competing duopolists to undertake cost-reducing investsng an attempt to “leapfrog” their rival to at-
tain temporary low-cost leadership. We provide analytiarabterization of the pay-off set and compate
Markov perfect equilibria in this game, and show that theeggenequilibrium outcome involves leapfrog-
ging — contrary to the previous literature which has focusadpreemptive investments as the generic
equilibrium outcome. Unlike the static Bertrand model, gugiilibria of the dynamic Bertrand model are
generally inefficient due to excessively frequent or dgtli@ investments. Equilibrium price paths in our
model are piece-wise flat and have permanent discontinueelsds that occur when one firm leapfrogs its
rival to become the new low cost leader.

Keywords: duopoly, Bertrand-Nash price competition, Bertrand itvest paradox, leapfrogging, cost-
reducing investments, technological improvement, dyeamodels of competition, Markov-perfect equi-
librium, tacit collusion, price wars, coordination andiegsdordination games, strategic preemption

JEL classification: D92, L11, L13

T we acknowledge helpful comments from Michael Baye, Jef@agnpbell, Dan Cao, Ulrich Doraszelski, Joseph
E. Harrington, Jr., Dan Kovenock, Roger Lagunoff, Stephemrld, Michael Riordan, Jean-Marc Robin, David Salant,
Karl Schmedders, Che-Lin Su, and other participants atrsasiat Columbia, University of Copenhagen, CREST,
Georgetown, Princeton, the Chicago Booth School of Busingse 3rd CAPCP conference at Pennsylvania State
University, the 2012 conferences of the Society of Econddyicamics, the Society for Computational Economics, the
North American Summer Meetings of the Econometric Soctag/4Ath World Congress of the Game Theory Society,
the Initiative for Computational Economics at Chicago andi¢h (ICE 2012 and ZICE 2013), and the NSF/NBER
CEME Conference on “The Econometrics of Dynamic Games."oFégkhakov acknowledges support from Frisch
Centre project 1307 financed by the Ministry of Labour, Noywa

* Email: f. i skhakov@nsw. edu. au

¥ Correspondence addressDepartment of Economics, Georgetown University, WaslingDC, phone: (301)
801-0081, emailj r 1393@eor get own. edu

§ Email: bertel . schj erni ng@con. ku. dk



1 Introduction

Given the large theoretical literature since the originatkwof Bertrand (1883), it is surprising that
our understanding of price competition in presence of petdao cost uncertainty is still incom-

plete. For example, in the introduction to his paperstatic price competition model, Routlege
(2010) states “However, there is a notable gap in the reseaitere are no equilibrium existence
results for the classical Bertrand model when there is disarost uncertainty.” (p. 357). Less is
known about Bertrand price competition in dynamic modelgmglirms compete by undertaking
cost-reducing investments. In these environments the fewesuncertainty about their rivals’ in-

vestment decisions as well as uncertainty about the timinngatnological innovations that can
affect future prices and costs of production.

This paper analyses a dynamic version of the textbook BettNash duopoly game, in which
firms can make investment decisions as well as pricing dewsiNamely, at any time period, a
firm can decide to replace its current production plant witlew state of the art production facility
which enables it to produce at a lower marginal cost. We fdawetthe model in discrete time with
infinite horizon. The key assumption of our model is that ttagesof the art technology evolves
stochastically and exogenously, whereas technology amogécisions are endogenous.

The term leapfrogging describes the long run investment competition between wWee t
duopolists where the higher cost firm purchases a state arth@oduction technology that re-
duces its marginal cost relative to its rival and allows iattain, at least temporarily, a position
of low cost leadership. The assumption that the state of thiehnology evolves exogenously
differentiates our model from earlier examples of leapdiag in the literature by, for example,
Fudenberg et. al. (1983) and Reinganum (1985). This eaviiek on patent racesand models
of research and developmefuicused on firms’ continuous choice of R&D expenditures \tliti
goal of producing a patent or a drastic innovation that cowlicbe easily duplicated by rivals.

However in many industries firms do relatively little R&D brampete to obtain a production
cost advantage by investing in state of the art productiohrtelogy that is produced and sold by
other firms. We model this investment as a binary decisiooh &am faces a decision of whether

or not to incur the substantial investment fixed cost to m@pldneir current legacy production



technology with the latest technology in order to becomectimeent low cost leader. Since all
firms have equal opportunity to acquire the state of the adysction technology the markets we
study are different from those studied in the earlier lit@ra on leapfrogging in the context of
R&D and patent races. These markets@etestable due to ease of investrrgntilar to the way
other markets areontestable due to ease of entfyBaumol, Panzar and Willig (1982).

If any firm can invest in the state of the art production tedbgyp to become the low cost
producer, then Bertrand price competition in model whemadiproduce goods that are perfect
substitutes using constant returns to scale productidmtdogies leads to thBertrand invest-
ment paradox’ If more than one firm invests at the same time, Bertrand poogpetition ensures
thatex postprofits are zero. If the firms expect this, te antereturn on their investments will
be negative, so it is possible that no firm would have an ineend undertake cost-reducing in-
vestments. But if no firm invests, it may make sense for at leaes firm to invest. This reasoning
leads us to conclude that the investment problem has thetsteuof ananti-coordination game.

The Bertrand investment paradox was resolved by RiordanSataht (1994) (thereafter de-
noted RS) who analyzed a model of Bertrand price competititoere two duopolists make invest-
ments to acquire deteministically improvingstate of the art technology and gain a temporary cost
advantage over their rival. RS proved that investment doesriin equilibrium, buby only one
of the firms.In this preemption equilibriunconsumers never benefit from technological improve-
ments, because the price remains at the high marginal ctis¢ ofon-adopting firm. Further, they
showed that the preemption equilibrium is completely icedht: the preempting firm adopts new
technologies so frequently to discourage entry of its tikat all of its profits (and thus all social
surplus) is completely dissipated.

Though RS stressed that their investment preemption wascdtman that it need not hold
for other market structures” their analysis “suggests atheo research agenda exploring market
structure dynamics” such as “Under what conditions do oglaeilibrium patterns emerge such as
action-reaction (Vickers [1986]) or waves of market domic&in which the identity of the identity
of the market leader changes with some adoptions but notsithé. 258).

Giovannetti (2001) was the first to show that a particulaetgpleapfrogging —alternating



adoptions— can be an equilibrium outcome in a discrete time duopoly ehotli Bertrand price
competition under assumptions that are broadly similarSo Fhough Giovannetti did not cite or
specifically address RS’s work, he showed that both preemjaind alternating adoptions can be
equilibrium outcomes depending on the elasticity of demand

Giovannetti's analysis was done in the context of game whares makesimultaneousn-
vestment decisions, whereas RS modeled the investmernteshas aralternating move game.
The alternating move assumption seems to be a reasonabl®wpproximate decisions made in
continuous time, where itis unlikely that two firms would bérmed of a new technological inno-
vation and make investment decisions at precisely the sastent. However the change in timing
assumptions could have significant consequences, sinagdrel of RS shows thaireemption
is the only equilibriunin the continuous time limit of a sequence of discrete-titteraating move
investment games as the time between moves tends to zeroori@ttred that whether firms
move simultaneously or alternately makes no differencé vaspect to conclusion that preemp-
tion is the unique equilibrium of the continuous time limgigame “We believe the same limit
holds if the firms move simultaneously in each stage of therelie games in the definition. The
alternating move structure obviates examining mixedetraequilibria for some subgames of the
sequence of sequence of discrete games.” (p. 255).

Giovanetti's result (hamely that an equilibrium with altating investments investments is pos-
sible if firms move simultaneously) suggests that Riordash Salant’s conjecture is incorrect,
though he did not consider whether his results hold if firmyenaiternately rather than simulta-
neously, or whether leapfrogging is sustainable in theinants time limit. Further neither Gio-
vanetti nor RS considered the effect of uncertain technoégrogress on their conclusions: both
assumed that the state of the art production cost declirtesndi@istically over time. Stochastic
technological change could create investment opporasitiat could upset the preemption equi-
librium and lead to more complex adoption dynamics. In patéir, deterministic technological
progress rules out the possibility dfastic innovationsn the sense of Arrow (1962), where there
is a there is sudden large improvement in technology. Rioatad Salant conjectured that the

preemption result was a robust conclusion that would caoetio hold in the presence of drastic



innovations: “We conjecture that there exists an equilitoradoption pattern featuring increasing
dominance and rent dissipation quite generally. The hgcinsason is the standard one (Gilbert
and Newbery [1982]; Vickers [1986]) that the leading firm ay has a weakly greater incentive
to preempt to protect its incumbent profit flow.” (p. 257).

The main contribution of this paper is the first charactélaraof the set of pay-offs oéll
Markov perfect equilibria (MPE) — both pure and mixed stgae — of a dynamic duopoly
model of Bertrand price competition with stochastic tedbgical progress under both simulta-
neous and alternating move assumptions (including stticha$ernating move versions of the
game). We provide a unifying framework and reconcile theflatiimg results of Giovannetti and
RS, and by allowing for stochastic technological progressalgo study a much wider range of
environments that neither of these analyses were able ®idem In particular, by allowing for
stochastic technological progress we analyze firm behadrindustry dynamics when there is
a possibility of drastic innovations that Arrow (1962) cemplated. Similar to the result of Rout-
ledge (2010) in the static context, we establish existericaoilibria in the dynamic Bertrand
investment game. Compared to RS we provide a more powedoluton of Bertrand investment
paradox by proving that unless investment cost is prokdditihigh (from the point of view of
social planner), at least one firm investeweryMarkov perfect equilibrium of the game.

We confirm the main result of RS in our setting, but show that dissipating investment
preemption breaks down if any of the three key assumpticgtefahinistic technological progress,
alternating moves, continuous time) is removed, contrariR$’s conjecture. Instead, we show
that very complex patterns of dynamic investment cometitire supported, with leapfrogging
occurring in many other forms than simple patterns of deft@stically alternating investments of
Giovannetti (2001). In fact, we show that various types apfeogging equilibria constitute the
generic outcome of the Bertrand investment game. Our finding thastment competition takes
the form of leapfrogging seems to be an empirically moreisgalthan investment preemption,
since consumers would never benefit from technological nessgif the latter theory were true.
However there are numerous examples of consumer eleciranccmany different physical goods

where technological improvements coupled with leapfroggnvestments by firms have resulted



in dramatic price declines to consumers over time.

In the simultaneous move version of the game the MPE is nafugnand under weak con-
ditions we provide a characterization of the set of all @quiiim pay-offs that is reminiscent of
the Folk Theorem: the convex hull of set of initial node pdfgin the game is a triangle, which
vertices include two monopoly payoffs, corresponding toiR&@stment preemption by each of
the firms, and an zero profit mixed strategy pay-off. When finesst in an alternating fashion
(under deterministic and stochastically alternating measgations), we show that the convex hull
of the set of equilibrium pay-offs is a strict subset of thensdriangle, so that neither monopoly
nor zero profit mixed strategy outcomes are supportablesictse. We provide a sufficient con-
dition for the uniqueness of equilibrium: in the alterngtimoves specification when technology
improves in every time period with probability one, Bertlanvestment game has a unique MPE.
This condition is satisfied in RS’s and Giovannetti's frareks where technological progress is
deterministic, and thus improves with certainty in eversige However when the probability that
the state of the art does not improve in any period is suffityi¢arge, the set of MPE is no longer
a singleton, and will in general include a large number ofildzyia that exhibit various types of
leapfrogging.

Besides analytic characterization of the set of equiliiripay-offs, we utilize thérecursive
Lexicographic Searchlgorithm of Iskhakov, Rust and Schjerning (2013) to nucaly compute
all MPE in a discretized version of the Bertrand investment garhen, using a numerical solution
to the social planner’s problem in the same technologicalemment, we construct a measure of
efficiency for the equilibria in the game as the ratio betwseaial surplus under duopoly and
social planner solutions. With this measure, we computepgadide an empirical distribution of
the efficiency of all MPE in the Bertrand investment game. \We that the equilibria in our model
are typicallyinefficientdue to investments that occtoo frequentlyrelative to the social optimum
and due taduplicative investmentat are a reflection of coordination failures in this gambe T
most inefficient equilibria are those involving mixed (beioaal) strategies, however we show that
there are alstully efficient equilibriathat take the form chsymmetric pure strategy equilibria

The continuous time limiting preemption equilibrium of RSfully inefficient, with social



surplus completely dissipated due to excessively frequemistments by the preempting firm.
Though most of the leapfrogging equilibria display somerde@f inefficiency due to duplicative
investments, the overall efficiency is generally very highiie examples of the Bertrand invest-
ment game we have considered: the median efficiency of ailileda in examples we provide in
sectiond is over 95%. An example of a fully efficient equilibrium is thrnopolyMPE where one
firm never invests and the other does all of the investing ata&lasprice equal to the marginal cost
of production of the high cost, non-investing firm. Althouigestment competition in the non-
monopoly equilibria of the model does benefit consumers Wegting costs and prices in the long
run, it does generally come at the cost of some inefficien®/ tducoordination failures. How-
ever we provide examples (and thus establish existencegréégily coordinated, fully efficient
leapfrogging as well.

Price paths in the equilibria of our model are piece-wise Wath discontinuous declines just
after one of the firms invests and displaces its rival to bexamew low cost leader. These large
drops in prices could be interpreted as “price wars”. How@veur model these periodic price
wars lead to a permanent decrease in prices and are part lbf edmpetitive outcome where the
firms are behaving as Bertrand price competitors in evernpger

In the next section we present our model and summarize toé@oimethod we used to com-
pute all MPEs of the game. Secti@discusses the socially optimal investment strategies and
solves the social planner’s problem. We present our maurdteem sectiordd, and sectiorb con-

cludes.

2 The Model

Consider a market consisting of two firms producing an idahtyjood. Assume that the two firms
are price setters, have no fixed costs and can produce theag@donstant marginal cost of
andcy, respectively. Both firms have constant return to scaleywrtidn technology, so neither of
them ever faces a binding capacity constraint.

