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Abstract
We find a new set of subgame perfect equilibria in a dollar auction that involves 
three active bidders. The player who falls to the third place continues making efforts 
to catch up until his lag from the frontrunner widens to a critical distance beyond 
which the catchup efforts become unprofitable. At that juncture the second-place 
player pauses bidding thereby bettering the chance for the third-place one to leap-
frog to the front so as to perpetuate the trilateral rivalry. Once two players have 
emerged as the top two rivals, any such trilateral rivalry equilibrium produces larger 
total surplus for the three players than its bilateral rivalry counterpart does, where 
anyone who falls to the third place immediately drops out.
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1  Introduction

This paper analyzes a three-player Shubik’s (1971) dollar auction game and uncov-
ers a cyclic dynamic pattern where the players perpetuate their trilateral rivalry 
through accommodating the player who falls behind. Albeit a classroom favorite for 
decades, the game in its general form of more than two bidders has not been ana-
lyzed before. We find a class of subgame perfect equilibria (SPE) where three active 
bidders escalate their competition in a cyclic pattern, wherein the third-place bidder 
occasionally manages to leapfrog to the front, and the second-place bidder stays put 
to accommodate the leapfrog. Moreover, such trilateral rivalry arises endogenously 
in a model where bilateral rivalry is also equilibrium-feasible, and we find that the 
trilateral equilibrium generates larger total surplus for all the bidders than its bilat-
eral rivalry counterpart does.

This finding is largely due to a dynamic aspect of the dollar auction that has not 
been considered in previous studies of the game: Different from the conventional 
clock model of ascending auctions, the dollar auction allows a bidder to refrain 
from raising his bid while others are raising theirs and to join the race later through 
making a leapfrogging bid that tops the frontrunner’s, as long as the race has not 
ended. Theoretical studies of the dollar auction, O’Neill (1986), Leininger (1989), 
Demange (1992), Hörner and Sahuguet (2011), and Dekel et  al. (2006, 2009), all 
assume only two bidders. Thus leapfrogging bid is impossible because if one bidder 
does not top the other player’s bid immediately, the other player wins right away.1

Another kind of dynamic auctions that has been found to also exhibit leapfrog-
ging bidding patterns is online penny auctions, considered by Augenblick (2016), 
Hinnosaar (2016), Kakhbod (2013) and Ødegaard and Anderson (2014). As in the 
dollar auction, bidders in a penny auction incur a sunk cost for each bid increment 
they submit. The main difference between the two games is that the sunk cost in the 
dollar auction is counted as part of a bidder’s eventual payment but not so in a penny 
auction, where the sunk bidding cost is only a fee and a winner still needs to pay the 
entire price for the good. Another difference is with regard to their tie-breaking rules 
when multiple players bid simultaneously. In both games a random frontrunner is 
selected from the multiple bidders, but the difference is that while all bidders incur 
the sunk bidding cost in online penny auctions, only the chosen frontrunner incurs 
the sunk cost in the dollar auction. Given these differences the bidding incentive in a 
penny auction is different from that in the dollar auction.

With three players, the dollar auction game still has bilateral rivalry as some of 
its SPEs, where the third player quits forever once the other two have emerged as 
the top two rivals. This paper, differently, presents a new kind of SPEs, featuring 
trilateral rivalry, where a player who happens to fall behind tries to leapfrog after 

1  The same applies to two-player models in the literature of all-pay auctions and wars of attrition. 
Although n-player models in the all-pay and war-of-attrition literature have been considered by Baye 
et  al. (1996), Bulow and Klemperer (1999), Krishna and Morgan (1997), and Siegel (2009), they are 
either static games where all players simultaneously choose their one-shot bids, or stopping games where 
anyone who stops raising his bid quits irrevocably, without possibility of leapfrogging.
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he failed to raise his bid in the past while his rivals have emerged as the top two. 
Since leapfrog is possible, a player’s equilibrium action depends on the current dis-
tances among the players and also on whether a player who falls behind still wants 
to leapfrog. Since leapfrogging takes sunk costs, a player’s willingness to leapfrog in 
turn depends not only on the endogenous value of being in the frontrunner position 
but also on the current distance between the player’s currently committed bid and 
the frontrunner’s bid. Thus, construction of such an equilibrium requires a recursive 
method more complicated than steady state dynamics. We obtain explicit charac-
terization of the strategy profiles of these equilibria (Theorem  1). In any equilib-
rium of such there is an endogenous node at which the third-place bidder falls so far 
behind that he is indifferent between leapfrog and dropout. At that node, the second-
place bidder pauses raising her bid to better the chance for the third-place bidder 
to leapfrog into the front. Thus, our equilibrium construction shows that it is a best 
response for a rival near the top to accommodate, rather than deter, the leapfrogging 
efforts of an underdog.

Furthermore, we compare the bidders’ welfare in our trilateral rivalry equilibria 
with that in bilateral rivalry equilibria. In each bilateral rivalry equilibrium, once 
the game has started so that the highest and second-highest bidders have emerged, 
the subgame equilibrium takes away almost the entire surplus from the bidders. In 
each trilateral rivalry equilibrium constructed here, by contrast, once the top two 
bidders have emerged, the subgame equilibrium yields a larger expected payoff for 
each of the three players than the bilateral rivalry counterpart does (Theorem  3). 
Thus, should the top two bidders have a chance to choose which equilibrium to play 
thereafter, each would prefer trilateral rivalry to bilateral rivalry. That is, each would 
include rather than exclude the third player.

The game is presented in Sect. 2. Then Sect. 3 sets up the notation and equilib-
rium concept for the recursive analysis necessary to construct trilateral rivalry equi-
libria. To minimize the notation, we present the game and the equilibrium concept 
in an informal—and self-contained—manner and leave the formal presentation to 
Appendix A, which can be skipped without loss. Section 4 presents the main result, 
which explicitly derives the strategy profile for trilateral rivalry. The exposition there 
shows our method in this paper. Section 5 verifies that such strategy profiles do con-
stitute SPEs. Section 6 points out their superiority over bilateral rivalry equilibria. 
Section 7 concludes and outlines how similar dynamic patterns are preserved in sev-
eral extensions of the model, which are detailed in our Supplementary Information. 
Proofs are in the appendix, in the order of appearance of the corresponding claims.

2 � The dollar auction

There is one indivisible good and three risk-neutral players. The value of the good, 
commonly known, is equal to v for every player. The good is to be auctioned off via 
an ascending-bid procedure with bid increment fixed at a positive constant � such 
that 2𝛿 < v . In the initial round, all players simultaneously choose whether to bid or 
stay put; if all stay put then the game ends with the good not sold, else one among 
those who bid is chosen randomly, with equal probability, to be the frontrunner, 
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whose committed payment becomes  � , with everyone else’s committed payment 
being zero, and the current price of the good becomes � . Suppose that the game 
continues to any subsequent round, with p being the current price and bi player i’s 
committed payment ( bi ≤ p and strictly so unless i is the frontrunner), all players but 
the frontrunner simultaneously choose whether to bid or stay put. If all stay put then 
the game ends, the good is sold to the frontrunner, who pays the price p, and every 
other player  i pays bi ; else the current price becomes p + � and one among those 
who bid in this round is chosen randomly, with equal probability, to be the front-
runner, whose committed payment becomes  p + � , with the committed payments 
of others unchanged. Then the game continues to the next round. If the game never 
ends, then each bidder pays the supremum of his committed payment, and the good 
is randomly assigned to one of those whose supremum committed payments reach 
infinity. (See Appendix A.1 for a formal definition of the game.)

Our assumption that price ascends in a fixed increment � , dating back to Shubik’s 
(1971) original formulation, idealizes the notion that a player cannot easily preempt 
competition through making the price jump to a level that renders rivals’ entry 
unprofitable. The anticompetitive effect of such price jumping has been observed by 
Dekel et al. (2006). Our tie-breaking rule for the case of multiple bids being submit-
ted within a round again follows Shubik’s formulation. However, the finding can 
be partially extended to other tie-breaking rules, outlined in the Conclusion and 
detailed in our Supplementary Information.

3 � Preliminary analysis

3.1 � The state variable and equilibrium concept

Denote  � for the frontrunner, whose committed payment is the current price p 
( b� = p ), and � the follower, whose committed payment, by the rule of the game, is 
always just � below the frontrunner’s ( b� = p − � ); denote � for the underdog, whose 
committed payment b� is the lowest. A feature that sets the dollar auction apart from 
the stopping game models of war of attrition is that the active bidders’ committed 
prices are not necessarily close to one another: b� − b� is not only larger than the 
constant b� − b� but also is variable. Thus, let the state variable of the game be rep-
resented by the frontrunner-underdog lag

i.e. b� = p − s� . Note that s ≥ 2 once a third-place bidder has emerged (or once the 
game has entered the third round). From then on, s ≥ 2 as long as the game contin-
ues. Consider subgame perfect equilibria in the form of

such that �0 is every bidder’s probability of bidding at the initial round, �1 the prob-
ability of bidding at the second round for everyone but the current � player and, for 

s ∶=
(
b� − b�

)
∕�,

(
�0,�1,

(
��,s,�� ,s

)∞
s=2

)
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every s ≥ 2 and each i ∈ {�, �} , �i,s is the probability with which the current i player 
bids at state s. (See Appendix A.2 for the formal definitions of the strategy and the 
equilibrium concept.)