Under the assumption of perfectly inelastic demand, it i kveown that Bertrand equilibrium

arises in these settings, leading to the lower cost firm teesthie entire market at a prigecs, ¢2)
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equal to the marginal cost of production of the higher coatlyii.e. p(ci,c2) = maxcy,cy]. In
the case where both firms have the same marginal cost of grodwee obtain the classic result
that Bertrand price competition leads to zero profits fohbdmins at a price equal to their common
marginal cost of production. Normalizing the market sizente, we can write the instantaneous

profits of firm 1 as
0 if c1 > co,
ri(ci,Cz) = (1)
maxci,Cz| — 1 otherwise,
and the profits for firm 2,(cy, ¢p) are defined symmetrically, so we hayécy,cy) =ri(cz,C1).

We introduce the dynamics into the model by assuming thaaett éme period both firms
have the ability to make an investment to acquire a new ptomtutacility (plant) to replace their
existing technology. Technological progress that drivewrd the marginal cost of production
(while maintaining constant returns to scale) is exogeramgs stochastic. Denotethe current
state of the art marginal cost of production, anddét) be the cost of investing in the plant that
embodies this state of the art production technology. ffezibne of the firms purchases the state of
the art technology, then after a one period lag (constiguitae “time to build” the new production
facility), the firm can produce at the new marginal cost

We assume there are no costs of disposal of an existing piodysant, or equivalently, the
disposal costs do not depend on the vintage of the existeng pihd are embedded as part of the
new investment co(c). Yet, we allow the fixed investment coktc) to depend ort. This
can capture different technological possibilities, suslh@ possibility that it is more expensive to
invest in a plant that is capable of producing at a lower nmaigK’(c) < 0), or situations where
technological improvements lower both the marginal cogrrotiuctionc and the cost of building a
new plant K’(c) > 0). Clearly, if investment costs are too high, then there g point at which
the potential gains from lower costs of production are ifisigit to justify incurring the investment
costK(c). Moreover, when the competition between the duopolistdéaleapfrogging behavior,
the investing firm will not be able to capture the entire beraflowering its cost of production:
some of these benefits will be passed on to consumers in timedllower prices.

Letc™) denote the marginal cost of production under the state adrtheroduction technology



at time period € {0,1,2, .., oo}.1 Each period the firms face a simple binary investment decision:

firm j can decide not to invest and continue to produce using istiegi production facility at
()
j

production plant with marginal cost!), then when this new plant comes on linet at1, firm j

the marginal cost;’. If firm j pays the investment cogt(c)) and acquires the state of the art

will be able to produce at the marginal cmgtH) =cl) < cgt). If there has been no improvement

in the technology and state of the art marginal costial remains the same, it follone! ™% =
cl) = cﬁ”l). Otherwise, if technological innovation occurg at1, ct+1) < clt) = cgtﬂ), and firm
j’'s new plant is already slightly behind the frontier at them®mt it comes online.

If cis a continuous stochastic process, the state space famtidel which we denot§, is
given by the pyramids= {(c1,c2,¢) : ¢1 > candc; > cand 0< c < ¢p} in R3, wherecg > 0 is
the initial state, and zero represents the lower bound oftidte of the art technology. The choice
of lower bound is not essential for any of our results. Thetded investment game starts at the
apex of the pyramid given bico, Co, Cp). In cases where for computational reasons we resttirt
a finite set of possible values |, cpl, the “discretized” state space is a finite subses.of

We assume that both firms believe that the state of the amh¢datpy for producing the good
evolves stochastically according to a Markov process withdition densityt(c+1 |c()). Specit-
ically, suppose that with probability(c)|cV)) there is no improvement in the state of the art tech-
nology, and with probability £ (¢! |cV)) technology improves to marginal casttV) which is a
draw from some distribution over the interjal c¥)]. An example of a convenient functional form
for such a distribution is the Beta distribution. Howeves firesentation of the model and neither
of our results do not depend on specific functional form aggions aboutt

The feature of the transition densitthat turns out to be crucial for the uniqueness of equilib-
rium is whethermt(c|c) > 0 for somec > 0 or not. We single out a special casestfictly monotonic
technological progress whetic|c) = O for all ¢, i.e. the state of art always improves in every time

period? Note that completely deterministic technological progrisscharacterized by the condi-

IWe formulate the model in discrete time with infinite horizen normally time script is not needed. On rare
occasions we use superscript to denote time period of ate/\staable.

2There is a slight abuse of notation because in the absortiteyg0|0) = 1. Throughout the paper we use
1(c|c) = 0 to refer to strictly monotonic progress bearing in mind thanly applies forc > 0.



tion i(c*Y|cV)) e {0,1} for any ¢, ¢+, Before reaching an absorbing state deterministic

technological improvement is strictly monotonic, but nmewersa.

2.1 Timing of Moves

Let mY € {0,1,2} be a state variable that governs which of the two firms arevat” to un-
dertake an investment at time We will assume thafm)} evolves as an exogenous two state
Markov chain with transition probability (m®+1|m()) independent of the other state variables

(&

1,¢’,cV). While it is natural to assume firms simultaneously set theaes, their investment

choices may or may not be made simultaneously. The vaiie= 0 denotes a situation where the
firms make their investment choices simultaneously), = 1 indicates a state where only firm 1 is
allowed to invest, anch® = 2 is the state where only firm 2 can invest.

In this paper we analyze two variants of the Bertrand investngame: 1) asimultaneous
movegame wheren® = 0 and f(0jm)) = 1 (som) = 0 with probability 1 for allt), and 2)
alternating movegyame, with either deterministic or random alternation oesy but where there
is no chance that the firms could ever undertake simultarievestments (i.e. whema®) ¢ {1,2}
andf(0jm(t)) = 0 for allt). Under either the alternating or simultaneous move spetidins, each
firm always observes the investment decision of its oppoaiéert the investment decision is made.
However, in the simultaneous move game, the firms must madeitivestment decisions based
on their assessment of the probability their opponent wikst. In the alternating move game,
since only one of the firms can invest at each timde mover can condition its decision on the
investment decision of its opponent if it was the opponetira to move in the previous period.
The alternating move specification can potentially reduaraes of the strategic uncertainty that
arises in a fully simultaneous move specification of the game

We interpret random alternating moves as a way of reflecsynchronicityof timing of de-
cisions in a discrete time model that occurs in continuong tmodels where probability of two
firms making investment decisions at the exact same instdime is zero. There are cases where
equilibrium has been shown to be unique (e.g. Lagunoff antstal997). We are interested in

conditions under which uniqueness emerges in asynchranous versions of our model.



The timing of events in the model is as follows. At the starpefiodt each firm knows the
costs of productioric,”, ¢}, and both learn the current valuesaf andm(®). If m® = 0, then
the firms simultaneously decide whether or not to invest. ¥&ime that both firms know each
others’ marginal cost of production, i.e. there is commoovdiedge of statéc)’, ¢l clt) m®).
Further, both firms have equal access to the new technologgying the investment cokt(c))
to acquire the current state of the art technology with nmeigiost of productioe®).

After each firm decides whether or not to invest in the lateshmology, the firms then inde-
pendently angimultaneouslget thepricesfor their products, where production is done in period
t with their existing plant. The Bertrand equilibrium pricethe unique Nash equilibrium of the si-
multaneous move pricing stage game. The one period tintettd-assumption implies that even if
both firms invest in new plants at timgtheir marginal costs(lt) andcg) in periodt are unchanged,
and enter profit formulal.

We assume that consumer purchases of the good is a purétydgeisions, and consequently
there are no dynamic effects of pricing for the firms, unlikeéhe cases of durable goods where
consumer expectations of future prices affects their tinahnew durable purchases as in Goettler
and Gordon (2011). Thus in our model, the pricing decisiagiven by the simple static Bertrand
equilibrium in every period. The only dynamic decision irr eoodel is firms’ investment deci-

sions.

2.2 Solution concept

Assume that the two firms are expected discounted profit magmnand have a common discount
factor € (0,1). We adopt the standard conceptMérkov-perfect equilibriun{MPE) for this
dynamic game between the two firms. In a MPE, the firms’ investrand pricing decision rules
are restricted to be functions of the current statét,),c(zt),c(t),m(t)). When there are multiple
equilibria in this game, the Markovian assumption alsorigstthe “equilibrium selection rule” to
depend only on the current value of the state variable. Thesfipricing decisions only depend
on their current production cos(s(lt),cg)) in accordance with the static Bertrand equilibrium.

However the firms’ investment decisions also depend on thee\af the state of the art marginal
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cost of productiore!) and the designated movet®).

Definition 1. A Stationary Markov Perfect Equilibrium of the duopoly istreent and pricing game
consists of a pair of strategi€®;(cy,c2, ), pj(c1,C2)), j € {1,2} where RB(cy,co,c,m) € [0,1] is
firm j's probability of investing and ficy,c2) = maxcy,cp] is firm j's pricing decision. The
investment rules jPcy, ¢, ¢, m) must maximize the expected discounted value of firm j'sedutur

profit stream taking into account the investment and prigtrgtegies of its opponent.

We allow the investment strategies of the firms to be prolsdtuilto allow for the possibility
of mixed strategy equilibria.

To derive the functional equations characterizing a statip Markov-perfect equilibrium, sup-
pose the current state (s1,C2,c,m), i.e. firm 1 has a marginal cost of productio) firm 2 has
a marginal cost of productiotp, and the marginal cost of production using the current least-t
nology isc andm denotes which of the firms (or bothnf = 0) has the right to make a move and

invest. The firms’ value functiong;, j = 1,2 take the form
Vj(cy,C2,¢,m) = maxyv; j(ci,Cz,¢, M),V j(C1,Cz,C,M)] (2)

where, wherm= 0, vy j(C1, C2, ¢, m) denotes the expected value to fijrif it does not invest in the
latest technology, and j(cy, c2,c, m) is the expected value to firmif it invests. However when
m e {1,2}, the subscript® andl refer to whether an investment is made in pefidy the firm
m, who has the right of move. When= 1 (firm 1 has the right to investy; 1(c1,¢c2,¢,1) and
Vn,1(C1,C2,C, 1) denote the expected values to firm 1 from investing and nesitivg. Whem = 2
(firm 2 has the right to investy; 1(c1,Co,¢,2) andwy 1(c1,C2, ¢, 2) denote the expected values to
firm 1 from the scenarios when firm 2 makes the investment os doemake the investment. To
simplify exposition below, we use the simultaneous moverpretation oN andl (m= 0), while
alternative move interpretation can be reconstructecbgoaisly.

The formula for the expected profits associated withinvesting is given by:
WN,j(C1,C2,C,m) = rj(C1,C2) + PEVj(C1,C2,¢,m,0), 3)

whereEV;(cy,c2, m, ¢, 0) denotes the conditional expectation of fijis next period value function
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Vj(cy,C2,c,m) given that it does not invest this period (represented byatsied argument i V),
conditional on the current state;, ¢y, c, m).

The formula for the expected profits associated with inngss given by
wi,j(C1,C2,¢,m) =rj(c1,C2) — K(c) + BEVj(C1, C2,¢,m, 1), (4)

whereEV(cy, ¢, ¢,m, 1) is firm j’s conditional expectation of its next period value funotgiven
that it invests (the last argument is 1), conditionalon ¢z, ¢, m).
Let Py(c1,C2,c,m) be firm 2’s belief about the probability that firm 1 will invest state is

(c1,C2,¢,m). Consider the simultaneous move case=(0) first. It follows from @) that
P1(c1,C2,c,m) = 1{vj 1(C1,C2,C,m) > VN 1(C1,C2,C, M)}, (5)

where1{-} denotes an indicator function, and mixed strategy investrpebability arises in the
case of equality. Similar formula holds fBs(c1, c, ¢, m).
The Bellman equations for firm 1 in the simultaneous move eaeeas follows. Similar

equation for firm 2 are omitted for space considerations.

WN,1(C1,C2,€) = ri(c1,C2)+ B /0 [P2(c1,C2,¢) max(.1(c1,¢,¢), v a(c1,C,C)) +
(1—P(c1,C,¢)) max(Wn,1(C1,C2,€), v 1(c1, 2, C')) | (dC[c).
C
Vi 1(C1,C2,C) = rl(cl,cz)—K(c)-l—B/o [Pz(cl,cz,c)ma><(vN71(c,c,c’),v|71(c,c,c’))+

(1—P(c1, ¢, ¢)) max(vn,1(c, C2, ), Vi 1(C, C2,€)) | Ti(dC|c). (6)

In the alternating move case, the Bellman equations for wwefirms lead to a system of

eight functional equations fofvy, j(c1,C2,c,m), v j(C1,C2,c,m)} for j,me {1,2}. The Bellman

Svariablem= 0 is omitted for clarity
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equations for firm 1 are given below, similar equations fonfi are omitted.

W,1(C1,C2,¢,1) = r1(017C2)+[3f(1|1)/0 max(,1(C1,C2,¢’, 1), v 1(C1,C2, ¢, 1))m(dC |c) +

(o

Bf(2]1) /O p(c1, G2, )(dC|[c)

vi1(c1,¢2,¢,1) = ri(cy,c2) —K(c)+BF(1]1) /Ocma><(vN71(c,cz,c’,1),v|71(c,cz,c’,1))n(dc’|c)+
Bt [ “ple.ca.¢)mdd]o)

wW1(C1,C2,C,2) = ri(c,c2)+PBf(1]2) /Ocmax(vm(cl,cz,c’,1),v|71(c1,cz,c’,1))Tt(dc’\c)+
B1(212) [ ples,ca ¢m(dcio

vi1(c1,€2,¢,2) = ri(cy,c2)+BF(1]2) /Ocmax(vN,l(cl,c,c’,1),v|71(c1,c,c’,1))n(dc’|c)+
B1(22) [ ples.c.cmc]o) ©

where

p(c1,C2,C) = Py(C1,C2,C,2)V; 1(C1,C2, C,2) + [1 — P(C1,C2,C, 2)|VN.1(C1,C2, C, 2). (8)

Note thatP,(cy,Cp, ¢, 1) = 0, since firm 2 is not allowed to invest when it is firm 1's turringest,
m= 1, and similarly forP;(c1, cp, C, C, 2).

The equilibria of the Bertrand investment game with sirnd@us moves are characterized by
the large system of non-linear equations composed of emsa) and 6) written for every com-
bination of(cy, cy, €) in a discrete representation of the state sgac®imilarly, in the alternating
moves game, all quilibria are characterized by the systamposed of equationg) and £) for
every combination ofcy, ¢z, ¢) and all values ofn. Althought contemporary numerical solvers are
capable of solving very large systems of non-linear equatifinding of all solutions for such a
system is impossible in general.

The key feature of the Bertrand investment model that allesvgo compute all MPE in both
simultaneous and alternating move specifications of theeganfiniteness (on a discrete repre-
sentation of the state space) and the directionality in Wodudon of the cost variable&;, ¢, ).

Because of the unidirectional evolvement of the state vettte system of equations characterizing
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the equilibria of the model turns out to be block-triangu&ard thus, it is possible to decompose
solving of the whole system into solving a number of much éeng@iroblems.

Recursive lexicographical search algoriti{RLS) developed in Iskhakov, Rust and Schjerning
(2013) is guaranteed to find all MPE in a general class of gaimgs calldynamic directional
games(DDGSs), provided there is a finite number of equilibria onrgvistage game” defined in
this model by a unique combination ¢1,cp,c), and that all of them can be computed. These
requirements are satisfied in our model, and so using RLSit#dgowe are able to compute all

MPEs of the Bertrand investment game.

3 Socially optimal production and investment

To assess the efficiency of the outcomes Bertrand investgaang, we first derive in this section
the social optimum solution to our model that maximizesltexpected discounted consumer and
producer surplus. In a dynamic model, the social plannetdascount for the investment costs.
Under our assumptions about constant returns to scalejitroakes sense for the social planner
to operate a single plant. Thus, the duopoly equilibrium lbannefficient due to duplicative
investments that a social planner would not undertake. Memae will show that inefficiency in
the duopoly equilibrium manifests itself in other ways aslwe

Our model of consumer demand is based on the implicit assamibat consumers have quasi-
linear preferences; the surplus they receive from consgrttie good at a price op is some
initial level of willingness to pay net op. The social planning solution entails selling the good
at the marginal cost of production, and adopting an efficievgstment strategy that minimizes
the expected discounted costs of production. debe the marginal cost of production of the
current production plant, and letbe the marginal cost of production of the current state of the
art production process, which we continue to assume evalsyes exogenous first order Markov
process with transition probabilitir(c’|c) and its evolution is beyond the purview of the social
planner. All the social planner needs to do is to determineimal investment stratedgr the
production of the good.

Let C(cc,c) be thesmallestpresent discounted value of costs of investment and primifuct
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when the plant operated by the social planner has margirsalce@and the state of the art tech-
nology has a marginal cost of< c.. The minimization occurs over all feasible investment and
production strategies, but subject to the constraint tirmptanner must produce enough in every

period to satisfy the unit mass of consumers in the markethave

C(ce,C) = min{c<+[3/OCC(c<,c’)n(dc’|c), CQ-i-K(C)-l-B/OCC(C,C/)T[(dC[|C)}, 9)

where the first component corresponds to the case when immeasis not made, and cost is
carried in the future, and the second component corresportie case when new state of the art
costc is acquired for additional expenselkfc)..

It follows that the optimal investment strategy takes threfof acutoff rulewhere it is optimal
to invest in the state of the art technology if the current cgss above a cutoff thresholct(c).
Otherwise the drop in expected future operating costs isufitiently large to justify undertaking
the investment and thus it is optimal to produce the goody i@ existing plant with marginal cost

Cc. The cutoff rulec¢(c) is the indifference point in9), and thus it is the solution to the equation

K(©) =B [ [Clec(e).¢) —Clec)] mide]o) (10)

if it exists, andc(c) = co otherwise?

We have implicitly assumed that the cost of investntefd) is not prohibitively high, so that
the social planner would always want to invest in a new teldgy Theoreml provides a bound
on the costs of investments that must be satisfied for invastto occur under the socially opti-

mum solution.

Theorem 1 (Necessary and sufficient condition for investment by theiadglanner) Let the
current costs béc, c). Investment (at current period or some time in the futurepisially optimal
if and only if there exists’c= [0, c ] in the support of the Markov process of the state of the art

marginal cost &), such that
B(cc—¢)

1 K(c). (11)

4The details about the cost recursion are given in Appendix B

SIn problems where the support ff; } is a finite set, the cutoff.(c) is defined as the smallest valueafin
the support of ¢} such thak(c) > B [5[C(cc,¢’) — C(c,c)m(dc [c).
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The proof of Theoreni, and all subsequent proofs unless sufficiently short, aveiged in Ap-
pendix A.

The condition under which it is socially optimal to invesaps$ a central role when we analyze
the duopoly investment dynamics in sectién We will say that the investment costs are not
prohibitively high, or that investment is socially optimbthe condition (1) in Theoreml holds
with ¢ = min|cy, ¢o], wherec; denotes the marginal cost of production of fijnn the Bertrand
investment game.

As we will show in the next section, Bertrand investment gawite simultaneous moves sup-
ports a monopoly outcome. The following lemma establishesefficiency of a monopoly out-

come, which is useful for what follows in the next section.

Lemma 1 (Social optimality of monopoly solution)The socially optimal investment policy is
identical to the profit maximizing investment policy of a molist who faces the same discount
factor3 and the same technological procgss} with transition probabilityrtas the social planner,
assuming that in every period the monopolist can charge eepof @ equal to the initial value of

the state of the art production technology.

Proof. Since the monopolist is constrained to charge a price noehigfancy every period, it
follows that the monopolist maximizes expected discountdde of profits by adopting a cost-

minimizing production and investment strategy as per $@témner. O

4 Duopoly Investment Dynamics

We are now in position to solve the model of Bertrand duopolestment and pricing and char-
acterize the stationary Markov Perfect equilibria of thisdal. As mentioned above, we used the
RLS algorithm from Iskhakov, Rust and Schjerning (2013)dmpute all MPEs in the Bertrand
investment game. These computations facilitated thetifitise examples below. Yet the majority

of our results are based on analytipabofsof the general properties of the equilibria of this game.
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In the subsequent analysis we focus on a subclass of Berimgastment games where the
support of the Markov procesg} representing the evolution of the state of the art prodactio
technology is dinite subset of R Therefore, as discussed above, the state space of thenmerest
game is a finite subset @& where all of the coordinates;, ¢, andc lie in the support of the
Markov processc}.® If we further restrict the set of possible equilibrium sé¢iea rules to be
deterministicfunctions of the current state;, ¢y, c), we can show that there will only be a finite
number of possible equilibria in both the simultaneous dtetraating move formulations of the
game. Yet, the number of the equilibria grows exponentiaky with the number of points in the

discretized state spade.

4.1 Configuration of the set of equilibrium payoffs

Provided that the investment cost is not prohibitively higte set of all MPEs in the Bertrand
investment game is surprisingly rich. Despite the prewadenf leapfrogging in equilibrium, we
show that “monopoly” equilibria is supported in the simakaus move ganfeA static Bertrand-
like outcome with zero expected payoff for both duopolistalso supported in the simultaneous
move game. It is generally not possible to support the neitieopoly nor zero profit outcomes
in the alternating move version of the game except for isdlaatypical counterexamples. We

summarize these findings in the following theorem what dturtes our main result.

Theorem 2(Characterization of the set of equilibrium payofffinvestments are socially optimal
(in the sense of the condition of Theor&hat the apexco, Co, Cp) of the state space of the Bertrand

investment and pricing game, the following holds:

1. No investments by both firms is not supported in any of thE Btiuilibria of the game;

SWe proved Theorerfi by mathematical induction, and this is the reason we asshatette support ofc}
is a finite set. We believe most of the results still hold whendtate space is continuous. However in the interest
of space we do not attempt to prove this result here and mstaty it as a conjecture that we believe to be true.

"We can show that if investment is socially optimal and thepsupof the Markov proceséc} is the full
interval [0, cp] the simultaneous move Bertrand investment and pricing gas& continuum of MPE.

8Note that the monopoly equilibria we characterize belownarethe preemption equilibrium of Riordan and
Salant (1994). In contrast to their rent dissipation resntinopoly profits in our model are positive and are equal
to the maximum possible profits subject to the limit on primel.emmal monopoly outcome is fully efficient.
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2. The simultaneous move game has two fully efficient “madgdpquilibria in which either

one or the other firm makes all the investments and earns niaxif@asible profit;

3. There exist a symmetric equilibrium in the simultaneowsergame that results in zero
expected payoffs to both firms at all statesc,c’) € S with ¢ € [0,c]|, and zero expected
payoffs to the high cost firm and positive expected payoftsgdow cost firm in states

(c1,C2,C) Where @ # Cp;

4. The convex hull of the set of the expected discountedl@aqumh payoffs to the two firms in
all MPE equilibria of simultaneous move game at the apex isagle with verticeg0,0),
(0,Vm) and (Vm,0), where W = vn,i(Co, Co, Co) is the expected discounted payoff of firm i

which makes all investments in the monopoly equilibrium;

5. The (convex hull of the) set of expected discounted bquiin payoffs to the two firms in
all possible MPE equilibria at the apex of the alternatingue@ame is a strict subset of the

triangle with the same vertices;

Figurel illustrates Theoren2 by plotting all apex payoffs to the two firms under all possibl
deterministic equilibrium selection rules in the simukans move game where the support of
{c} is the 5 point sef0,1.25,2.5,3.755}. Panel (a) plots the set of payoffs that occur when
technological progress is deterministic, whereas panshidws the much denser set of payoffs that
occur when technological progress is stochastic. Thougtetare actually a greater total number
of equilibria (192,736,405) under deterministic techigidal progress, many of these equilibria are
observationally equivalemepetitionsof the same payoff point which arise due to our treatment of
the equilibrium selection rules that only differ off the ddurium path as distinct. We indicate the
number of repetitions by the size of the payoff point plottede proportional to the number of
repetitions. Figurél shows that when technology is stochastic there are fewetitems and so
even though there are actually 28 million fewer equilibtieere are actually a substantially greater
number (1,679,461 versus 63,676) of distinct payoff points

It is perhaps not surprising that when firms move in an altergdashion neither one of them

will be able to attain monopoly payoffs in any equilibriumtbe alternating move game (except
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Figure 1: Initial node equilibrium payoffs in the simultames move game

Panel (a) 10° Panel (b) x10°

Notes: The panels plot payoff maps of the Bertrand investrg@me with deterministic (a) and random (b) technolo-
gies. Parameters afe= 0.9512,k; = 8.3, ky = 1, nc = 5. Parameters of beta distribution for random technology ar
a= 1.8 andb = 0.4. Panel (a) displays the initial state payoffs to the two siimthe 192,736,405 equilibria of the
game, though there are 63,676 distinct payoff pairs amadnaf &hese equilibria. Panel (b) displays the 1,679.461
distinct payoff pairs for the 164,295,079 equilibria these under stochastic technology. The color and size of the
dots reflect the number of repetitions of a particular pagoffibination.

for some isolated counterexamples we discuss below). Whas fnake simultaneous investment
decisions, the high cost firm has no incentive to deviate ftobenequilibrium path in which its
opponent always invests. However when the firms move in anrating fashion, the high cost
firm will have an incentive to deviate because it knows ttsabponent will not be able to invest at
the same time (thereby avoiding the Bertrand investmeiidue), and once the opponent sees that
the firm has invested, it will not have an incentive to immegliainvest to leapfrog for a number
of periods until it is once again its turn to invest and theae bheen a sufficient improvement in the
state of the art. This creates a temptation for each firm tesia&nd leapfrog their rival that is not
present in the simultaneous move game, and the alternatmg structure prevents the firms from
undertaking inefficient simultaneous investments, thatiglso generally prevents either firm from
being able to time their investments in a socially optimaywa

Statement 5 in the Theorehstates that the zero expected profit mixed strategy equibis
not sustainable in the alternating move game either. Thdugay seem tempting to conclude that
mixed strategies can never arise in the alternating moveegam find that both pure and mixed

strategy stage game equilibria are possible in the altegnatove game. The intuition as to why
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this should occur is that even though only one firm investngtgiven time, whent(c|c) > 0
the firms know that there is a positive probability that thely main in the same state;, ¢y, c)

for multiple periods until the technology improves. The gibgity of remaining in the same state
implies that the payoff to each firm fronot investinglepends on their belief about the probability
their opponent will invest in this state at its turn.

We formally define the leapfrogging equilibria as those wettae high cost firm has a positive
probability of investment at least in one point of the staiace along the equilibrium path, and
thus it can be seen in a realization of such equilibrium thhigh cost firm leapfrogs the cost
leader. As mentioned above, leapfrogging equilibria amg ¥pical. In all of our numerical
solutions ofsimultaneous movgame, we found that in the symmetric zero profit mixed strateg
equilibrium the high cost firm always hass#ictly higher probability of investing than the low
cost firm, thus satisfying the definition of a leapfroggingiéiqrium. We have not been able to
prove this result in general, however we did prove it in thé game (wher = 0, see Lemma.2
in the appendix), and in the symmetric, zero expected profedistrategy stage game equilibria
under a slight strengthening of the condition of social ity of investment. For the interest of

space we don't include this result here.

4.2 Uniqueness

In spite of very large number of MPEs we find in the Bertranaéstment game, there is a subclass
of games for which the equilibrium is unique, or allowingate¢ling of the firms, there are two

asymmetriequilibria of the game.

Theorem 3(Sufficient conditions for uniqgueness)n the dynamic Bertrand investment and pric-
ing game a sufficient condition for the MPE to be unique is {flafirms move in alternating

fashion (i.e. m# 0), and (i) for each c in the support afwe haver(c|c) = 0.

Theorem3 implies that under strictly monotonic technological impement the alternating
move investment game has a unique Markov perfect equifirithis is closely related to, but not
identical with an assumption of thteeterministic technological progress discussed in secti@n

There are specific types of non-deterministic technoldgicagress for which Theore@will still
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hold, resulting in a unique equilibrium to the alternatingua game. In subsectioh4 we will
return to this case, by considering further properties efuhique equilibrium that results when
1(c|c) = 0 including the conditions in which it constitutes a diseréime equivalent to Riordan
and Salant’s (1994) continuous time preemption equiliriu

It is also helpful to understand why multiple equilibria camse in the alternating move game
whenTtt(c|c) > 0. The reason is that when there is a positive probabilitgofaining in any given
given state (assuming firms choose not to invest when it isftiln to invest), it follows that each
firm’s value ofnot investinglepends on their belief about the probability their oppomelhinvest.
Thus, by examining the Bellman equatio$ it not hard to see that for firm 1 the value of not
investing when it is its turn to investy 1(c1, C2, ¢, 1), depends oi,(cy, C2, ¢, 2) whenTt(c|c) > 0.
This implies thatP; (¢, 2, ¢, 1) will depend onP(cy, ¢z, ¢,2), and similarly,P>(cy, ¢z, ¢, 2) will
depend orPi(cy,Cp,c,1). This mutual dependency creates the possibility for migtgolutions
to the Bellman equations and the firms’ investment prob@dsliand multiple equilibria at various

stage games of the alternating move game.