Implicit in the above formulation are two conditions that we use to restrict the 
set of subgame perfect equilibria. First is symmetry in the sense that a player’s equi-
librium strategy depends not on his name but rather on his relative position with 
respect to other players. The second one is history-independence, that each player’s 
equilibrium strategy depends only on the current state ( s ∈ {2, 3,… , } ) when the 
game has entered the third round or thereafter, or on the current round ( t ∈ {0, 1} ) if 
it is the initial or the second round. In addition, we restrict the set of equilibria with 
a third condition:

That is, once the third-place bidder has become inactive from now on, the other 
two bidders play a steady state subgame equilibrium. One may think of  (1) as an 
independence condition of non-participants. It rules out the equilibria where the 
active bidders choose their actions based on their distance from the player who is no 
longer active.

3.2 � The surplus‑dissipating subgame equilibrium

Our first observation is that bilateral rivalry is always equilibrium-feasible. Consider 
any subgame with state variable s ≥ 2 . That is, the price p has risen to at least 2� , 
with the frontrunner having committed a payment p, the follower having commit-
ted p − � , and the underdog having committed at most p − 2�.

Lemma 1  In any subgame starting with s ≥ 2 : 

	 i.	 there is an equilibrium where, in each round, the current follower bids with 
probability 1 − 2�∕v , the current underdog stays put, the continuation value 
is equal to 2� for the current frontrunner, and zero for the other two players;

	 ii.	 this is the only equilibrium where any player in the underdog position stays 
put forever.

This equilibrium we shall call surplus-dissipating subgame equilibrium, because 
a player in climbing up to the frontrunner position has already incurred a sunk cost 
no less than 2�.

Due to Lemma  1.ii and condition  (1), we consider only equilibria that, to any 
subgame where any player in the underdog position stays put forever, prescribe the 
surplus-dissipating subgame equilibrium. That provides a basis to compare one 
equilibrium with another.

(1)
[
∀s ≥ s∗ ∶ �� ,s = 0

]
⇒

[
∀s, s� ≥ s∗ ∶ ��,s = ��,s�

]
.
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3.3 � The value functions

Let any equilibrium in the form of 
(
�0,�1,

(
��,s,�� ,s

)∞
s=2

)
 be given. For any s ≥ 2 and 

any i ∈ {�, �} , denote qi,s for the probability with which the current i player becomes 
the � player in the next round. By the uniform tie-breaking rule,

at any s ≥ 2 , with −i being the element of {�, �}⧵{i} . Given this equilibrium and any 
state s, denote Vs for the expected payoff for the current � player, Ms the expected 
payoff for the current  � , and  Ls that for the current  � . Denote V0 for everyone’s 
expected payoff at the initial round, V1 for the initial frontrunner’s the expected pay-
off, and M1 = L1 for every non-� player’s, at the second round. The law of motion is 
described below:

and, for each s ≥ 2:

(2)qi,s = �i,s
(
1 − �−i,s∕2

)

(3)V0 ⟶

⎧
⎪⎨⎪⎩

0 prob.
�
1 − �0

�3
V1 − � prob. �3

0
∕3 + �2

0
(1 − �0) + �0(1 − �0)

2

M1 prob. 2�3
0
∕3 + 2�2

0
(1 − �0) + 2�0(1 − �0)

2;

(4)V1 ⟶

{
v prob.

(
1 − �1

)2
M2 prob. 1 −

(
1 − �1

)2
;

(5)M1 ⟶

⎧⎪⎨⎪⎩

0 prob.
�
1 − �1

�2
V2 − 2� prob. �1

�
1 − �1∕2

�
L2 prob. �1

�
1 − �1∕2

�
;

(6)Vs ⟶

⎧⎪⎨⎪⎩

v prob. 1 − q�,s − q� ,s
Ms+1 prob. q�,s
M2 prob. q� ,s;

(7)Ms ⟶

⎧⎪⎨⎪⎩

0 prob. 1 − q�,s − q� ,s
Vs+1 − 2� prob. q�,s
L2 prob. q� ,s;

(8)Ls ⟶

⎧⎪⎨⎪⎩

0 prob. 1 − q�,s − q� ,s
Ls+1 prob. q�,s
V2 − (s + 1)� prob. q� ,s.
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3.4 � The dropout state

Since v is finite, we have, at any equilibrium in the form of 
(
�0,�1,

(
��,s,�� ,s

)∞
s=2

)
 , 

that V2 is finite and hence V2 < s𝛿 for all sufficiently large s; thus for the equilibrium

exists and is unique. Call s∗ the dropout state of the equilibrium. The next lemma 
explains the appellation.

Lemma 2  If the dropout state is s∗ , then an underdog ( � player) (i) stays put for sure 
at state s if and only if s ≥ s∗ , and (ii) bids for sure at state s if 2 ≤ s < s∗ − 1.

As explained in Sect. 3.2, we shall construct all equilibria based on the condition 
that, in any subgame where the underdog never bids, the other two bidders play the 
surplus-dissipating subgame equilibrium defined there, which yields a continuation 
value 2� for the current frontrunner, and zero for the other two. That is,

In particular, once the game enters the dropout state s∗ , the player currently in the 
underdog position will stay put forever (Lemma 2). Thus (10) implies Vs = 2� and 
Ms = Ls = 0 for all s ≥ s∗.

4 � Derivation of trilateral rivalry equilibria

By (9) and Lemma 2.i, if the dropout state is s∗ = 1 , then everyone stays put, thereby 
ending the game, after the initial round; and if s∗ = 2 then starting from the third 
round the underdog quits, with the subgame equilibrium being the surplus-dissipat-
ing one played by the frontrunner and the follower that emerge at the second round. 
The focus of this paper, however, is trilateral rivalry, where the underdog does not 
quit forever after the second round. In other words, we look for equilibria with drop-
out states s∗ ≥ 3 . Following is our finding of what such equilibria necessarily entail.

Theorem 1  If the dropout state s∗ ≥ 3 then: 

	 i.	 s∗ is an even number;
	 ii.	 at the initial round everyone bids for sure;
	 iii.	 at each state s ∈ {1, 2,… , s∗ − 2} every non-� player bids for sure;
	 iv.	 at state s∗ − 1 the � player stays put and the � player bids with probability 

�� ,s∗−1 ∈ (0, 1) such that V2 = s∗� , where V2 is derived through the law of 
motion, (3)–(8);

	 v.	 at any state s ≥ s∗ , the � player stays put and the � player bids with probability 
1 − 2�∕v.

(9)s∗ ∶= max
{
s ∈ {1, 2, 3,…} ∣ V2 ≥ s�

}

(10)
[
∀s ≥ s̃

[
𝜋𝛾 ,s = 0

]]
⟹

[
Vs̃ = 2𝛿, Ms̃ = Ls̃ = 0

]
.
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Theorem 1.iv reveals a striking feature of a trilateral rivalry equilibrium: At the 
state s∗ − 1 , when the current underdog’s lag is just one step shy of the dropout state 
of the equilibrium, the currently higher bidder � stays put for sure so that the under-
dog � can leapfrog into the front if � chooses so. This coupled with Claims (ii), (iii) 
and (v) of the theorem depicts the trajectory of trilateral rivalry: First, as the esca-
lation continues, the gap between the frontrunner and the underdog may collapse 
or expand, depending on whether the latter manages to leapfrog thereby replacing 
the frontrunner. Second, the escalation may end only when this gap reaches s∗ − 1 , 
called critical state, at which the follower lets the underdog decide whether to con-
tinue the escalation through leapfrogging. Third, bilateral rivalry never occurs on 
path, as the game ends if the underdog does not leapfrog at the critical state. Finally, 
a rather peculiar feature of all these equilibria is, according to Claim (i), that these 
equilibria support only even numbered dropout states. This section outlines the rea-
soning for the theorem and leaves the details to Appendices B.3 and B.4.