4.3 Efficiency of equilibria

We evaluated the efficiency of duopoly equilibria by caltiuig theirefficiency scorgvhich is the
ratio of total surplus (i.e. the sum of discounted consumeplas plus total discounted profits)
under the duopoly equilibrium to the maximum total surplcisiaved under the social planning so-
lution. We note that the calculation of efficiencyagquilibrium specifi@and thus its value depends
on the particular equilibrium of the overall game that weesel For example, we have already
proved that monopoly investment by one of the firms is an daquiim in the simultaneous move
game, provided the cost of investment is not prohibitivedynh This implies immediately that there
do exist fully efficient MPE in the simultaneous move game.n&f& show that the non-monopoly
equilibria of either the simultaneous or alternating mowestment games are generailgfficient
and this inefficiency is typically due to two sources a) degtiive investments (valid only in mixed
strategy equilibria in the simultaneous move investmentegaand b) excessively frequent invest-

ments. Note that it is logically possible that inefficien@utd arise fromexcessively infrequent
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investmentand the logic of the Bertrand investment paradox might leatbiconjecture that we
should see investments that are tofrequentin equilibrium relative to what the social planner
would do. However surprisingly, we find that duopoly investits are generally excessively fre-
guent to the social optimum, with preemptive investmentsgfwthey arise) representing the most
extreme form of inefficient excessively frequent investimemew technology.

The two panels in the left column in Figuiillustrate the set of equilibrium payoffs from
all MPE equilibria computed by the RLS algorithm of IskhakBwust and Schjerning (2013). We
compute the efficiency of each of the equilibria, and treptire calculated efficiencies as “data”,
we plot their empirical distribution in the correspondiranels in the right column in Figurz

Panels (a) and (c) in Figuirepresent an alternating move investment game with detéstic
alternations of the right to move and the technological pregwhich is not strictly monotonic, i.e.
11(c|c) > O for somec. The opposite of the latter condition ensures unique dayuilin in this game
according to Theorer8, but multiple equilibria is a typical outcome in the altetima move game
with “sticky” state of the art technology. Consistent withéloren2 the set of equilibrium payoffs
is a strict subset of the triangle, showing that it is not gmego achieve the monopoly payoffs
(corners) or the zero profit mixed strategy equilibrium gayarigin) in this case. As before, we
have used the size of the plotted payoff points to indicagentimber of repetitions of the payoff
points, but now we use the color of plotted equilibrium pdytd indicate the efficiency. Red (hot)
indicates high efficiency payoffs, and blue (cool) indisdtaver efficiency payoffs.

We see a clear positive correlation between payoff and efftgi in panel (a) — there is a
tendency for the points with the highest total payoffs (ip@ints closest to the line connecting
the monopoly outcomes) to have higher efficiency indiceg TBFs of efficiency levels in panel
(c) shows that 1) overall efficiency is reasonably high, wifte median equilibrium having an
efficiency in excess of 97%, and 2) the maximum efficiency ef équilibria involving mixed
strategies along the equilibrium path is strictly less th@@%.

In panels (b) and (d) of Figurawe plot the set of equilibrium payoffs and distribution otieq
librium efficiency for a simultaneous move investment urttierdeterministic technology process.

In accordance with Theoredthe monopoly and zero profit outcomes are now present among
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Figure 2: Payoff maps and efficiency of MPE in two specifiaagiof the game

Panel (a): Non-monotonic tech. progress

17826 equilibria, 792 distinct pay-off points Panel (c): Non-monotonic tech. progress
Size: number of repetitions Color: efficiency 8913 equilibria, 7817 leapfrog, 2752 mixed strategy
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Notes: Panel (a)-(b) plots payoff maps and panel (c)-(d)pbalfs of efficiency by equilibrium type for two versions
of the Bertrand investment pricing game. In panel (a) andh)case of deterministic alternating moves and non-
strictly monotonic one step stochastic technological pgeg. Parameters in this case Rre 0.9592,k; =5, k> =0,,
f(1]1) = f(2]2) =0, f(2|1) = f(1]2) =1, & = 1 nc = 4. In panel (b) and (d) we plot the payoffs and the distributio
of efficiency for the simultaneous move game with deternimne step technology. Leapfrog equilibria are defined
as having positive probability to invest by the cost followaéong the equilibrium path, mixed strategy equilibria are
defined as involving at least one mixed strategy stage édqiuith along the equilibrium path.

the computed MPE equilibria of the model. Overall, the afid in this game are less efficient
compared to the equilibria in the alternating move gamelalygal in the top row panels, but the
tendency of more efficient equilibria to be located closah®“monopoly” frontier remains. The
additional source of inefficiency in this game is redundaoicgimultaneous investments, which

appear in the mixed strategy equilibria. It is clearly seetie cumulative distribution plot in panel

23



(d) that even though more than 30% of the equilibria are aggring full efficiency, the mixed
strategy equilibria are not among them. Instead, the digion of their efficiency is stochastically
dominated by the distribution of efficiencies in all the difwia of the game.

We formalize the above discussion in the following theorem.

Theorem 4 (Inefficiency of mixed strategy equilibria)A necessary condition for efficiency in the
dynamic Bertrand investment and pricing game is that alorREMbath only pure strategy stage

equilibria are played.

Figure 3 establishes the existencefatfly efficient leapfrogging equilibriaPanel (a) of figure
3 plots the set of equilibrium payoffs in a simultaneous mowestment game where there are
four possible values for state of the art cos1.67,3.33 5} and technology improves determin-
istically. Recall that the payoff points colored in dark @@ 100% efficient, so we see that there
are a number of otheron-monopoly equilibrigdhat can achievéull efficiency. The significance
of this finding is that we have shown that it is possible to mbhtaompetitive equilibria where
leapfrogging by the firms ensures that consumers receive sfrthe surplus and benefits from
technological progress without a cost in terms of ineffitiamestment such as we have observed
occurs in mixed strategy equilibria of the game where shyciaéfficient excessive investment re-
sults in lower prices to consumers but at the cost of zeroagpeprofits to firms. Notice, however,
that even the least efficient mixed strategy equilibriuthlséis an efficiency of 96%, so that in this
particular example the inefficiency of various equilibriaymot be a huge concern.

Panels (c) and (d) of Figuf&plot the simulated investment profiles of two different ditpuia.
Panel (c) shows the monopoly equilibria where firm 2 is the opatist investor. The socially
optimal investment policy is to make exactly two investnserthe first when costs have fallen
from 5to 167, and the second when costs have fallen to the absorbing g&D. Panel (d) shows
the equilibrium realization from a pure strategy equililoni that involves leapfrogging, yet the
investments are made at exact same time as the social plaookt do. After firm 1 invests when

costs reach. 67 (consumers continue to pay the prme=5), in time period 5 it is leapfrogged by

9To be exact, 15.22% have efficiency of 0.9878 and the samtdnaaf equilibria is fully efficient.
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Figure 3: Efficiency of equilibria

Panel (a): Pay—-off map
46939 equilibria, 892 distinct pay-off points . .
Size: number of repetitions Color: efficiency Panel (b): Cdf of efficiency by equilibrium type
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Notes: Panel (a) and panel (b) plots the apex payoff map astdhdition of efficiency indices for the simultaneous
move game. 25.88% of all equilibria are fully efficient. Theshefficient mixed strategy equilibrium has the efficiency
index 0.99998 but does not violate Theordm Panel (c) displays the simulated investment profile fronully f
efficient “monopoly” equilibrium, while panel (d) displayke example of fully efficient equilibrium that involves
leapfrogging.

firm 2 who becomes the permanent low cost producer. At thist@oiprice war” brings the price
down from 5 to 167, which becomes new permanent level.

We conclude that the leapfrogging equilibria may be fullijoggnt if investments are made in
the same moments of time as the monopolist would invest noitase equilibria consumers also

benefit from the investments because the price decreaseseiea of permanent drops.

Lemma 2 (Existence of efficient non-monopoly equilibridh both the simultaneous move and

alternating move investment games, there exist fully efficiton-monopoly equilibria.
Proof. The proof is by example shown in Figuse An example of a fully efficient non-monopoly
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equilibrium when the firms move alternately (in determiiishion) can be constructed as wWell
]

While we find that efficient leapfrogging occur genericalyequilibria in the simultaneous
move investment game, the result that there exist efficeapifrogging equilibria in the alternating
move investment game should be viewed as a special couatepde, and that we typically do not
get fully efficient leapfrogging equilibria in alternatimgove games with sufficiently details dis-
critization of the state space and when investment cost§eaisonable” in relation to production
costs (i.e. when the cost of building a new pl&rt) significantly different from zero). However
due to the vast multiplicity of equilibria in the simultanesomove investment game, we have no
basis for asserting that efficient leapfrogging equililari@ any more likely to arise than other more
inefficient equilibria.

We conclude by stating that the inefficiency is causedekgessive frequency of investment
rather tharunderinvestmentin simultaneous move games we already noted that anotheresou
of inefficiency isredundant, duplicative investmertsat occur only in mixed strategy equilibria.
We noted that while mixed strategy equilibria also existia &lternating move investment game,
duplicative simultaneous investments cannot occur byskaraption that only one firm can invest
at any given time. Thus, the inefficiency of the mixed strateguilibria of the alternating move
games is generally a result of excessively frequent investrander the mixed strategy equilib-
rium. However it is important to point out that we have consted examples of inefficient equi-
libria where there isinderinvestmentlative to the social optimum. Such an example is provided

in panel (b) of Figure! in the next section.

4.4 Leapfrogging, Rent-dissipation and Preemption

In this section we consider the Riordan and Salant conje¢hat was discussed in section 2. Rior-

dan and Salant conjectured that regardless of whether the firove simultaneously or alternately,

10 et the possible cost states b@ 5,10}, assume deterministic technological progress, the caswesting
K =4, and the discount fact@= 0.95. Then the socially optimal investment strategy is foestments to occur
whenc =5 andc = 10, and these investments will occur at those states in tlgpi@rquilibrium of the game,
but where one firm makes the first investment at5 and the opponent makes the other investment whe.
These investments clearly involve leapfrogging that is &ldly efficient.
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or whether technological progress is deterministic orlststic, the general outcome in all of these
environments should be thati@nt-dissipating preemptiqm situation where only one firm invests
and does so sufficiently frequently in order to deter its am from investing. These frequent
preemptive investments fully dissipate any profits the $tivg firm can expect to earn from pre-
empting its rival (and hence also dissipating all sociapkig). We first confirm their main result

stated in terms of our model.

Theorem 5(Riordan and Salant, 1994).Consider a continuous time investment game with deter-
ministic alternating moves. Assume that the cost of invastia independent of ¢, () =K and is

not prohibitively high in the sense of inequalifyl. Further, assume that technological progress
is deterministic with state of the art costs at time 0 given by the continuous, non-decreasing
function ¢t) and continuous time interest ratexr 0. Assume that the continuous time analog of
the condition that investment costs are not too high holds, ©@0) > rK. Then there exists a
unique MPE of the continuous time investment game (modlabetng of the firms) that involve
preemptive investments by one or the other of the two firmsiamuvestment in equilibrium by its
opponent. The discounted payoffs of both firms in equilibrisiO, so the entire surplus is wasted

on excessively frequent investments by the preempting firm.

Corollary 5.1 (Riordan and Salant, 1994).The continuous time equilibrium in Theorénis a
limit of the unique equilibria of a sequence of discrete tigagnes wherdd = exp{—rAt} and
per period profits of the firms;(icy, c;), are proportional toAt and the order of moves alternates
deterministically, for a deterministic sequence of stdtthe art costs given bfco, c1,Cp,C3,...) =
(c(0),c(At),c(2At),c(3At),...) asAt — 0.

The proofs of Theorerb and Corollary5.1is given in Riordan and Salant (1994) who used a
mathematical induction argument to establish the exigt@fthe continuous time equilibrium as
the limit of the equilibria of a sequence of discrete timemdating move investment games.

In Figure4 we plot simulated MPE for three versions of the Bertrand stweent pricing game
with deterministic alternating move and strictly monototachnological progress. In the panel (a)
we let the length of the time periods be relatively small tovile a good discrete time approxima-

tion to Riordan and Salant’s model in continuous time. Ingd¢ln) we decrease the number points
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Figure 4: Production and state of the art costs in simulatB&EMontinuous. vs. discrete time

Panel (a): Preemption and rent-dissipation Panel (b): Underinvestment Panel (c): Leap-frogging
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Notes: The figure plots simulated MPE equilibria for threesi@ns of the Bertrand investment pricing game with
deterministic alternating move and strictly monotonicealogical progress. In panel (a) we present a discrete time
approximation to Riordan and Salant’'s model in continugustwith parameter@ = 0.9512k; = 2, ko = 0, Ti(c|c) =

0, f(1]1) = f(212) =0, f(2]1) = f(1]2) = 1, nc = 100,At = 0.25. In panel (b) we decrease the number of discrete
support points foc ton; = 25 and increase the length of the time period suchAhat 1 adjusting per period values.

In panel(c) we in addition lower investment costs by setking- 0.5.

of support of the marginal cost and increase the length ofitive period. In panel(c) in addition
we lower investment cost. These three examples demongtegtpreemptive rent-dissipating in-
vestments indeed can happen in discrete time when the castasting in the new technology
K(c) is large enough relative to per period profits, but fails whenopposite is true as shown in
panels (b) and (c). In discrete time, both duopolist haveptmary monopoly power that can lead
to inefficient under-investment as shown in the equilibrig@lization in panel (b) or leapfrogging
as shown in panel (c). Since per period profits are propatiwrthe length of the time period, the
latter increases the value of the temporary cost advantéige gains after investment in the state
of the art technology. If investment costs are sufficiendhy relative to per period profits, it can
actually be optimal for the cost follower to leapfrog thetdeader, in the limiting case even for a
one period cost leadership.

While the Riordan and Salant result of strategic preemptitimfull rent dissipatioronly holds
in the continuous time limifst — 0, their conclusion that investment preemption will ocaurd-
bust to discreteness of time. To this extent we find investmezemption as the only equilibrium

in our discrete time numerical solutions wh&his sufficiently small. Thus, there is a “neighbor-
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Figure 5: Production and state of the art costs in simulateé&EMnder uncertainty

Panel (a): Random alternating moves Panel (b): Non—-monotonic tech. progress
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Notes: The figure plots simulated MPE by type for four stothageneralizations of the model illustrated in Figure
4.b. In panel (a) we consider random alternating moves whetd) = f(2/2) = 0.2 andf(2|1) = f(1/2) = 0.8. In
panel (b) we allow for non-strictly monotonic one step ramdechnological improvement. In panel (c) we allow
technological progress to follow a beta distribution ovee tnterval[c,0] wherec is the current best technology
marginal cost of production. The scale parameters of tisigidution isa = 1.8 andb = 0.4 so that the expected cost,
given an innovation, isx a/(a+b). Panel (d) plots an equilibrium path from the simultaneoesergame. Unless
mentioned specifically remaining parameters are as in ghhef Figure @).

hood” of At about the limit value O for which their unique preemption iétium also holds in

a discrete time framework. However the conclusion thatmppen is fully inefficient and rent
dissipating is not robust to discrete time. In discrete ttheepreempting firm does earn positive
profits which results in that the equilibrium is not complgieefficient.

Allowing for random alternationn the right to move, we obtain a unique pure strategy equilib
rium, since random alternations does not violate the safftotonditions for uniqueness given in
Theorem3. Yet, random alternation of the right to move destroys thktalbo engage in strategic
preemption and creates the opportunity for leapfroggingesfirms cannot full control. Figure

5, panel (a) gives an example of a simulated equilibrium pdikemthe right to move alternates
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randomly. While this equilibrium path depicts a unique psit&tely equilibrium, we clearly see
the leapfrogging pattern.

From Theoren8 it follows that if there is positive probability of remairgrwith the same state
of the art cost for more that one period of time, i.et(c|c) > 0, the main results of Riordan and
Salant (1994) will no longer hold in our model. We may have tiplé equilibria, there will be
leapfrogging, and full rent dissipation fails.

Figure5 presents simulated equilibrium paths when we introducdaamess in the evolution
of the state of the art technology, the order of moves in thexr@ting move game, or possibility
for simultaneous investment. All panels exhibit leapfriogg reflecting the statement that stochas-
ticity in the model presents the cost follower with more ogipoities to leapfrog its opponent and
makes it harder for the cost leader to preempt leapfroggdngrall, in presence of uncertainty,

the game becomes much more contestable.

Lemma 3. (Limits to Riordan and Salant result) Preemption does ndt lwzhen (1) cost of in-
vestment K(c) is sufficiently small relative to per periodffis, (2) investment decisions are made
simultaneously, (3) the right to move alternates randorfdymi(c|c) > 0, i.e. under other than

strictly monotonic technological progress.
Proof. The proof is by counter examples which are shown in Figuaiad5. O

The vast majority of MPE equilibria in the many specificasasf the game we have solved
using the RLS algorithm exhibited leapfrogging. It appehed Riordan and Salant results are not
robust to any of the mentioned assumptions, at least in s@eate time analog of their model.
However with the exception of the full rent dissipation rigswe believe that there is@eighbor-
hoodabout the limiting set of parameter values that Riordan aaldr used to prove Theorem
5 for which their conjectured preemption equilibrium willnue to hold, at least with high

probability.
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5 Conclusions

The key contribution of this paper is to provide the first ewaerization ofall equilibria of a dy-
namic duopoly model of Bertrand price competition in thesprece of stochastic technological
progress. Contrary to the previous literature which hasged oninvestment preemptioas the
generic equilibrium outcome, we have shown that the gemepiglibrium outcome involves vari-
ous types ofeapfroggingthat result in some of the benefits of technological proghbessg passed
on to consumers in the form of lower prices. We have shownttiede dynamic equilibria are
generally inefficient due to a combination of excessivedgtrent investments and duplicative in-
vestments resulting from coordination failures betweenfilms. However we have shown that
efficiency is very high and there exist fully efficient asyntnemonopoly equilibria, as well as
efficient non-monopoly equilibria involving perfectly catnated leapfrogging by the two firms.

Our analysis provides a new interpretation of “price wahsthe equilibria of our model, prices
are piecewise flat with large sudden declines in prices tbatrowhen a high cost firm leapfrogs
its opponent to become the new low cost leader. It is via thesedic price drops that consumers
benefit from technological progress and competition betvike duopolists. We find surprisingly
a large and complex set of equilibria and possible price amdstment dynamics from such a
simple model. We find a huge number of equilibria ranging fpame strategy monopoly outcomes
to highly mixed strategy equilibria where expected profitbath firms are zero. In between are
equilibria where leapfrogging investments are relativalyequent so that consumers see fewer
benefits from technological progress in the form of lowec@si We argue that leapfrogging, rather
than preemption, is a better description of competitiveavedr in actual markets and empirical
studies such as Goettler and Gordon (2011) seem to confism thi

Our analysis also contributes to the long-standing delimiatahe relationship of market struc-
ture and innovation. Schumpeter (1939) argued a monopwilisinnovate more rapidly than a
competitive industry since the monopolist can fully apprate the benefits of R&D or other cost-
reducing investments, whereas some of these investmeniisi \we dissipated in a competitive
market. However Arrow (1962) argued that innovation (or ieghnology adoption) under a mo-

nopolist will be slower than would occur in a competitive ketrwhich is in turn lower than the
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rate of innovation that would be chosen by a social planneth Bypes of results have appeared
in the subsequent literature. For example, in the R&D inmestt model analyzed by Goettler and
Gordon (2011), the rate of innovation under monopoly is ighan under duopoly but still below

the rate of innovation that would be chosen by a social plarifigese inefficiencies are driven in

part by the existence of externalities suchkaswledge spilloverthat are commonly associated
with R&D investments.

In a settings where each competing firm can at any time acoes@genouslgeveloping state
of the art technology, we have shown that the rate of adotiorew cost-reducing technologies
under the duopoly equilibrium is generahltygherthan the monopoly or socially optimal solution.
We showed that equilibria where thereléapfroggingand equilibria where there isvestment
preemptiorboth lead the duopolists to collectively invest more in geslucing technologies than
a social planner. Moreover, our model provides an examplerevmonopoly outcome coincides
with social optimum investment strategy. This result ibeatspecialized, and should be checked
against some of the restrictive assumptions of the modepatticular, it would be important to
extend the model to allow for entry and exit of firr's.

A disturbing aspect of our findings from a methodologicahd{zoint is the plethora of Markov
perfect equilibria present in a very simple extension of stendard static textbook model of
Bertrand price competition, which is reminiscent of the Iktheorem” for repeated games.
Though we have shown that the set of payoffs shrinks draaiBtito a strict subset of the tri-
angle under the alternating move game and a unique MPE sbidien the probability that an
improvement in the state of the art technology is sufficiedlibse to one, there will generally be a
huge multiplicity of equilibria either when firms move sirtareously, or when the probability of
technological improvement is sufficiently low. Thus, thbuwge have demonstrated how leapfrog-
ging can be viewed as an endogenous solution to the “antdotation problem” our paper leaves
unsolved the more general question of how firms coordinate single equilibrium when there is

a vast multiplicity of possible equilibria.

e refer readers to the original work by Reinganum (1985) elt as recent work by Acemoglu and Cao
(2011) and the large literature they build on. It is an exangblpromising new models of endogenous innovation
by incumbents&ndnew entrants. In their model entrants are responsible faerfavastic” innovations that tend
to replace incumbents, who focus on less drastic innovatiwat improve their existing products.
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A Proofs of Lemmas and Theorems

Theorem 1 (Necessary and sufficient condition for investment by theadg@lanner).

Proof. Note that the left hand side of inequaliti/l] is the discounted cost savings from adopting
the state of the art technologywhen the existing plant has marginal cogt We first prove that
if this inequality holds, then investment will be sociallptonal at some statéc;,c’) satisfying
Cc € [0,¢] andc’ € [0,¢¢]. Suppose, to the contrary, that investment is not optinratife social
planner for any value; < c; and anyc’ € [0,c]. It follows thatC(c;,c’) = c;/(1— ) for all
Cc < ccand allc’ € [0,¢;]. However if the social planner did decide to invest when tlagesis
(c,c) the planner’s discounted costs would et K(c) + B [3 C(c,¢/)r(dc|c). Since we have
assumed it is not optimal for the social planner to invesnatsiate(c;,c’) with ¢’ € [0, ¢], then
it cannot be optimal to invest in particular at any stétgc) with ¢ € [0,cc]. It follows that
c/(1—B) < cc+K(c)+B J5C(c,c)m(dc|c) for all c € [0,c.]. However sinc€(c,c’) =c/(1—B)
for all ¢’ € [0,c], it follows thatfc./(1—B) < K(c) +Bc/(1—B) for all c. > 0 and allc € [0, ¢,
but this contradicts inequalityl ().

Conversely, suppose inequalit¥l) does not hold. Then it follows that there is no value
of [c, ] with ¢’ € [0,¢] for which investment is optimal, since we can show that iis tase
C(ce.¢) = c¢/(1—B) for all c; € [0,¢g]. This latter result follows by verifying that it is a solu-
tion to the Bellman equatior®), where it follows that the cost of replacing a plant with giaal
costc in statec’ is ¢ + K(¢') + B¢’ /(1 — B) which exceeds the cost of keeping the existing plant
C(ce, €') = ¢¢/(1—B) by our assumption that inequalityX) does not hold for ang; < [0,c] and
¢’ € [0,¢]. Since the solution to the Bellman equation is unique (vecthntraction mapping prop-
erty) and corresponds to an optimal investment policy, weckale that there is no statet, ')
with ¢; € [0,¢] andc’ € [0, ¢ ] for which investment in the state of the art technolagig socially

optimal. O

Theorem 2 (Characterization of the set of equilibrium payoffs).

The proof requires some intermediary results.
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Lemma A.1 (Characterization of no investment MPHJhere is a unique no investment equilib-
rium where neither of the firms invests in stétg, c,c) € S, ifVey € [0,¢9] and Ve € [0,¢q] we
have

K(o)> Pler=9 (12)

(1-B)

Proof. Consider the simultaneous move game first, i.e. the gase). If it is an equilibrium for

neither firm to invest, we must have

Pi(c1,c2,c) = O

P(c1,c2,c) = O,
V(c1,C2,€) € S. Let ¢g be the apex point 08, i.e. ¢p is the initial and highest value of the state
of the art marginal cost of production at the start of the gaififeen, in particular me must have

Pi(c1,c0,¢) = 0 for all ¢; € [0,¢co] and for allc € [0,cy]. If it is never optimal for either firm to

invest in any state, then it follows that

VN,1(C1,C0,C) = 2:;
Vi 1(C1,C0,C) = cl—K(c)+%

Whenn = 0, Py(c1,¢p,¢) =0 <= vn(C1,Co,C) > Vj 1(C1,Co,C). This implies that the following
inequality must hold/c; € [0, co] andVc € [0, ¢y

Co—C1 (co—c)
(1-B) (1-B)

It is easy to see via simple algebra that inequalit®) (is equivalent to inequalityl@). Now

> (Co—c1) —K(c)+B (13)

consider the alternating move game# 0. It is not hard to show, using the Bellman equations for
the alternating move game (see equafian section2), that if it is never optimal for either firm
to invest, then it follows that for the state;, cp,c) = (¢, Co, C) (Where recall thaty is the initial
value of the state of the marginal productignthatP;(cs, co,c) = 0 for all ¢; € [0, co| and for alll

c € [0,c1]. But this will be true if and only if

Co—C

(1-B)
Vi 1(C1,C0,C,1) = C1—K(c)+%

VN,l(C]., Co, C, 1) =
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andvn 1(C1,Co,C,1) >V 1(C1,Cp,C, 1). Butitis easy to see that this is equivalent to inequalit) (

above, which is in turn equivalent to the inequality?), thereby proving Lemma.1. 0J

Lemma A.2 (Leapfrogging in the mixed strategy equilibriun§uppose) = 0 and m= 0 (i.e.
simultaneous move game with no investment cost shocks), and the investment is socially op-
timal, i.e.fmin(cy,c2)/(1—P) > K(0). Then if @ > ¢z > 0, in the mixed strategy equilibrium the

probability that firm 1 invests exceeds the probability firat 2 invests, R ¢y, ¢z, 0) > P»(c1,C2,0).

Proof. For convenience, we will drop the arguments in the mixedegsaprobabilities and write

P; and P, instead ofPy(cy,Cp,0) andP>(cq,C2,0). We start by noting thalK(0) < % ensures

that investment is profitable even for firm 1 whose potentsa-pff is smaller. In other words,
both firms’ investment decisions are economically justifidééext, observe that whefd = 0 in
the (c1,C2,0) end game there is unique pure strategy equilibrium whertbereof the companies
invests. Thus, we only consider the cfise 0. Also, to simplify notation we s& = K(0).
The value functions of the two firms in the poiitt, ¢z, 0) can be written as
Vi = Pix (Pg-(—K)+(1—P2)- (%CZB—K)) -
+(1=P1) x (P2:0+(1-P) - BV1)

Vo = Pox <P1-(Cl—Cz—K)+(1—P1)- (Cl—Cz+%—K))+

—l—(l— Pz) X (Pl . (Cl — Cz) + (1— Pl) . (Cl —Co+ BVz))

where the definition of the probabili of investment by firm 1 in the mixed strategy equilibrium

gives
P (—K) 4+ (1—Py)- (%—K) =P,-0+(1-Py)-BVs
and thus the value function itself becomes the weighted ditequmal parts, leading to
Vi=P (—K)+(1-Py)- (%—K) =P,-0+(1-P2)-BV1

Using the second equality in the last expression, weMfind 0, and then using the first equality

in the same expression, we find-P, = K(Blj).
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The definition of the probability?, of investment by firm 2 in the mixed strategy equilibrium,

similarly gives

Vo = Pl-(Cl—Cz—K)+(1—P1)~ (Cl—Cz—l—]-BTClB—K)

= Pr-(c1—C2)+(1—Py)-(c1—Co+BVo)

Using the second equality in the last expression, we\fine %, and using the it once

again we get
Pi(ci—Cc2—K)+(1-Py) (01—02-1-%—*() = Pi(c1—C2)+(1-Pi)(cr—C2+PV2)
(1-Py) (%—K)—QK — (1-P)RV,
C1 K B
1B Ba-P) 2

Combining the two expressions for the value funcbnwe get the following equation

C1—Co C1 K

1-B-(1-P)  1-B B (1-P)

Multiplying by 1 — 3 and inserting the expression for1P,, we have

c1—C 1-P
1782 — ¢ 202
a-ige 1,
C1—C2 1+1TBBP1

1-P

cl—l_Plcz < C—C
1-P > 1
1-P

Ph > P

The inequalities are due to the fact that@P, < 1, rﬁﬁ >0,c1—Cx >0, ¢, > 0. The final
inequality is strict unlesBy = P, = 0, which impliesK = % thus leading to a contradiction. We

conclude then tha®, > P». O

Lemma A.3 (Efficiency of equilibria in the simultaneous move end gang)ppose m= 0 and c=

0 (the end game of the simultaneous move game). In states intiestment is not socially optimal,
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i.e. Bmin(cy,c2)/(1—B) < K(0), the investment game has a unique pure strategy equilibrium
where neither firm invests. When investment is sociallymggdtithe investment game has three
subgame perfect Nash equilibria: two efficient pure strateguilibria and an inefficient mixed

strategy equilibrium.