4.1 � Why the underdog leapfrogs at all

Here we explain why the � player at state s∗ − 1 bids at all, i.e., 𝜋𝛾 ,s∗−1 > 0 . First 
note s∗ ≥ 4 from the hypothesis s∗ ≥ 3 and Claim (i) of the theorem, which we will 
explain in Sect. 4.3. Second, we shall use a Lemma 5 in Appendix B.3:

Now suppose, to the contrary of the claim, that �� ,s∗−1 = 0 at equilibrium. Then, 
since �� ,s = 0 at all s > s∗ − 1 (Lemma 2.ii), the � player quits forever starting from 
the state s∗ − 1 . Thus (10) implies Vs∗−1

= 2� and Ms∗−1
= 0 . Combine (6), (7) and 

Lemma 2.ii to get the following chains of transition:

Reason backward along the two chains, starting from Vs∗−1
= 2� and Ms∗−1

= 0 , 
and repeatedly use the fact L2 ≤ M2 in  (11). Then we obtain two chains of 
inequalities:

(11)L2 ≤ M2 < V3.

(12)
⋯ → Ms∗−4

−2�
⟶ Vs∗−3

→ Ms∗−2

−2�
⟶ Vs∗−1

↓ ↓ ↓

L2 M2 L2

(13)
⋯ → Vs∗−4

→ Ms∗−3

−2�
⟶ Vs∗−2

→ Ms∗−1

↓ ↓ ↓

M2 L2 M2
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The two chains combined imply Vs ≤ M2 for all s ≤ s∗ − 1 . But then V3 ≤ M2 , 
contradicting (11). Thus, 𝜋𝛾 ,s∗−1 > 0.

4.2 � Why the follower accommodates the underdog

Here we explain why the � player at state s∗ − 1 stays put for sure, i.e., ��,s∗−1 = 0 . 
First, observe that if s∗ ≥ 4 then L2 > 0 . That is because the underdog � at state 
s = 2 can bid thereby securing a fraction of the payoff V2 − 3� , which is strictly pos-
itive by s∗ ≥ 4 and (9). (In bidding at state s = 2 , � also gets a fraction of L3 , which 
is nonnegative as he can always stay put thereafter, cf. (8).) Second, since �� ,s = 0 
for all s ≥ s∗ (Lemma 2.i), (10) implies Vs∗

− 2� = 0 . Thus, bidding is worse than 
staying put for the � player at state s∗ − 1 : Staying put gives him �� ,s∗−1L2 , which is 
strictly positive because L2 > 0 and, as explained in Sect. 4.1, 𝜋𝛾 ,s∗−1 > 0 ; by con-
trast, bidding gives him (Vs∗

− 2�)�� ,s∗−1∕2 + L2�� ,s∗−1∕2 = L2�� ,s∗−1∕2 , strictly less 
than L2�� ,s∗−1 . Hence ��,s∗−1 = 0.

4.3 � Why dropout states cannot be odd numbers

The proof of Claim (i) of the theorem, relegated to Appendix B.3, follows a method 
similar to that illustrated in Sect.  4.1. Here we provide its intuition. Note that in 
a trilateral rivalry equilibrium the game ends only when the state is s∗ − 1 : When 
s < s∗ − 1 , the underdog bids for sure (Lemma 2.ii and Claim (ii) of this theorem); 
when s = s∗ − 1 , the underdog may bid while the follower stays put. If the underdog 
bids (thereby becoming the next � ) then the state returns to s = 2 , else the game 
ends and the current � wins the good. Thus, in order to win, a player needs to be 
the � player at the critical state s∗ − 1 . Consequently, if s∗ is an odd number then, on 
the path to winning, a bidder must have in previous rounds been the � player for all 
odd states s < s∗ − 1 , and the � player for all even states s ≤ s∗ − 1 . Figure 1 illus-
trates the case of s∗ = 7 , where solid lines represent possible transitions if one bids, 
dashed lines if he stays put, and the thick gray states and arrows indicate the path to 
winning.

Thus, if s∗ is odd, a player in the � position at any even state s < s∗ − 1 would 
rather, in order to reach the winning path, become the � player in state s = 2 (through 
staying put) than become the superfluous � player in the odd state s + 1 at the cost of 
2� (through bidding). In particular, in state s = 2 , the � player would never bid while 
the � player would always bid; hence the state s = 2 repeats itself, with the players 

Vs∗−1
= 2� ⇒Ms∗−2

≤ max{−2� + Vs∗−1
, L2} = L2 ≤ M2

⇒Vs∗−3
≤ max{Ms∗−2

,M2} ≤ M2

⇒Ms∗−4
≤ max{−2� + Vs∗−3

, L2} ≤ max{M2, L2} ≤ M2 ⇒ ⋯

Ms∗−1
= 0 ⇒Vs∗−2

≤ max{Ms∗−1
,M2} = M2

⇒Ms∗−3
≤ max{−2� + Vs∗−2

, L2} ≤ max{M2, L2} ≤ M2

⇒Vs∗−4
≤ max{Ms∗−3

,M2} ≤ M2 ⇒ ⋯
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switching roles according to � → � → � → � , thereby trapping them in an infinite 
bidding loop.2

4.4 � Why even number dropout states are possible

When the dropout state s∗ is an even number, by contrast, a � player is not in the pre-
dicament as in the previous case. First, in any even state s < s∗ − 1 the � player wants 
to bid in order to stay on the winning path and become the � in the odd state s + 1 . 
Second, in any odd state s < s∗ − 1 the � player would rather bid and become the � 
in the even state s + 1 than stay put thereby becoming the � player in state 2. With 
the former option, it takes a cost of 2� (to become � in s + 1 ) and two rounds for the 
player to have a chance to become the � player in state s = 2 thereby landing on the 
winning path. With the latter option, it takes a cost of 3� and three rounds for him 
to have such a chance of reaching the winning path. In Fig. 2, with s∗ = 6 , the situ-
ation of this odd-state � player is illustrated by the node M3 , from which the former 
option (becoming the next � ) reaches the winning path state M2 via M3 → V4 → M2 , 
while the latter option (being the next � ) reaches M2 via the more roundabout route 
M3 → L2 → V2 → M2.3 That is the intuitive reason for the part of Theorem 1.iii on 
the � player’s strategy.

V2

M2

L2

V3

M3

L3

M2

L2

V2

V4

M4

L4

M2

L2

V2

V5

M5

L5

M2

L2

V2

V6

M6

L6

M2

WON

L2

LOST

V2

LOST

Fig. 1   The law of motions and equilibrium winning path if s∗ = 7

2  The odd-vs-even contrast in Sects. 4.3 and 4.4 echoes an odd-vs-even contrast observed by Kilgour and 
Brams (1997) on three-player duels. An interesting difference is that the odd-vs-even contrast in three-
player duels is about the exogenous length of a finite game, whereas our contrast is about the endogenous 
length of the on-path rivalry of the equilibrium in our potentially infinite game.
3  In the more roundabout route, the last step, from V

2
 to M

2
 , is preferable to a player because of a non-

trivial Lemma 9, saying that in the consecutive configuration it is better-off to be the follower than the 
frontrunner.
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5 � Verification of trilateral rivalry equilibria

By Theorem 1.ii, Eq. (2) and the uniform tie-breaking rule,

Given any �� ,s∗−1 ∈ [0, 1] , the value functions 
(
Vs,Ms, Ls

)
s
 associated to the strat-

egy profile specified by Theorem 1 can be calculated based on (14) and the law of 
motion, (6)–(8). The question is whether such a strategy profile constitutes an equi-
librium. The crucial step in answering this question is to verify that, given the strat-
egy profile in Theorem 1, bidding is a best response for the � player at every state 
below s∗ − 1 . Verification for all such states might sound cumbersome, but it turns 
out that we need only to check two inequalities:

Lemma 3  For any even number s∗ ≥ 4 and any strategy profile specified by Theo-
rem 1, bidding is a best response for the � player at state s ∈ {1, 2,… , s∗ − 2} if 
either (i) s is even and V3 − 2� ≥ L2 , or (ii) s is odd and Vs∗−2

− 2� ≥ L2.