Proof. Recall that we are considering the simultaneous move gamhelamw that there are two
possible equilibrium configurations at any end game stefecy,0): either the state admits a
unique no-investment equilibrium where neither firm ingest there are three possible equilibria
in the state, two of which are the pure strategy “anti-camtion” equilibria and the third is a
mixed strategy equilibrium. We now prove that the no-inwestt equilibrium obtains if and only
if a social planner who is operating two plants with margewsts(cs, co) when the state of the art
marginal cost is 0 does not find it optimal to incur the investircostK (0) to acquire this state of
the art technology. Also the social planner will invest ie 8tate of the art technology if and only
if there are the three above mentioned equilibria existattid game state, cy,0).

Consider the case wheeg < cp. It is enough to prove this case since it will be clear that the
proof in the case where whetg > ¢, is symmetric to the argument given below. The optimal
operating and investment rule for a social planner who obstwo plants with costs; < ¢; is to
a) shut down plant 2 since it is obsolete relative to plantd@ant 1 can supply the entire market,
and b) invest in the state of the art zero marginal cost tdolgyaf this lowers the discounted
production costs. Since the investment cost of buildingntw state of the art plant i§(0) and
there is a one period time to build it, the discounted costswdstment and production from
investing in the state of the art technologyist K(0). If the social planner does not invest in the
state of the art technology and produces forever using thierloost plant at a marginal cost @f
the present value is; /(1 — ). Thus the social planner will invest in the state of the arthtdogy
if and onlyc; +K(0) < ¢1/(1— ), or equivalently,

Bcy
(1-B)

This condition states that the cost of investing is not tgghhielative to the discounted marginal

> K(0). (14)

cost of production of the lower cost plaat, i.e. that the cost of investing does not outweigh the

discounted future cost savings resulting from the inveatme
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Now consider the Nash equilibria of tl{e;, c,0) end game. We show that if investment is
not optimal for the social planner, i.e. @ < (1— B)K(0)/B, then there is only a single “no
investment” equilibrium of this game. Otherwise there dnee¢ equilibria: two pure strategy
anticoordination equilibria where either firm 1 invests dinch 2 doesn’t (and vice versa), and a
zero expected profit mixed strategy equilibria where theftwas invest with probabilitiesy < 1o,
respectively, by Lemma.2. Consider first the pure strategy equilibrium where firm leste
and firm 2 doesn’t. The payoff to firm 1 to investingcs— c1 + cz/(1— B) — K(0) whereas the
payoff to to firm 2 from not investing is 0. If firm 2 deviates atttboses to invest, then its payoff is
—K(0) because by simultaneous investment both firms 1 and 2 wid heguired the zero marginal
cost state of the art technology and the ensuing Bertrammeé gompetition will drive prices and
profits of both firms to zero. Thus, the high cost firm (firm 2) sloet want to invest if it knows
that the low cost firm (firm 1) plans to invest under any circtanses. However the “deviation
payoff” to firm 1 involves not investing this period but thafeer “returning to the equilibrium
path” and making the investment one period later. The pagpdtfiis one period delay in investing
is ¢ — €1+ B[ca — ¢1 + Bcp/ (1 — B) — K(0)]. For the conjectured pure strategy equilibrium to
actually be possible it must be

Beo Beo
(1-B) (1-B)

But after some simple algebraic rearrangements, this adégud is equivalent to inequalityl()

—K(0)]. (15)

Co—C1+ —K(0)>cp—c1+B|c2—cC1+

defining the socially optimal investment condition. Thug, @onclude that the pure strategy equi-
librium where firm 1 invests and firm 2 doesn't exists if andyoiflit is socially optimal for the
investment to occur.

Now consider the other pure strategy equilibrium where firnv2sts and firm 1 doesn't. The
payoff to firm 2 from investing ifc; /(1 — ) — K(0) whereas the payoff to deviating and delaying
the investment by one periodpgci/(1— ) —K(0)], so as long aBcy/(1—B) —K(0) > O it will
be optimal for firm 2 to invest, but of course this is the samimaguality (L4) defining the optimal
investment rule for the social planner. For firm 1, the paymfiot investing i, — ¢; whereas the
payoff to investing given that it knows that firm 2 will alsovest isc, — ¢; — K(0). Thus, firm 1

will never want to invest if it knows firm 2 will invest, and weate shown that the pure strategy
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equilibrium where only firm 2 invests exists if and only if & socially optimal for investment
to occur. Notice that even though firm 2 is the high cost firne, fct that it invests rather than
investing being done by the low cost firm does not entail agyéi costs because regardless of
whether firm 1 or firm 2 invests, both of their existing planil necome obsolete and production
will be done using the new state of the art zero marginal castyrction technology.

Finally, consider the mixed strategy equilibrium. Follogithe proof of LemmaA.2, the

probability that firm 1 invests in the mixed strategy equililn is given by
o = B/ (1=B) —K(0)
Be1/(1-B)

andrp > . Note thatry > 0 if and only ifBc1 /(1 — ) — K(0) > 0 which is the same as inequality

(16)

(14) for investment to be socially optimal. However this does intply that the mixed strategy
equilibrium is efficient because of the potentdundaninvestment by the two firms in the mixed
strategy equilibrium. Le€,, be the present discounted value of investment and productsts

under this mixed strategy equilibrium. We have

Cn = 2Kmm+Km(l-m)+Km(l-m)+c1+p(1-—m)(1—1%)Ch
= K(mm)+c1+p(1-—m)(1-1m)Ch

We will now show thaC, = (K(Th + 1) +¢1)/(1—B(1—m)(1—1R)) exceeds the socially op-
timal production and investment costs+ K(0) that a social planner can achieve by undertaking
only a single investment in the state of the art technology aroid the higher costs due to re-
dundant investments (when the two firms invest at the sanme) tamd the costs due to delayed in
investment (due to the probabilitt — 1) (1 — %) that neither firm invests under the mixed strat-
egy equilibrium. Since the algebra to show tlat > c; + K(0) gets rather messy, we establish
this inequality via an indirect argument. Let= Ty + 10 — TuTR € (0, 1) be the probability thaat
least one of the firms invests in the mixed strategy equilibrDefine a new cost valug,, by
Cn = €1+ pK(0)+B(1-p)Ch

c1+ pK(0)

1-B(1-p)
SinceC,, is the present value of costs under a mixed strategy equilibthat ignores the occur-

rence of redundant investments by the two firms, it is evideaitC,,, < Cy,. We now show that
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Ch, > ¢1+K(0), and thuCy, > c1 + K(0). To see whyC,,, > ¢1 + K(0) we writeC,,,(p) to em-
phasize its dependence @nthe probability that at least one firm invests in the mixedtsgy
equilibrium. Note thaC,,(0) = c1/(1—B) > c1 +K(0), andC,,(1) = c1 + K(0). Since we know
that the true value op < 1, it suffices to show thal/d pC,,(p) < 0. Calculating this derivative,

we have

d ¢ (o KO = BCn(p)
apenP =g p)

Note that since&€,,(0) = c1/(1— ) we haved,/dpGC,(p)|p—o0 < O by inequality (4). Further we

(17)

have
d

dp
again by inequality 14). It is not hard to see from the two inequalities above thaflact we
also haved /dpG,(p) < 0 for eachp € [0,1]. Thus, it follows thaCy, > C,;, > ¢1 + K(0) which

Cm(P)|p=1=K(0)(1-B)—Pc1 <0 (18)

establishes the inefficiency of the mixed strategy equilir O

Lemma A.4 (No investment equilibrium at edge statesh both the simultaneous and alternating
move games with no investment cost shocksr{i-e.0) there is a unique stage equilibrium at all

edge states in which neither firm invests.

Proof. In the absence of random investment costs, once one of the fias acquired the state
of the art technology (i.ecj = c), it will not want to invest again, but rather wait until a fier
technological innovation occurs at some time in the futureé perhaps invest again at that time.
Similarly, the opponent will not have an incentive to invesher even if its plant is not state of the
art since it realizes that its investment will only enableimatch the state of the art production
cost of its rival, and the resulting Bertrand price compatitvill ensure that both firms earn zero
profits until some technological innovation occurs in theifa that would enable one or the other
firms to leapfrog its opponent. So the Bertrand investmerddia logic does indeed hold at the

edge states and is the reason for no investment by eithertfera.t O

Lemma A.5 (Necessary and sufficient conditions for investments biasptanner at statécy, ¢)).
Suppose that it is not optimal for the social planner (or mpoicst) to invest at statécs, ¢), with

c1 > c. LetT denote the first passage time from the péaat c) to the set = {(cz,c)|1(c,¢) =1},
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i.e. T is the random time until it is optimal for the social planneribvest conditional on starting
at state(cy, ). We then have:
_ _E{@t
(c1-O)(B-E{F}) (19)
(1-B)

Proof. From the Bellman equatio®) for C(cy, ¢), defining the cost function corresponding to the

K(c) >

socially optimal investment strategy, we see thatdf,c) = 0 (i.e. investment is not optimal at
(c1,c)), then
C
K(c) > B /0 Cley,¢) —C(c.d)] mddc). (20)

We also have
Cle,d) = et [ Clewd)mdcio
Cleo) = ¢+ [ Clo.e)mdcio). (21)
Using equationZ1) we can rewrite inequality20) as
K(©) > [C(e1,6) ~C(c,0) ~ [c1— . (22)

Let T be the first passage time from the pojot,c) to the setl, and letc; be the value of the
{ci} process at the timefirst enters the sdt starting from the poinfcs,c). Let\4(c,c) denote
the expected discounted value of the policy of startingdtestc, c) and not investing for periods
t=1,...,T—1and investing at perictand investing in the state of the art technologineffect at
T and then following the socially optimal investment polibgteafter. Sinc€(c,c) is the minimal

cost under an optimal investment policy, it follows that
and thus,
K(c) > [Ci(c1,c) — V(c,C)] — [c1—C]. (24)

SinceVk(c, c) is the discounted expected value of following, with proligbl, the same optimal

investment policy that the social planner would follow stay from the point(cy, ¢), it follows that

(1 —c)(L-E{B"})
(1-B)

C<C17C) _V'T(C? C) = ) (25)
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i.e. the difference in the values is simply the total expgaiscounted difference in per period
costs,c; — ¢, from not investing in periods= 1,...,T when initial production costs ar® and

c, respectively, and then following the optimal investmeoligy from the pointc; € | thereafter.
Substituting the formula for the difference in expectedsas equation Z5) and substituting into

inequality 2) we obtain inequality19). 0J

Proof. We prove Theoremn statement by statement.

Statement 1. By Theoreml, if investment is optimal for the social planner, then inagy (12)
cannot hold. However by Lemn¥a 1, it follows that no investment cannot be an MPE outcome.

The result then follows.

Statement 2. The two candidate “monopoly” equilibria are where firm 2 rmeweests in equi-
librium and where firm 1 does all the investing (whenever pngfit-maximizing for firm 1 to do
s0), and symmetrically, where firm 1 never invests and firm &dall the investing (whenever it
is profit-maximizing for firm 2 to do so). By “monopoly equitiobm” we mean a situation where
the firm that is designated to do all the investing in this dupgquilibrium will behave exactly
the same if this firm were an actual monopolist but constchineharge a price no higher than the
marginal cost of production of its opponent.

Our proof is by induction in the case where the support of #ugenous Markov proceds; }
for the evolution of the state of the art production techggl@ a finite set{cy,...,c,} with the
normalization that; = 0 andc, = ¢y wherecy is the initial technology level at time= 0. We will
prove the result for the case where firm 1 is the “monopolistf &irm 2 never invests. Obviously
a symmetric proof holds for the symmetric case where firm Bésmonopolist and firm 1 never
invests.

To start the induction, we refer the reader to Len#izawhich establishes that in each endgame
state(cy, ¢z, 0) if investment is optimal for the social planner, then thetistehree equilibria, one
of which is an equilibrium where firm 1 invests and firm 2 doesineest. In any statécy, cy,0)
where investment is not socially optimal, neither firm irtge¥Vhen investment is socially optimal

we choose the equilibrium where firm 1 invests and firm 2 ddaeand neither firm invests in states
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where investment is not socially optimal. Thus, we havefiegtithat the result holds in the initial
statec; = 0 of our proof by induction.

Now for inductive step, we prove that if the result holdsdar {c1, ..., cj_1}, thenitalso holds
at the state of the art cost, for all points(cy,c,¢) € Swherec; = candcy > candc, > ¢. We
start by considering statés;, cp,c) € Sfor which ¢c; < ¢;. We now show that for any such state
where firm 1 invests in equilibrium, that it is optimal for firtnnot to invest, and further, firm 1
will only invest in states where it is socially optimal to &st. We will show thawy »2(c1,¢2,¢) =0
andv; »(cy,¢,¢) < 0 which implies thaf,(cy,¢p,¢) = 0.