Thus we obtain an equilibrium with an even number dropout state s∗ ≥ 4 if the 
following conditions all hold: (a) the bidding probability �� ,s∗−1 at the critical state 
solves the equation V2 = s∗� (Theorem 1.iv), with V2 as well as other value functions 
derived from the law of motion (6)–(8) according to the strategy profile in Theo-
rem 1; (b) V3 − 2� ≥ L2 ; and (c) Vs∗−2

− 2� ≥ L2 . Condition (a), by Lemma 17 in the 
appendix, is equivalent to

(14)2 ≤ s ≤ s∗ − 2 ⟹ q�,s = q� ,s = 1∕2.
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Fig. 2   The law of motions and equilibrium winning path if s∗ = 6
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where �∗ ∶= 2−s∗+3 . Condition (b), by Lemma 16 in the appendix, turns out to be 
redundant, implied by Condition (c), which by Lemma 18 in the appendix is equiva-
lent to

When s∗ ≤ 6 , (16) is guaranteed as long as (15) admits a solution �� ,s∗−1 ∈ [0, 1] , 
which in turn is guaranteed if v∕𝛿 > 35∕2 when s∗ = 4 , and v∕𝛿 > 6801∕120 
when s∗ = 6 (Lemma 21). When s∗ > 6 , to guarantee both (15) and (16) we need a 
stronger condition (cf. the end of Appendix B.6),

In sum, trilateral rivalry equilibria with even-number dropout states exist pro-
vided that the parameter v∕� is sufficiently large:

Theorem  2  A trilateral rivalry equilibrium exists if v∕� is sufficiently large. In 
particular: 

	 i.	 if v∕𝛿 > 35∕2 then one exists with dropout state s∗ = 4;
	 ii.	 if v∕𝛿 > 6801∕120 then one exists with dropout state s∗ = 6;
	 iii.	 if an even number s∗ ≥ 8 satisfies (17), then one exists with dropout state s∗.

Numerical Illustration
Consider the case where � = 1 , v varies from 0 to 1000, and s∗ ∈ {4, 6, 8, 10} . 

Figure 3 shows the equilibrium bidding probability of the underdog (the � player) 
in the critical state s∗ − 1 as a function of the underlying value v. The vertical lines 
indicate the point at which additional equilibria for s∗ > 4 are admitted. For instance, 
starting at v = 57 ( ≈ 6801/102) the equilibrium corresponding to the dropout state 
s∗ = 6 is permissible. Note that within each equilibrium the bidding probability is 
increasing in v (or v∕� as � = 1 in this example). Interestingly, when a new equilib-
rium with a higher dropout state becomes permissible the corresponding equilib-
rium bidding probability drastically reduces. Furthermore, each additional equilib-
rium requires an order of magnitude increase in v, consistent with the exponential 
growth rate of the right-hand side of (17).

(15)

3�∗v

�
(1 − �� ,s∗−1)(2 − �∗) + (2 − �∗)

2(s∗ − 6 + �∗)

=
(
2(1 + �∗) − 3�∗�� ,s∗−1

)(
3s∗ + 2(1 − 2�∗)

−(s∗ − 4 + �∗)(1 − 2�∗ + 3�∗�� ,s∗−1)
)
,

(16)�� ,s∗−1 ≥ 1 −
3(2 − �∗)

2(1 − 2�∗)(s∗ − 4 + �∗)
.

(17)
v

�
≥

(
1

3
s2
∗
+

5

3
s∗ − 8

)
2s∗−3.



1 3

Trilateral escalation in the dollar auction﻿	

6 � Welfare properties

6.1 � Bilateral rivalry equilibria

Different from the equilibria characterized above, where the dropout states are 
s∗ ≥ 3 , the equilibria with dropout states s∗ = 2 all exhibit bilateral rivalry on path. 
In each of them, once the game has reached the third round, where two players have 
emerged as the top two rivals, the surplus-dissipating subgame equilibrium is played 
from then on, with the underdog dropping out for good and the follower topping the 
frontrunner with probability 1 − 2�∕v in any round until the game ends (cf. Øde-
gaard and Zheng 2020). Thus, any such equilibrium exhibits only bilateral rivalry 
and, once the game has entered the third round, only the top two bidders may remain 
in the race and only the current frontrunner gets a nonzero payoff, 2�.
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Fig. 3   Equilibrium bidding probability for the underdog in the critical state s∗ − 1 ; � = 1
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6.2 � Pareto superiority of trilateral rivalry

From the viewpoint before the start of the game, there is a continuum of bilateral 
rivalry equilibria that yield zero expected payoff to all bidders, but there is also a 
bilateral rivalry one that yields the highest total expected payoff, v − � , for the bid-
ders, where escalation does not occur and the randomly selected initial frontrun-
ner wins (cf. Ødegaard and Zheng 2020). However, given that players, be they in 
classroom experiments or in the real world, are so easily trapped in escalating wars 
of attrition, it makes sense to consider their welfare after escalation has started so 
that the top two rivals have emerged, that is, when the state of the game is such that 
s ≥ 2 . In any bilateral rivalry equilibrium, if s ≥ 2 then the subgame equilibrium is 
the surplus-dissipating one, giving an expected payoff 2� to the current frontrun-
ner and zero to each of the other two (Sect.  6.1). In any trilateral rivalry equilib-
rium with dropout state s∗ , by contrast, the surplus-dissipating subgame equilibrium 
does not occur on path at all, whereas the path—when the state s ∈ {2,… , s∗ − 1}

—exhibits trilateral rivalry that yields a total expected payoff larger than 2�:

Theorem  3  In any trilateral equilibrium with dropout state  s∗ , in any subgame 
where the state s ∈ {2,… , s∗ − 1} , we have Vs > 2𝛿 , Ms > 0 and Ls ≥ 0 , with Ls > 0 
if s < s∗ − 1.

The theorem is based on the law of motion of the value functions (6)–(8), coupled 
with the strategy profile specified by Theorem 1. The case of V2 > 2𝛿 , however, is 
obvious: By V2 = s∗� (Theorem 1.iv) and s∗ ≥ 4 (Theorem 1.i), V2 = s∗� ≥ 4�.

Theorem 3 implies that, once the first two rounds of the game have elapsed so 
that two players have emerged as the top two rivals, the two can avoid the detri-
mental bilateral rivalry if they could engage the third player in a trilateral rivalry 
equilibrium.

7 � Conclusion

In considering the dollar auction—a dynamic game that albeit specific has deep 
roots in the conflict literature—this paper demonstrates a novel dynamic pattern 
where three contestants perpetuate the trilateral rivalry through a cyclic pattern of 
leapfrog and accommodation. Importantly, the trilateral rivalry is not assumed in 
our model but rather arises as an equilibrium while there is another equilibrium of 
bilateral rivalry, where any player who happens to fall behind the top two immedi-
ately drops out. The normative advantage of the trilateral-rivalry equilibrium is that 
it generates larger total surplus across all players than the bilateral-rivalry equilib-
rium does. Given the current polarizing political climate in the United States, our 
normative result could be taken as a timely—though stylized—suggestion that add-
ing a third political party to the US two-party system might help to mitigate the 
more and more acute conflict between the two sides.
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To sustain such collectively advantageous trilateral rivalry, the contestants 
accommodate one another at critical junctures of the equilibrium: when the third-
place player lags behind the frontrunner by a distance beyond which he will drop out 
forever, the rival near the top stays put to better the chance that the third-place player 
can catch up through a leapfrog bid. Thus the game either ends, when the latter fails 
to make the leapfrog bid, or repeats the trilateral rivalry cycle, when he makes the 
leapfrog.

Although the main results are based on the specific model originally formu-
lated by Shubik (1971), similar dynamic patterns can be found in variants of the 
model. One direction of extension is to consider alternative tie-breaking rules in the 
event where multiple players bid simultaneously. In that event, instead of randomly 
selecting one among the simultaneous bidders to increment his bid and become the 
frontrunner, we can have all simultaneous bidders increment their bids—thereby 
all incurring the sunk costs—and become tying frontrunners with the proviso that 
the prize is not allocated unless only a single frontrunner remains and is not outbid 
immediately. While this tie-breaking rule complicates the analysis, given a nonde-
generate range of parameter values there exists a trilateral rivalry equilibrium that 
exhibits cyclic patterns of leapfrog and accommodation, as we have shown in our 
Supplementary Information, Prop. 1. Not only is there an event where the second-
place bidder pauses bidding to accommodate the leapfrog efforts from the lowest 
bidder, but there is also an event where the lowest bidder pauses bidding—to see the 
top two rivals bid against each other—and then makes a leapfrog bid.

Another alternative tie-breaking rule is to have all simultaneous bidders incre-
ment their bids—thereby incurring the sunk costs—but designate only one of them, 
selected randomly, as the provisional winner, who would win the prize if not out-
bid immediately. Such modification is consistent with the mechanism of most online 
penny auctions. While this rule imposes a sunk cost on a bidder who ties with others 
and hence may discourage an underdog from making a leapfrog effort, players can 
avoid such costly ties in equilibrium with a sunspot coordination device à la Shell 
(1977) and Cass and Shell (1983), thereby replicating all the trilateral rivalry equi-
libria characterized in the main model (Supplementary Information).

The other direction of extension is to have more than three active bidders in an 
equilibrium. For example, one can extend the model to have four players and con-
struct an equilibrium of quadrilateral rivalry analogous to a trilateral rivalry equi-
librium (Supplementary Information). One can furthermore consider an n-player 
model where m of them ( m = 2,… , n ) are involved in an indefinitely long loop of 
competition and accommodation. If the top m bidders are positioned consecutively, 
the subgame admits an equilibrium where only the player in the mth-position bids 
at all and all the other players stay put to accommodate his leapfrog efforts (Supple-
mentary Information).
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A formal definition of the model

A.1 The dollar auction game

Let I ∶= {1, 2, 3} denote the set of players; and w0 ∶= bi,0 ∶= 0 for all i ∈ I . Let

be the initial node of the game. Given n0 , each player  i’s set of feasible actions is 
Ai(n0) ∶= {0, 1} , with 1 signifying “to bid” and 0 signifying “to stay put.”

Pick any t = 1, 2, 3,… . Suppose that a node 
nt−1 ∶= (wt−1, (bi,t−1)i∈I) ∈ (I ∪ {0}) ×ℝ

3
+
 and each player’s set of feasible actions 

at nt−1 have been defined. For any at−1 ∶= (ai,t−1)i∈I such that ai,t−1 is a feasible action 
for player i at node nt−1 ( ∀i ∈ I ), define the set of immediate successors of nt−1 to be

At any node nt ∶= (wt, (bi,t)i∈I) ∈ N(nt−1, at−1) , which descends immediately 
from (nt−1, at−1) , define the set Ai(at−1, nt) of feasible actions for player i by:

The transition probability from (nt−1, at−1) to any element nt ∶= (wt, (bi,t)i∈I) of 
N(nt−1, at−1) is defined by:

The initial node  n0 is the 0-history. For any t = 1, 2,… , a t-history is a 
finite sequence ((nk, ak)t−1k=0

, nt) that satisfies all the following conditions: (i) n0 
is the 0-history; (ii) ((nk, ak)t

�−1
k=0

, nt� ) is a t′-history for any t� ∈ {1,… , t − 1} ; 
(iii) t ≥ 2 ⇒ at−1 ∈

∏
i∈I Ai(at−2, nt−1) , and t = 1 ⇒ at−1 ∈

∏
i∈I Ai(n0) ; (iv) 

nt ∈ N(nt−1, at−1) ; and (v) the transition probability from (nt−1, at−1) to nt is positive.
A feasible path is an infinite sequence (n0, a0, (nk, ak)∞k=1) in which ((nk, ak)t−1k=0

, nt) 
is a t-history for any t = 0, 1, 2,….

Given any feasible path (n0, a0, (nk, ak)∞k=1) , which contains the sequence (nk)∞k=1 , 
namely (wk, (bi,k)i∈I)

∞
k=0

 , the ex post payoff to any player i ∈ I is defined to be equal 
to

where 1wt=i
∶= 1 if wt = i , and 1wt=i

= 0 if wt ≠ i.
Example 1 of a feasible path:

n0 ∶=
(
w0, (bi,0)i∈I

)
(= (0, 0, 0, 0))

N(nt−1, at−1) : =
⎧

⎪

⎨

⎪

⎩

(wt , (bi,t)i∈I ) ∈ (I ∪ {0} ×ℝ3
+

|

|

|

|

|

|

|

|

wt ≠ wt−1 ⇒

[

awt ,t−1 = 1,
bwt ,t = � +maxi∈I bi,t−1

]

[

i ≠ wt or i = wt = wt−1
]

⇒ bi,t = bi,t−1

⎫

⎪

⎬

⎪

⎭

.

Ai(at−1, nt) ∶=

{
{0, 1} if wt ≠ 0 and i ≠ wt and ∃j ∈ I ∶ aj,t−1 = 1

{0} if wt = 0 or i = wt or a1,t−1 = a2,t−1 = a3,t−1 = 0.

{i ∈ I ∣ ai,t−1 = 1} = ∅ ⇒ Pr{wt = wt−1 ∣ nt−1, at−1} = 1;

{i ∈ I ∣ ai,t−1 = 1} ≠ ∅ ⇒Pr{wt = i ∣ nt−1, at−1} =
ai,t−1

||{i ∈ I ∣ ai,t−1 = 1}||
(∀i ∈ I).

(18)v lim inf
t→∞

1wt=i
− sup

t=1,2,…

bi,t,
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where wt = 3 for all t = 2 , namely, player 3 wins the prize in the third round of the 
game.

Example 2 of a feasible path:

where players  1 and  2 outbid each other, and hence take turn to be the frontrun-
ner, in alternate order. Thus lim inft→∞ 1wi=i

= 0 for both players (and trivially so 
for player 3 as he never bids). According to (18), the payoff is equal to −∞ for both 
players 1 and 2, and zero for player 3.

A.2 Formalization of the equilibrium concept

A strategy �i for player  i is a mapping that assigns, for any t = 0, 1, 2,… , to each 
t-history ((nk, ak)t−1k=0

, nt) a lottery on the set Ai(nt−1, at−1) (or on the set Ai(n0) if 
t = 0 ) of feasible actions for  i. A strategy profile is a profile  (�i)i∈I of strategies 
across all players. A subgame perfect equilibrium (SPE) is a strategy profile that 
satisfies sequential rationality at each t-history for every t = 0, 1, 2,….

An SPE (�i)i∈I is said to be history independent iff for any i ∈ I , any 
t, t� ∈ {0, 1, 2,…} , and any t- and t′-histories ((nk, ak)t−1k=0

, nt) and ((n�
k
, a�

k
)t

�−1
k=0

, n�
t�
),

Denote

In any history-independent SPE, each player i’s strategy is function of only the last 
node of any t-history. Thus we write

for any nt ∈ N such that ((nk, ak)t−1k=0
, nt) is a t-history for some t. It follows that we 

can suppress the subscript t to write any element of N as n = (w, (bi)i∈I).
For any n, n� ∈ N such that n = (w, (bi)i∈I) and n� = (w�, (b�

i
)i∈I) , we say that n is 

isomorphic to  n′ , or n ≡ n′ , iff there exists a permutation � ∶ I → I such that 
bi − bj = b�

�(i)
− b�

�(j)
 for all i, j ∈ I . This � is called a permutation associated with 

n ≡ n′.
A history-independent SPE (�i)i∈I is said to be symmetric iff �i(n) = ��(i)(n

�) for 
any n ≡ n′ with any associated permutation �.

For any n ∈ N such that n = (w, (bi)i∈I) , define �n ∶ I → {�, �, �} by

((0;0, 0, 0), (1, 1, 0);(2;0, �, 0), (0, 0, 1);(3;0, �, 2�), (0, 0, 0);

(3;0, �, 2�), (0, 0, 0);⋯),

((0;0, 0, 0), (1, 1, 0);(2;0, �, 0), (1, 0, 0);(1;2�, �, 0), (0, 1, 0);

(2;2�, 3�, 0), (1, 0, 0);(1;4�, 3�, 0),⋯),

nt = n�
t�
⟹ �i((nk, ak)

t−1
k=0

, nt) = �i((n
�
k
, a�

k
)t

�−1
k=0

, n�
t�
).

N ∶= {n0} ∪ {nt ∣ t = 1, 2,… ; ((nk, ak)
t−1
k=0

, nt) is a t-history}.

�i(nt) ∶= �i((nk, ak)
t−1
k=0

, nt)
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Examples: At the initial node n0 , since w = 0 , �n0
(i) = � for all players  i. At a 

period-1 node say n1 ∶= (2;0, �, 0) , �n1
(2) = � and �n1

(1) = �n1
(3) = � . At any 

node nt with t ≥ 2 such that at−1 ≠ (0, 0, 0) , �nt
 is one-to-one.

For any n, n� ∈ N such that n ≡ n′ , there exists a permutation � ∶ I → I such that

for any i ∈ I . Since n ≡ n′ , if n = (w, (bi)i∈I) and n� = (w�, (b�
i
)i∈I) then (by the 

definitions of  �n and  ≡ ) we have bi − bj = b�
k
− b�

l
 whenever �n(i) = �n� (k) and 

�n(j) = �n� (l) . Thus � is a permutation associated with n ≡ n′ . Consequently, by the 
definition of symmetry,

For any n ∈ N such that n = (w, (bi)i∈I) , denote

Claim: For any n, n� ∈ N , n ≡ n� ⟺ s̃(n) = s̃(n�) . This follows from two obser-
vations, each proved inductively. First, for any n ∈ N such that n = (w, (bi)i∈I) 
and any i, j ∈ I , bi − bj = m� for some integer m. Second, for any n ∈ N such that 
n = (w, (bi)i∈I),

That is, the gap of committed payments between the frontrunner and any second-
place bidder is always � . Thus, the only payment-gap that may be different between 
any two elements of N is the gap between the frontrunner and the lowest bidder.