The fact that firm 1 will adopt a socially optimal investmemtagegy follows immediately
once we prove that firm 2 never invests in equilibrium. Sinoa fl knows that firm 2 will not
invest, firm 1 maximizes its profits by adopting an investnstrdategy that minimizes its present
discounted costs of production and investment from anyrgstarting node in the gantes, ¢y, c).
For some of these points, it may be optimal for firm 1 not to #tve- both at poin{cs, cz,c) and
all subsequent point&;, ¢y, ¢;) that are reached as that state of the art technology evaloes f
the pointc to other points{c;}. However when this is the case, it would not be socially optim
for investment to occur by a social planner who has controlvofproduction plants with marginal
costscy andcy, respectively. As we noted above, the social planner waalgly produce from the
plant with the lower marginal cost of production and shutdtieer one down, and if the condition
B(min[cy,cy) — ') /(1—B) <K(c) forall ¢’ € [0, ¢], then inequality {1) of Theoreml implies that
it would not be optimal for the social planner to undertake famther investment in the future.

So the remainder of this proof focuses on proving #dt;, cz,c) = 0. We start with the easy
case by showing that it will not be optimal for firm 2 to inveshenever;(cy,c,c) = 1. From

the Bellman equations fdun 2, Vi 2) in equation {) of section2, we have
C
WN,2(C1,C2,C) = B/O maxn 2(C, C2,¢), i 2(c, ¢z, ¢)|(dC[c). (26)

By the inductive hypothesis we havg(c, cz,¢’) = 0 andv; »(c,cz,¢’) < 0 forc’ < c. Thisimplies
thatvy 2(c1,c2,¢) = 0. Now considew, »(cy,C,C). For the Bellman equatiorY) we have when

Pi(c1,C2,¢) =1 andc; > ¢
C
Vi 2(c1,C2,¢) = —K(c) +[3/0 maxvn 2(c,c,c), v 2(c,c,c)]r(dc|c). (27)
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By the inductive hypothesis, mpu 2(c,c,c’),v 2(c,c,c’)] = 0 for ¢ < c. Further, by Lemma
A.4 it is never an equilibrium for either firm to invest at the cerrof the state space, so
maxvn 2(c,c,c),vi 2(c,c,c)] = 0. It follows thatv; »(cq,C2,¢) = —K(c) whenPy(cq,Co,C) =1,
confirming the claim thal,(cs,cp,c) = 0.

Now consider a stat@s, ¢, ¢) for which Py(c1,¢cp,¢) = 0. The argument is more complicated
here since there is a potential for firm 2 to use the non-imvest by firm 1 as an opportunity to
sneak in and leapfrog firm 1 to become the new low cost leadem&W show that as long as the
necessary and sufficient condition for socially optimakisiment in inequalityl(l) of Theoreml
holds, it will never be optimal for firm 2 to try to exploit firm tb become the low cost leader in
any statecy, cp, ¢) wherePy(cy, ¢z, ) = 0 (where it istemporarilynot optimal for firm 1 to invest,
but firm 1 will invest at some future state).

Note that though firm 1 does not invest at stétg ¢, c), it will invest at some point in the
future at a statécy,c’) where it is socially optimal (as well as profit maximizing fomonopolist)
to invest. Lefl be the mean first passage time to thd sef{(c;, ¢)|W(c1,c) = 1} where investment
by firm 1 first occurs starting from state;, ¢y, c), and letci be the random state of the art cost
that induces firm 1 to invest (i.e. for whiap(cy,&) = 1 under the social planning solution or
Pi(c1,¢2,8) = 1 under the posited duopoly equilibrium). It follows thafiiin 2 were to invest,
it would have temporary low cost leadership over the peridd®,...,T — 1} but at periodt firm
1 will invest and leapfrog firm 2, returning to the firm 1 mongpmvestment “equilibrium path”
(note that this includes the case- « if it is not optimal for firm 1 to invest ever again after firm
2 invests). Once (or if) firm 1 returns to the equilibrium pathinvesting in the state of the art
technologyct, firm 2 will not invest and earn 0 discounted profits, as perioductive hypothesis,
sinceci < c with probability 1. Thus, it follows that if firm 2 does not iest at(cs, C2, €) it will
earn a discounted expected profitvRf2(c1, C2, ¢) = 0, whereas if firm 2 decides to invest, it earns
an expected reward equal to
(c1—0)(B—E{F})

(1-B) '

However by inequalityX9) of LemmaA.5, the hypothesis that it is not optimal for firm 1 to invest

Vi 2(€1,C2,€) = —K(c) + (28)

at(ci,cp,c) implies that the expected profits to firm 2 from this attemptake advantage of firm
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1's non-investment and leapfrog firm 1 is negative.

Statement 3. We use a proof by induction similar to our proof of StatementVie have al-
ready established that there is a mixed strategy equitibiiuthe end game statés;,c,,0) € S

in LemmaA.3 above. Since the expected payoff to the high cost firm fromimasting is O, it
follows that the expected payoff to the high cost firm is zérd,in general the expected payoff to
the low cost firm is positive, though in the case where-= ¢, it is easy to see that the expected
payoffs to both firms are zero. Further, it is not difficult teogv that there is symmetry in the pay-
offs and equilibrium strategies for the two firms in this difuium: vy 1(c1, C2,0) = v 2(C2,€1,0)
andv; 1(c1,C2,0) =Vj 2(C2,€1,0), andPy(cy,Cp,0) = Px(Cp,¢1,0). Thus, we have established the
initial induction step of our proof by induction.

Now suppose that the result holds for all state pofogscy, cj—1) € Swherec; = 0, andc; is
the jth highest point in the assumed finite support of the pro¢essgoverning the evolution of
the state of the art marginal costs of production gnd {cj_1,Cj,...,Ca}. The theorem will hold
if we can prove thawy 1(cx, Gk, Cj) = 0 andvn 2(ck, Ck, Cj) = 0. For notational compactness below,
we will let (c,c,c’) denote a generic point of the forfoy, ¢, Cj) € S

To show that the expected payoffs to both firms are 0 in thesgtahal states(c,c,c), it is
sufficient to show thaty ;(c,c,c’) = 0 andy; j(c,c,c’) <0, fori € {1,2}. We now show that these
payoffs will hold in the two possible equilibria that can tioh the stage game at each of these
diagonal statesc,c,c’) € S under the proposed equilibrium: a) a “no investment equili”
where there is a unique equilibrium where neither firm inyesbt invest or b) an investment
equilibrium, where there are three possible equilibrichatdtage game, and we select the mixed
strategy equilibrium and show it results in zero expectemfiato both firms.

Suppose there is a unique no investment equilibriuficat ¢’). Then from the Bellman equa-

tion (7) we have

By ) maxwna(c,c,c),via(c.c.G)]

wa(c,c,c -0
( ) 1—Pr(cjlcj)
By — I maxw 2(c,c,c),vi 2(c,c,c)]
wz(cc,c) = = ’ ’ =0,
( ) 1—Br(cicj)
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by the inductive hypothesis that msy (c,c,ci),vi(c,c,c)] =0 forie {1,...,j—1} andl
{1,2}. It follows that the claimed result of symmetric, zero expemayoffs holds in this case as
claimed.

Now consider the case where there isn’t a unigque no investstage game equilibrium at the
point(c,c,c’). We now show that there will be three equilibria at such pgitwo of which are the
two pure strategy “anti-coordination” equilibria and tinerd will be a mixed strategy equilibrium
which is the one we select, and will show entails zero expegtefits to both firms.

We introduce the notatiow j(cy,C2,¢,P—i) and vy i(c1,C2,C,P-j) for i € {1,2} to represent
the values for investing and not investing, respectivaly,firm i conditional on the assumption
that its opponent will invest in state;, c,, c) with probability P_;, (possibly a non-equilibrium
probability) but return to play equilibrium strategies iih fature time periods after this current
period. We have already proven in Lemmal above that there is a unique no investment stage
game equilibrium at all edge statgs, cp, ) where eitherc; or c; equals the current state of the
art marginal cost. It is also possible that there is a unique no investmentlibguim at states
(c1,C2,C) wherecy > c andcp > ¢ providedc; andc; are sufficiently close to.

For other diagonal statés, c,c’) if there is not a unique no investment equilibrium, then istnu
be the case that for at least one of the filmage must haven ;(c,c,c’,1) = 0 andy; j(c,c,c,1) <
0 (i.e. it is not optimal for firmi to invest if its opponent will invest with probability 1), dn
wn,i(c,c,c’,0)=0andv j(c,c,c’,0) > 0 (i.e. itis optimal for firmi to invest if it knows its opponent
will not invest with probability 1). However by the symmetof the value functions at states

(c,c,c) for ¢’ < ¢j, itis not hard to show using the Bellman equati@hthat we have
vi 1(c,c,c/,0) = v 2(c,c,c',0) > 0 (29)

and thusboth firmswill strictly prefer to invest when they are certain thatith@pponent will
not invest. This implies that the reaction functions,b@st response investment probabilities
R(c,c,c,P_) for both firmsi € {1,2} will be piece-wise flat and non-increasing and jump discon-

tinuously from 1 to O at a probability given by

o BZij:1VN71(Cv C, Ci) - K(C,) )

oo pfe ) | 30
1(G,¢,¢) =Py(c,c.c) By wa1(c,c ) .
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These probabilities constitute the unique mixed strategylidrium of the stage game at point
(c,c,c’). However it is not difficult to show, using the Bellman eqoati7), thatvy 1(c,c,c’) =
wn,2(c,c,c) =0, so it follows that the expected payoff to both firms in thexedi strategy equilib-
rium at the diagonal state, c,c’) is zero, establishing the induction step.

To complete the proof, we must also show that the value fanstand investment probabilities
are symmetric in thécy,cp) argument, since we implicitly assumed that this symmetrgi$io
in our assertion that equatio29) holds. By our inductive hypothesis, symmetry holds for all
states(cy, 2, ¢) € Sfor whichc < ¢j = ¢’. Now we show that symmetry also holds for all points
(c1,c2,c) € Sas well. First consider statéss, c,, ') for which the unique equilibrium is the no
investment equilibrium, we can use the Bellman equafynq express the value functions for not
investing for firms 1 and 2 as
ra(c1,c2) + By s wa(cr, 2, 0)

1-Bmr(c|c)

ra(c1,C2) + Zij;llvN,Z(CL C2,Gi)
1-pm(c|c)

wn1(c1,Co,C)

Wn2(C1,C2,C) =

It is not hard to see that the single period profit are symmmetiicy,cp) = ro(cp,c1). Further by
our inductive hypothesis, all the functiomg 1(c1,C2,¢i) andvy 2(C1,C2, Ci) are symmetric func-
tions of their(cy,c2) arguments foi = 1,...,j — 1. Therefore it follows thaty 1(c1,¢2,¢) =
WN,2(C2,¢1,¢). The symmetry ofj 1 andy,  follows from the symmetry oéy 1 andvy 2 in (c1,C2)
since one can verify from the Bellman equatighthat the former functions can be written exclu-
sively in terms of then 1 andvy 2 functions, and these latter functions are symmetric.

Finally consider the remaining pointsi, ¢, ¢') € Swhere it is not the case that a no investment
equilibrium holds. We have shown above that at these sthgre will be 3 equilibria, one of
which is a mixed strategy equilibrium which is the “seleéteduilibrium in each of these states.
We have already shown that the value functions are symnatmg the diagonal statés, c,c’) so
we only need to consider the off-diagonal stai@scy,c’) wherec; # ¢c,. Whenc; > ¢, we have
WN,1(C1,C2,€) = 0 and whercy < ¢ we havewy 2(c1,Cp,C) = 0, so symmetry holds for all points
C1 > C2: W.1(C1,C2,¢') = 0= wN2(C2,C1,C).

Finally consider points(cy,cp,¢) € S for which ¢; < ¢c,.  For these points we have
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WN,1(C1,C2,¢') > 0. We need to show that symmetry holds in this region as wetlpdints in
this region, both firms are playing a mixed strategy equilr, so the expression for the value
functionswy 1(c1,C2,¢) depends or(cq,cp,¢') and the expression fary 2(c1,C2,¢) depends
on Py(cy,C,¢). Using the fact thatny 1(c1,C2,C) = Vv 1(C1,C2,¢) (since firm 1 must be indif-
ferent between investing and not investing when it is plgyarmixed strategy), we can solve for
Py(c1,Cp,C') as aratio of terms involving the value functiog 1(c1,Co,¢') and a weighted sum of
Vn,1(C1,C2,G) at other pointgcy, C2,Gi), i =1,..., j —1 where our inductive hypothesis holds. We
then enter this expression fBs(c1, ¢y, ¢’) back into the equation fory 1(c1,¢2,c), thereby “sub-
stituting out”P»(cy, €, ¢) from the equation fowy 1(c1,C2,C’). We omit the tedious and involved
algebra here, but when we do this we can expyrRssci, C2,¢’) as the solution to a second order
polynomial equation in which the coefficients of the polynahare all symmetric functions of
(c1,C2), as a result of our inductive hypothesis.

We can also do the same fay 2(c1,C2,C), i.e. first solving forPy(c1, co, €') using the indif-
ferent conditiorwy 2(c1,¢2,¢") =V 1(C1, C2,¢’), and then entering this expression into the Bellman
equation forvy 2(cy,C2,C'), thereby substituting ow®;(cy,cp,C') to obtain another second order
polynomial expression fory 2(c1,¢2, ') whose coefficients are symmetric functiong of, cz).

Let Q1(v,c1,C2,¢) = 0 be the second order polynomial equation, one of whoseisnhuts
VN,1(C1,C2,€). Similarly letQx(v,c1,¢2,¢') = 0 be the second order polynomial equation, one of
whose solutions isy 2(C1,C2,€). By the symmetry of the coefficients of these polynomials in
(c1,¢2), it follows thatQ1 (v, c1,C, ¢') = Qa(v,c2,¢1, ) for all v e R. It follows that the solutions
to the equatiorQ;(v,cy,c1,¢) = 0 are the same as to the equati@s(v,cz,c1,¢’) = 0, and this
implies thatvy 1(c1,C2,¢) = v 2(C2,C1,C). SincePi(cy,co,¢) andPy(c1,c2,¢') can be written
as functions ofvy 2(c1,¢2,¢') andwy 1(c1,C2,c’), respectively, and other functions that are sym-
metric in(cy,c2) by our inductive hypothesis, it follows th&(c1,co,¢’) = P2(cp,c1,¢), thereby

completing our proof by induction.