The claim and  (19) together imply that, for any symmetric history-independent 
SPE (�i)i∈I,

Let �i(n)(1) denote the probability of playing the action 1—to bid—at the node n 
by player i according to strategy �i . By the above-displayed fact, there is no loss of 
generality to represent a symmetric history-independent SPE by a list

such that �0 = �i(n0)(1) , �1 = �i(n)(1) such that s̃(n) = 1 for any i ∈ I with �n(i) ≠ � , 
and, for any s = 2, 3,… and any r ∈ {�, �} , �r,s = �i(n)(1) such that s̃(n) = s and 
�n(i) = r.

�n(i) ∶=

⎧
⎪⎨⎪⎩

� if i = w

� if i ∈ argminj∈I bj
� if i ∈ I⧵

�
{w} ∪ argminj∈I bj

�
.

�n(i) = �n� (�(i))

(19)�n(i) = �n� (j) ⇒ �i(n) = �j(n
�).

s̃(n) ∶=
1

𝛿

(
max
i∈I

bi −min
i∈I

bi

)
.

s̃(n) ≠ 0 ⟹

[
w ∈ I and bw − max

j∈I⧵{w}
bj = 𝛿

]
.

[
𝜙n(i) = 𝜙n� (j) and s̃(n) = s̃(n�)

]
⟹ 𝜎i(n) = 𝜎j(n

�).

(
�0,�1, (��,s,�� ,s)

∞
s=1

)
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A symmetric history-independent SPE is said to be independent of non-partici-
pants iff (1) holds in the �-notation introduced above.

Our equilibrium concept is therefore defined to be any symmetric history-inde-
pendent SPE that is independent of non-participants.

B Proofs

B.1 Lemma 1

Claim (i) has been proved in Ødegaard and Zheng (2020). Here we prove (ii), the 
uniqueness claim. Consider any equilibrium where the underdog stays put forever. 
Then only the follower’s strategy needs to be specified. By independence condi-
tion (1) of nonparticipants, the follower’s strategy is independent of the state vari-
able, which measures merely the distance from the forever inactive underdog. Thus, 
the follower’s strategy is a constant probability � of bidding. Let V∗ denote the 
expected payoff for the frontrunner in any such equilibrium. In the current round, 
he either wins the prize v with probability 𝜎̃2 or becomes the follower next round. In 
the latter case, by the symmetry condition in our equilibrium concept, he bids with 
probability � thereby paying 2� to become the frontrunner again. Thus, the Bellman 
equation is

Note that 𝜋 > 0 , otherwise ( � = 0 ), V∗ = v ; with v > 2𝛿 by assumption, the fol-
lower would bid for sure, contradicting the supposition � = 0 . Also note that 𝜋 < 1 , 
otherwise the Bellman equation implies V∗ = −2� + V∗ , contradiction. Now that 
0 < 𝜋 < 1 , the follower is indifferent about bidding, hence V∗ = 2� . Plug this into 
the Bellman equation to obtain � = 1 − 2�∕v . That proves Claim (ii). 	�  ◻

B.2 Lemma 2

Lemma 2
By definition of  Ls , the equilibrium expected payoff for an underdog whose 

lag from the frontrunner is  s, we know that Ls = 0 for all s ≥ v∕� . Starting from 
any such s and use backward induction towards smaller s, together with the law of 
motion (8) and the fact V2 − (s + 1)𝛿 < 0 for all s ≥ s∗ due to the definition of s∗ , we 
observe that Ls = 0 for all s ≥ s∗ . At any state s ≥ s∗ , by (8), an underdog gets zero 
expected payoff if he does not bid; if he bids then by Eq. (2) there is a positive prob-
ability with which he gets a negative payoff V2 − (s + 1)� ; hence his best response is 
uniquely to not bid at all. Hence

which proves Claim (i) of the lemma. Apply backward induction to (8) starting from 
s = s∗ and we obtain

V∗ = (1 − �)v + �2
(
−2� + V∗

)
.

(20)s ≥ s∗ ⟹ Ls = 0 and �� ,s = q� ,s = 0,
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with the inequality Ls ≥ Ls+1 being strict whenever s < s∗ − 1 . Thus, for any 
s < s∗ − 1 , Vs − (s + 1)𝛿 > Ls+1 ≥ 0 ; hence Eqs.  (2) and (8) together imply that an 
underdog’s best response is uniquely to bid for sure:

which proves Claim (ii) of the lemma. 	�  ◻

B.3 Claims (i) and (iv) of Theorem 1

First, we make several observations first. By (8) and (21), L2 is a convex combina-
tion between L3 and V2 − 3� , with V2 − 3� ≥ L3 when s∗ ≥ 3 . Thus,

Equation (10), combined with (7) and (8), implies

Lemma 4  s∗ ≠ 3

Proof  Suppose, to the contrary, that s∗ = 3 . Hence 0 ≤ V2 − 3𝛿 < 𝛿 . Thus, by 
Eq. (24), M2 < 𝛿 . Then (4) requires that 𝜋1 < 1 , otherwise V1 = M2 < 𝛿 , implying a 
contradiction that no one would bear the sunk cost � to become the initial � player. 
Now consider the decision of any non-� player at the state s = 1 , as depicted by (5). 
Since V2 − 2𝛿 > V2 − 3𝛿 ≥ L2 , with the second inequality due to  (23), each non-� 
player at s = 1 would maximize the probability of becoming the � in the next round, 
i.e., �1 = 1 , contradiction. 	� ◻

Lemma 5  If s∗ ≥ 4 then V3 − 2𝛿 ≥ M2 ≥ L2 > 0.

Proof  Suppose that V3 − 2𝛿 < L2 . Then, by the fact �� ,2 = 1 (Lemma 2.ii and s∗ ≥ 4 ) 
and Eq. (2), the � player at state s = 2 would rather stay put than bid, hence ��,2 = 0 . 
This, combined with (6) in the case s = 2 and the fact �� ,2 = 1 , implies that V2 = M2 . 
Since V3 − 2𝛿 < L2 coupled with  (7) implies M2 ≤ L2 , we have a contradiction 
V2 ≤ L2 < V2 , with the last inequality due to (8). Thus we have proved V3 − 2� ≥ L2 . 
Therefore, with M2 a convex combination between V3 − 2� and L2 (since �� ,2 = 1 ), 
V3 − 2� ≥ M2 ≥ L2 . Finally, to show L2 > 0 , note from the hypothesis s∗ ≥ 4 and 
definition of s∗ that V2 − 3𝛿 > 0 . This positive payoff the underdog at state s = 2 can 
secure with a positive probability through bidding. Hence L2 > 0 follows from (8). 	
� ◻

Lemma 6  If s∗ ≥ 4 then 𝜋𝛾 ,s∗−1 > 0.

(21)2 ≤ s ≤ s∗ − 1 ⟹ V2 − (s + 1)� ≥ Ls ≥ Ls+1 ≥ 0,

(22)2 ≤ s < s∗ − 1 ⟹ Ls > 0 and 𝜋𝛾 ,s = 1,

(23)s∗ ≥ 3 ⟹ L2 ≤ V2 − 3�.

(24)Ms∗−1
= q� ,s∗−1L2

(23)

≤
(
V2 − 3�

)+
.
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Proof  Section 4.1. 	�  ◻

Proof of Theorem 1.i (impossibility of odd dropout states)
Suppose, to the contrary, that the dropout state  s∗ of an equilibrium is an 

odd number. Since s∗ ≥ 3 by hypothesis of the lemma, s∗ ≥ 5 . By Lemma  5, 
L2 ≤ M2 ≤ V3 − 2� . Apply (6) to the case s = s∗ − 2 and use the fact that �� ,s∗−2 = 1 
(thereby ruling out Vs∗−2

→ v ) due to Lemma 2.ii. Then we have Ms∗−1
≤ L2 , due 

to  (24), and hence Ms∗−1
≤ M2 ≤ V3 − 2� . Reason backward along the transition 

chain  (13), starting from Ms∗−1
≤ V3 − 2� and using the fact L2 ≤ M2 ≤ V3 − 2� 

(Lemma 5), to obtain

Since  s∗ is an odd number and s∗ ≥ 5 , this chain eventually reaches V3 , i.e., 
3 = s∗ − 2m for some positive integer  m. Hence we obtain the contradiction 
V3 ≤ V3 − 2� . 	�  ◻

Proof of Theorem 1.iv
That the � player stays put for sure at state s∗ − 1 has been proved in Sect. 4.2, 

where the hypothesis s∗ ≥ 4 is true due to Lemma  4. For the rest of the claim, 
we first prove 0 < 𝜋𝛾 ,s∗−1 < 1 . The first inequality follows from Lemma  6 since 
s∗ ≥ 4 . To prove 𝜋𝛾 ,s∗−1 < 1 , suppose to the contrary that �� ,s∗−1 = 1 . Then by the 
fact ��,s∗−1 = 0 and  (6) applied to the case s = s∗ − 1 , we have Vs∗−1

= M2 and 
Ms∗−1

= L2 . Reason backward along the transition chains  (12) and  (13), starting 
from Vs∗−1

= M2 and Ms∗−1
= L2 and using the fact L2 ≤ M2 (Lemma 5). Then we 

have two chains of inequalities:

The two chains combined lead to Vs ≤ M2 for all s ≤ s∗ − 1 . Hence V3 ≤ M2 , con-
tradicting Lemma 5. Thus we have proved that 𝜋𝛾 ,s∗−1 < 1.