Statement 4. Statement 2 of this Theorem ensures the existence of two pabynequilibria in
the simultaneous move game, proving that the two cornerfpapmnts (Vy,0) and (0,Viy) ex-

ist, whereViy = n,1(Co, Co, Co) = VN ,2(Co, Co, Co) is the monopoly payoff at the initial node (apex)
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(Co,Co,Cp) € S. Since the monopoly profit equals the full social surplus snefficient, it is in-
feasible to obtain any payoff higher than the line segmeining these two monopoly payoff
points,and thus all payoffs for all equilibria in the sinarieous move game (which are generally
less than 100% efficient) must lie below the line segmeningithe two monopoly payoff points.
Finally, Statement 5 of this Theorem guarantees the existefithe zero payoff point at the origin
(0,0). Obviously the convex hull of these three payoff points égjttee full triangle, and thus any
point in this triangle can be an expected payoff to the twodiiimve allowstochastiequilibrium
selection rules (i.e. selecting one of these three posteemal equilibria” with probabilities

(p1, P2, p3) With p1+ p2+ p3 =1 andp; > 0,i € {1,2,3}).

Statement 5. It is sufficient to show that the origin is not an equilibriurayff pair at the apex
of the alternating move game if investment costs are notiglo. By Statement 1 of this Theorem,
no investment cannot be a MPE of the full alternating move@drthe cost of investment is not
too high at the initial apexco, o, Cp) € S However if it is optimal for one of the firms to invest
at some point on the equilibrium path, it must be because timedkpects a positive profit from
doing so. However from the Bellman equation for the altengatnove game, equatiorr), if
one or the other of the firms expects a positive profit from s$tivg in some stage game on the
equilibrium path, the expected profit from that firm at theiadiapex of the gamécp,cp,co) € S
cannot be zero. We note that TheorBamplies that a zero payoff for both firms is approached in
the limit asAt — O whentt(ct|c;) = 0 and the order of moves alternates deterministically. Hewe
in that case, since the equilibrium is unique, it followstttiee monopoly payoff vertices are not
supportable in the limit adt — 0. Thus, even in limiting cases, the set of equilibrium pésyof
in the alternating move game will be a strict subset of thenggular payoff region described in

Statement 4 of this Theorem for the simultaneous move game.

Theorem 3 (Sufficient conditions for uniqueness).

The proof requires some intermediary results.

49



Lemma A.6 (Efficiency of the alternating move end gam&uppose) = 0 and m+£ 0O (i.e. alter-
nating move game with no investment cost shocks), an@.cln every end game state, cy,0)
there is a unique efficient equilibrium, i.e. both firms inweken it is their turn to invest if and

only if investment would be optimal from the point of viewhef $ocial planner.

Proof. Consider the case whetg < c. The proof for the case; > ¢, is symmetric to the one
provided below forc; < ¢ and is omitted for brevity. Suppose that it is socially ogito under-
take investment, i.e3c;/(1— ) — K(0) > 0. We now show that in the unique equilibrium to the
alternating move end game, both firms 1 and 2 would want tesinwlen it is their turn to invest,
where uniqueness of equilibrium is a consequence of theuenigs of the firms’ best responses,
and the fact that only one of the firm moves at a time. Consider Zis decision in this unique
equilibrium. If firm 2 chooses to invest, its payoffisx(cy, c2,0,2) = Bcy/(1—B) — K(0) and if it
chooses not to invest its payoffig 2(c1, C2,0,2) = 0 since it believes that firm 1 will invest at its
turn with probability 1, which we will verify is true below.us, firm 2 will invest in equilibrium

if and only if Bc1/(1— ) — K(0) > 0, which is the same condition for optimal investment by the
social planner.

Now consider firm 1. At it’s turn to move the payoff to invegiis
Vi1(€1,€2,0,1) = ¢ — 1 + B2/ (1—B) — K(0). (31)

Sincec, > c¢; and by assumptiofic;/(1— ) — K(0) > 0, it is easy to see that the payoff to
investing is strictly positive for firm 1. However we must@lshow that this is higher than the
payoff it would get from not investing. Since firm 1 knows tfiatn 2 will invest when it gets a
chance to move, the value to firm 1 to not investing is given by

WN,1(C1,C2,0,1) = C2 — c1 +BF(1[1) [co— 1 + 1TBBC2 —K(0)| +Bf(2)[c2—c1]. (32
If the posited equilibrium holds (i.e. it is optimal for firm tb invest), then we must have
vi 1(c1,€2,0,1) > wn.1(c1,C2,0,1), and using the formulas for these values given above, this is

equivalent to
B(co—c1)

——C—K(0) > 1-BrL)

(33)
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Notice that the right hand side of inequali3j above is maximized whef(1|1) = 1 (i.e. when
it is always firm 1’s turn to invest) and in this case this inalify is equivalent t3cy /(1 — ) —
K(0) > 0, confirming that for allf (1/1) € [0, 1] it is strictly optimal for firm 1 to invest when it is
its turn to invest when it is socially optimal for this invesgnt to occur.

Now consider the converse situation where it is not sociafiiimal to invest, angc; /(1 —
B) —K(0) < 0. Following the same reasoning as above, it is easy to séé thanot optimal for
firm 2 to invest when it is its turn to invest since firm 2's pdytf investing isv; »(c1,¢2,0,2) =
Bc1/(1—PB) —K(0) < 0 and its payoff to not investing ig 2(c1, 2, 0,2) = 0. Now we must show
that firm 1, knowing that firm 2 will not want to invest at its tumwill also not want to invest when

itis its turn. If firm 1 never invests, its payoff is
C—C
1-B°

and if it invests, its payoff is given by the same formula ¥pi(cy,cp,0,1) as given in equation

WN,1(C1,C2,0,1) = (34)

(31) above. So the condition for investment not to be optimalfiion 1 is vy 1(c1,C2,0,1) >
vi 1(C1,C2,0,1) which is algebraically equivalent tBcy/(1— ) — K(0) < 0, the condition for
when it is not socially optimal for investment to occur.

]

Proof. When 1t(c|c) = O, the probability of remaining in any given staftey,c,,c) € Sis also
zero. Using the Bellman equationg) defining the firms’ value functions for investing and not
investing when it is their turn to invest, it is not difficulb see that each firm’s values are in-
dependent of the probability that their opponent will inviesthis case. That is, for firm 1 we
havewy 1(c1,C2,¢,1) andyv; 1(c1,C2,C) are independent d#(cy, Co, €, 2), the probability that firm

2 will invest when it is its turn to invest. This implies thdtet probability that firm 1 will in-
vest,Py(c1,Cp, ¢, 1), is also independent &% (c1, Cp, €, 2), as it is given by formula) of section2,
which shows thal (cy, ¢z, ¢, 1) is alogistic function ofiy 1(c1, C2, €, 1) andv; 1(cyg, €2, ¢, 1), both of
which are independent &%(cy, C2, €, 2). Similar arguments hold for firm 2, so thf(cs, ¢z, ¢, 2)

is independent oPy(cy,C2,C,1). Since the value functionsn 1,Vvi 1,Vn,2,Vi 2) can be calculated
recursively using the Bellman equatiory,(and since Lemma&\.6 establishes that there is al-

ways a unique (efficient) equilibrium in the end game stétes,, ¢), it follows that at every state
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(c1,C2,C) € Sthere is a unique stage game equilibrium with probabiliGéfvesting given by
(Pi(c1,¢C2,¢,1),Px(C1,C2,C,2)), which depend on the value functio(y 1,V 1,Vn.2,Vi 2) that are
defined recursively via the Bellman equatiofi} (

]

B Expected Cost Recursions

This appendix derives the recursion equations that we wsednpute expected discounted costs
of production for the two firms in any given equilibrium of theodel. These expected costs are
used in turn to calculate the efficiency (fraction of maximpmssible social surplus) that is realized
in any given equilibrium of the model.

Let ECI;j(cy,C2, C) be the expected discounted costs of production for fiimstate(cy, ¢y, c)
given that firmj chooses to invest in this state. Similarly, BEN;(cy, c2,c) be the corresponding
cost for firmj if it chooses not to invest. L& Plj(cy,Co,C) be thecurrent periodexpected pro-
duction and investment costs for the firm if it chooses to st this state, anBPN;(cq, c2,C) be
the expected production and investment costs if firalnooses not to invest. These latter condi-
tional expectations are the sum of production costs in tineentiperiod as well as the conditional
expectation of the idiosyncratic, additive, aiid costs of investing for firnj. Letsj(cy,c2) be the
market share of firnj under the Bertrand price equilibrium when the two firms hasgpction
costs(cy, Cp), respectively. Normalizing market size to 1, then the tptatuction costs for firm
in state(cy, C2, ¢) are simplys;j(cy, ¢2)cj. The idiosyncratic investment costs for fifncorrespond-
ing to not investing are-go j and the idiosyncratic costs corresponding to investing-arg . Note
we put a negative sign in front of the idiosyncratic investimeosts since in the presentation of the
model in section 2, we included these shocks without thethegsigns, meaning we treated them
asbenefityor net reductions in investment costs) when the shocks pesgive and costs when
negative.

Using Theorem B.2.2 of Jeffrey A. Dubi@onsumer Durable Choice and the Demand for
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Electricity Amsterdam, North Holland, 1985, we have
E{SOJ |6J (C17 C2, C) = O} =N [y+ n Iog (1+ eXp{(Vj (CJ-? C2, C) —Wj (Clv C2, C))/n})} ) (35)

wherey ~ 0.5772 is Euler’s constant ang andw; are the conditional value functions for firm
corresponding to investing and not investing at statecy, c), respectively, an®;(c1,c2,¢c) = 0

denotes firmj’s decision not to invest in state;, cp, ). Similarly, we have
E{e1j|8j(c1,Co,¢) = 1} =n [y+nlog (1+ exp{(w;j(c1,C2,¢) —Vj(c1,c2,€))/n})] (36)
Thus we have

EPI;(cy,C2,¢) = sj(c1,¢2)cj + K(c) —n [y+nlog (1+exp{(w;j(cy,C2,¢) — vj(c1,c2,€))/n})]
(37)

and
EPN;(c1,C2,¢) = sj(C1,C2)cj — N [y+nlog (1+exp{(vj(c1,c2,c) —wj(c,c2,¢))/n})] . (38)
The recursion equations for firm 1 in the simultaneous mowvesgare given by
CNy(cq,Cp,¢) = EPNi(c1,Cp,C) +
+ BP2(cy,Cp,C) /OC[Pl(cl,c,c’)Cll(cl,c, c')+ (1—Pi(c1,c,c))CNu(cy, ¢, ¢)]m(dc|c)

Cc
- B(l—Pz(cl,cz,c))/O [P1(c1,C2,c)Cla(cy,C2,C) + (1 — Py(ca, €2, € ))CNy (1, C2, ¢ )]T(d ).

Cli(c1,62,¢) = EPIy(C1,C2,C) +
Cc
+ BPz(cl,cz,c)/ [P1(c,c,d)Cli(c,c,c) + (1—Pi(c,c,c))CNy(c,c, c)m(dd|c)
0

+ B(1- Pz(cl,cz,c))/oc[Pl(c, C2,¢)Cli(c, o, ) + (1 —Pi(c,c2, ¢ ))CNy (¢, C2, ¢ )]T(dC ).

The recursion equations f@, andCN, are defined similarly.
Now consider the random alternating move case. Now thertoaresalue functions for each
firm. For example, for firm 1 we hav€N(ci,cp,¢,1) andCly(cy,Cp,c,1), which are firmj’'s

expected discounted costs when it is its turn to invest@Ngdc, ¢, ¢, 2) andCli(cy, Cp, C, 2) are
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firm 1's expected discounted costs when it is firm 2's turn tegt. We use the “trick” of using
the CN; andCly notation even when it is firm 2’s turn to invest. Th@\;(c1,Cp,¢,2) denotes
the expected cost for firm 1 when it is firm 2’s turn to invest dinch 2 didn’t invest, whereas
Cli(c1,c2,¢,2) denotes firm 1's expected discounted costs when it is firmu2is to invest and
firm 2 does invest. Since we assume that the idiosyncratic, additizecost shocks for investing
and not investing, respectively, are only incurred by tha fin the periods where it is that firm’s
turn to invest, we define the following functiong&:Pl;(cs,cp,c,1) andEPN(cq,Cp,C,1) are the
expected current production and investment costs for firnmé&nait is firm 1’s turn to invest, and
these are given by equatiori37(and 38) above. When it is not firm 1’s turn to invest, then we

haveEPIy(cy,Co,C,2) = EPNi(Cy,C2,C, 2) = S1(C1, C2)C1.

CNyi(c1,C2,¢, 1) = EPNy(cy,C2,C, 1)
C
+ Bf(LD) /O [Py(cy,Co, ¢, 1)Cly(Cy, G, 1) + (1 — Py(cy, Co, &, 1) )CNy(C1, G2, €, 1)] ()

C

+ Bf(2|1)/ [Po(c1,C2,¢',2)Cly(C1,C2,€,2) 4 (1 — Py(c1,C2,€, 2))CNy(c1, €2, €, 2)| (dC ).
0

Cly(c1,¢2,¢,1) = EPh(cy,C2,¢,1)
C
+ Bf(l\l)/ [P1(c,co,c, 1)Cla(c,co,¢, 1) + (1— Pi(c,Cp, ¢, 1))CNy(c, o, ¢, 1) | T(dC[ )
0

+ Bf(21) /OC [P2(c,c2,¢,2)Cly(c, C2,¢,2) + (1 — Pa(c, 62,¢, 2))CNy (¢, €2, €, 2) | TH(dC ).

CNy(c1,C2,¢,2) = EPNi(C1, €2, €, 2)
C
+ Bf(1|2)/ [P1(c1,Cp,¢/, 1)Cly(Cy,C2,¢, 1) + (1 — Py(cy,C2,¢/,1))CNy(c1, €2, ¢, 1)] (dC[c)
0

+ Bf(22) /0 [Po(c1,Ca, ¢, 2)Cla (C1, G, 2) + (1— Pa(cy, Ca, &, 2))CNy (1, G2, €, 2)] (A c).

Cla(c1,62,¢,2) = EPly(cy, C2, ¢, 2)
C
+ Bf(l\Z)/ [Py(c1,c,c, 1)Cla(cy,c, ¢, 1) + (1— Pi(cy,¢,c/, 1))CNy(cy, ¢, ¢, 1) (dc[c)
0

+OBf(22) /O “[Pa(er, 6, 2)Cl(cr, e, ¢ 2) + (1 Pa(cn, ¢, 2))CNy(cn, 6, ¢, 2)] Tdc).
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