With 𝜋𝛾 ,s∗−1 < 1 , bidding is not the unique best response for the � player at state 
s∗ − 1 , hence V2 ≤ s∗� (otherwise the bottom branch of (8) in the case s = s∗ − 1 is 
strictly positive and, by (20), is strictly larger than the middle branch, so the � player 
would strictly prefer to bid). By definition of s∗ , V2 ≥ s∗� . Thus V2 = s∗� . 	�  ◻

Ms∗−1
≤ V3 − 2� ⇒Vs∗−2

≤ max{V3 − 2�,M2} ≤ V3 − 2�

⇒Ms∗−3
≤ max{−2� + Vs∗−2

, L2} ≤ max{V3 − 2�, L2} ≤ V3 − 2�

⇒Vs∗−4
≤ max{Ms∗−3

,M2} ≤ V3 − 2�

⇒⋯

Vs∗−1
= M2 ⇒Ms∗−2

≤ max{−2� +M2, L2} ≤ M2

⇒Vs∗−3
≤ max{Ms∗−2

,M2} ≤ M2

⇒Ms∗−4
≤ max{−2� + Vs∗−3

, L2} ≤ max{M2, L2} ≤ M2 ⇒ ⋯

Ms∗−1
= L2 ⇒Vs∗−2

≤ max{L2,M2} ≤ M2

⇒Ms∗−3
≤ max{−2� + Vs∗−2

, L2} ≤ max{M2, L2} ≤ M2

⇒Vs∗−4
≤ max{Ms∗−3

,M2} ≤ M2 ⇒ ⋯
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B.4 Claims (ii) and (iii) of Theorem 1 (action of ˇ when s ≤ s∗ − 2)

The part of Theorem 1.iii on the � player follows from Lemma 2.ii. We prove the 
part on the � player here, through proving Lemmas 8 and 10. The former shows that 
bidding is a follower’s unique best response at even-number states, and the latter, 
odd-number states. Lemma 10 uses a Lemma 9, which also implies Claim (ii) of the 
theorem.

Lemma 7  If the dropout state is an even number s∗ ≥ 4 , then L2 < V2 ≤ V3 − 2𝛿.

Proof  Since ��,s∗−1 = 0 (Theorem  1.iv), Ms∗−1
≤ L2 . Thus, since �� ,s∗−2 = 1 

(Lemma 2.ii), Vs∗−2
 is a convex combination between Ms∗−1

 , which is less than L2 , 
and  M2 , which is a convex combination between V3 − 2� and  L2 , as �� ,2 = 1 . 
Thus Vs∗−2

 is between L2 and V3 − 2� . Consequently, Ms∗−3
 , a convex combination 

between L2 and Vs∗−2
− 2� (since �� ,s∗−3 = 1 ), is between L2 and V3 − 2� . Repeating 

this reasoning, with s∗ being an even number, we eventually reach 2 = s∗ − 2m for 
some integer m ≥ 1 , and obtain the fact that V2 is a number between L2 and V3 − 2� . 
Thus, L2 < V3 − 2𝛿 , otherwise the fact L2 < V2 by (8) would be contradicted. Hence 
L2 < V2 ≤ V3 − 2𝛿 . 	�  ◻

B.4.1 Bidding at even states

Lemma 8  If the dropout state is an even number s∗ ≥ 4 , then ��,s = 1 for any even 
number s such that 2 ≤ s ≤ s∗ − 2.

Proof  First, by Lemma 7, L2 < V3 − 2𝛿 . Thus at state s = 2 the � player strictly pre-
fers to bid, i.e., ��,2 = 1 . Second, pick any even number s such that 4 ≤ s ≤ s∗ − 2 
and suppose, to the contrary of the lemma, that 𝜋𝛽,s < 1 , which means that the � 
player at state  s does not strictly prefer to bid. Thus Ms ≤ L2 (as the transition 
Ms → 0 is ruled out by the fact �� ,s = 1 ). Consequently, Vs−1 , a convex combination 
between Ms and M2 , is weakly less than M2 , as L2 ≤ M2 by Lemma 5. Furthermore, 
Ms−2 , a convex combination between Vs−1 − 2� and L2 , is less than M2 , and that 
in turns implies Vs−3 ≤ M2 . Repeating this reasoning, with  s an even number, we 
eventually obtain the conclusion that V3 ≤ M2 , which contradicts Lemma 5. Thus, 
��,s = 1 . 	� ◻

If the dropout state is an even number s∗ ≥ 4 , since �� ,s = 1 for all s ≤ s∗ − 2 
(Lemma 2.ii), Eq. (2) and the equal-probability tie-breaking rule together imply

By Lemma 8,

(25)∀s ∈ {2, 3, 4,… , s∗ − 2} ∶
[
��,s = 1 ⟹ q�,s = q� ,s = 1∕2

]
.

(26)2 ≤ s ≤ s∗ − 2 and s is even ⟹ q�,s = q� ,s = 1∕2.
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B.4.2 Bidding at odd states

In the following, we extend the summation notation by defining, for any sequence 
(ak)

∞
k=1

,

In particular, 
∑0

k=1
ak = 0 according to this notation.

Lemma 9  If the dropout state is an even number s∗ ≥ 4 , M2 > V2 + 𝛿∕2.

Proof  Let m ∶= min{k ∈ {0, 1, 2…} ∶ V2k+4 − 2� ≤ L2} . Note that  m is 
well-defined because s∗∕2 − 2 belongs to the set, as Vs∗

− 2� = 0 ≤ L2 
(Eq.  (10)). At any odd state 2k + 1 ≤ 2m + 1 (hence k − 1 < m ) we have 
V2k+2 − 2𝛿 = V2(k−1)+4) − 2𝛿 > L2 , with the last inequality due to the definition of m; 
hence by (6) in the state s = 2k + 1 the � player bids for sure, i.e. ��,2k+1 = 1 . Thus, 
(25) implies that q�,s = q� ,s = 1∕2 at any such odd state. Coupled with  (26), that 
means the transition at every state s from 2 to 2m + 2 is that the current � and � play-
ers each have probability 1/2 to become the next � player. Thus,

where zm ∶= 1 if 2m + 2 < s∗ − 2 , and zm ∶= 2�� ,s∗−1 − 1 if 2m + 2 = s∗ − 2 ; and 
the last series 

∑m

k=1
 on the right-hand side uses the summation notation defined 

in (27) when m = 0.
To understand the term for M2 on the right-hand side, note that M2 enters the 

calculation of V2 at the even states s = 2, 4, 6,… , 2m − 2 , and upon entry at state s 
and in every round transversing from states s to 2, the M2 is discounted by the transi-
tion probability 1/2. The term for L2 is similar, except that L2 enters at the odd states 
s = 3, 5, 7,… , 2m − 1 , and that the transition probability for the L2 at the last state 
2m − 1 is equal to one if 2m − 1 < s∗ − 1 , and equal to �� ,s∗−1 if 2m − 1 = s∗ − 1 . 
That is why the last two terms within the bracket for L2 are

The term for −2� is analogous to that for M2.
With s∗ ≥ 4 , V2 − 4� ≥ 0 . Thus, by the above-calculated transition probabilities,

This, combined with Eq. (28) and the fact zm ≤ 1 due to its definition, implies that

(27)i > j ⟹

j∑
k=i

ak ∶= 0.

(28)V2 = M2

m∑
k=0

2−2k−1 + L2

(
m∑
k=0

2−2k−2 + 2−2m−2zm

)
− 2�

m∑
k=1

2−2k,

2−2m−2 + 2−2m−2zm =

{
2−2m−2 + 2−2m−2 = 2−2m−1 if zm = 1

2−2m−2 + 2−2m−2
(
2�� ,s∗−1 − 1

)
= 2−2m−1�� ,s∗−1 if zm = 2�� ,s∗−1 − 1.

L2 =
1

2
(L3 + V2 − 3�) ≤

1

2
(V2 − 4� + V2 − 3�) = V2 −

7

2
�.
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Thus, the lemma is proved if

as the left-hand side of this equation is clearly strictly between zero and one. To 
prove (29), we use induction on m. When m = 0 , (29) becomes 1 − 2−2 − 2−2 = 2−1 , 
which is true. For any m = 0, 1, 2,… , suppose that (29) is true. We shall prove that 
the equation is true when m is replaced by m + 1 , i.e.,

The left-hand side of (30) is equal to

which is equal to the right-hand side of (30). Thus (29) is true in general, as desired. 	
� ◻

Lemma 10  If the dropout state is an even number s∗ ≥ 4 , then ��,s = 1 at any odd 
number state s such that 1 ≤ s ≤ s∗ − 2.

Proof  Pick any odd number  s such that s ≤ s∗ − 2 . It suffices to prove that 
Vs+1 − 2𝛿 > L2 . Since s + 1 is even, it follows from (26) that

with the inequality due to the fact Ms+2 ≥ L2 , which in turn is due to the fact that 
the � player at state s + 2 can always secure the payoff L2 through not bidding at all. 
Thus,

V2 ≤M2

m
∑

k=0
2−2k−1 +

(

V2 −
7
2
�
)

( m
∑

k=0
2−2k−2 + 2−2m−2

)

− 2�
m
∑

k=1
2−2k

<M2

m
∑

k=0
2−2k−1 + V2

( m
∑

k=0
2−2k−2 + 2−2m−2

)

− 7
8
�.

(29)1 −

(
m∑
k=0

2−2k−2 + 2−2m−2

)
=

m∑
k=0

2−2k−1,

(30)1 −

(
m+1∑
k=0

2−2k−2 + 2−2(m+1)−2

)
=

m+1∑
k=0

2−2k−1.

1 −

(
m∑
k=0

2−2k−2 + 2−2m−2

)
+ 2−2m−2 − 2−2(m+1)−2 − 2−2(m+1)−2

=

m∑
k=0

2−2k−1 + 2−2m−2 − 2−2(m+1)−1 (the induction hypothesis)

=

m∑
k=0

2−2k−1 + 2−2m−3,

Vs+1 =
1

2

(
M2 +Ms+2

)
≥

1

2

(
M2 + L2

)
,
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with the second inequality due to the definition of  Ls and the fact V2 − 4� ≥ 0 
( s∗ ≥ 4 ). Since 1

2
M2 −

1

2
V2 −

1

4
𝛿 > 0 by Lemma 9, Vs+1 − 2𝛿 − L2 > 0 , as desired. 	

� ◻

Proof of Claims (ii) and (iii) of Theorem 1
Claim (iii) of the theorem follows directly from combining Lemmas  2.ii, 8 

and 10. With Claim (iii) established, every non-� player in the state s = 1 (i.e., in the 
second round) bids for sure, hence (4) implies that the transition V1 → M2 happens 
for sure. Thus, the payoff from becoming the initial frontrunner is equal to M2 − � . 
By contrast, in failing to become the initial frontrunner a player gets the payoff M1 , 
which by (5) and Claim (iii) of the theorem is equal to 1

2

(
V2 − 2� + L2

)
 . Thus, the 

net gain from becoming the initial frontrunner is equal to

with the first “>” due to Lemma 9, and the last “>” due to (23). Thus, every player 
at the initial round strictly prefers being the frontrunner. Hence Claim  (ii) of the 
theorem follows.

B.5 Lemma 3

All lemmas in this subsection assume the hypotheses in Lemma 3, that s∗ ≥ 4 is an 
even number and a strategy profile 

(
�0,�1,

(
��,s,�� ,s

)∞
s=2

)
 according to Theorem 1 

is given, with the associated value functions 
(
Vs,Ms, Ls

)
s
 derived from (6)–(8) and 

Eq. (14).

Lemma 11  For any positive integer m such that 2m + 1 ≤ s∗ − 1 , if V2m+1 − 2� ≤ L2 
then V3 − 2𝛿 < L2.

Proof  Pick any  m specified by the hypothesis such that V2m+1 − 2� ≤ L2 . Sup-
pose, to the contrary of the lemma, that V3 − 2� ≥ L2 . Thus, the law of motion (6) 
in the case s = 2 , with �� ,2 = 1 , implies that  M2 is between  L2 and V3 − 2� , 
hence V3 − 2� ≥ M2 ≥ L2 . By the law of motion  (7) in the case s = 2m , M2m is a 

Vs+1 − 2� − L2 ≥
1
2
(

M2 + L2
)

− 2� − L2

= 1
2
M2 −

1
2
L2 − 2�

= 1
2
M2 −

1
2

(1
2
L3 +

1
2
(V2 − 3�)

)

− 2�

≥ 1
2
M2 −

1
2

(1
2
(V2 − 4�) + 1

2
(V2 − 3�)

)

− 2�

= 1
2
M2 −

1
2
V2 −

1
4
�,

M2 − 𝛿 −
1

2
(V2 − 2𝛿 + L2) >V2 + 𝛿∕2 − 𝛿 −

1

2
(V2 − 2𝛿 + L2)

=
1

2

(
V2 − L2 + 𝛿

)
> 0,
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convex combination among zero, V2m+1 − 2� and L2 . Thus the hypothesis implies that 
M2m ≤ L2 . Consequently, the law of motion (6) in the case s = 2m − 1 , together with 
�� ,2m−1 = 1 and M2 ≥ L2 , implies that V2m−1 ≤ M2 and hence V2m−1 − 2� ≤ M2 − 2� . 
Then (7) in the case s = 2m − 2 implies M2m−2 ≤ L2 . Repeating this reasoning back-
ward, with  3 being odd, we eventually reach state s = 3 and obtain V3 ≤ M2 . But 
since V3 − 2� ≥ M2 , we have a contradiction V3 − 2� ≥ M2 ≥ V3 . 	�  ◻

Lemma 12  Denote x ∶= �� ,s∗−1 . For any integer m such that 1 ≤ m ≤ s∗∕2 − 1,

Proof  First, we prove Eqs. (31) and (32). When m = 1 , Eq. (31), coupled with the 
summation notation defined in  (27), becomes Ms∗−1

= xL2 = �� ,s∗−1L2 , which fol-
lows from (7) and the fact that Vs = 2� and Ms = 0 for all s ≥ s∗ , due to Theorem 1. 
This coupled with Eq. (14) implies that

which is Eq.  (32) when m = 1 (using again the summation notation in  (27)). Sup-
pose, for any integer m′ with 1 ≤ m� ≤ s∗∕2 − 2 , that Eqs. (31) and (32) are true with 
m = m� . By the induction hypothesis of (32) and Eq. (14),

(31)Ms∗−(2m−1)
= − �

m−1∑
k=1

2−2k+2 +M2

m−1∑
k=1

2−2k + L2

(
m−1∑
k=1

2−2k+1 + 2−2(m−1)x

)
,

(32)Vs∗−2m
= − �

m−1∑
k=1

2−2k+1 +M2

m∑
k=1

2−2k+1 + L2

(
m−1∑
k=1

2−2k + 2−2m+1x

)
,

(33)

Vs∗−(2m−1)
= − �

m−1∑
k=1

2−2k+1 + 2−2(m−1)(1 − x)v + L2

m−1∑
k=1

2−2k

+M2

(
m−1∑
k=1

2−2k+1 + 2−2(m−1)x

)
,

(34)

Ms∗−2m
= − �

m−1∑
k=0

2−2k + 2−2m+1(1 − x)v + L2

m∑
k=1

2−2k+1

+M2

(
m−1∑
k=1

2−2k + 2−2m+1x

)
,

(35)L2 = �
(

s∗ − 4 + 2−s∗+3
)

.

Vs∗−2
= (Ms∗−1

+M2)∕2 = M2∕2 + xL2∕2,
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which is Eq.  (31) when m = m� + 1 . By the above calculation of Ms∗−(2m
�+1) and 

Eq. (14),

which is Eq. (32) in the case m = m� + 1 . Thus Eqs. (31) and (32) are proved.
Next we prove Eqs. (33) and (34). When m = 1 , Eq. (33), coupled with the nota-

tion 
∑0

k=1
ak = 0 , becomes Vs∗−1

= (1 − x)v + xM2 , which is true by definition of x 
and the fact ��,s∗−1 = 0 (Theorem 1). Then by Eq. (14)

which is Eq. (34) when m = 1 (again using the notation 
∑0

k=1
ak = 0 ). Suppose, for 

any integer m′ with 1 ≤ m� ≤ s∗∕2 − 2 , that Eqs. (33) and (34) are true with m = m� . 
By the induction hypothesis and Eq. (14),

which is Eq. (33) in the case m = m� + 1 . By the above calculation and Eq. (14),

Ms∗−(2m
�+1) =

1

2

(
Vs∗−2m

� − 2� + L2
)

= −�

(
1 +

1

2

m�−1∑
k=1

2−2k+1

)
+

M2

2

m�∑
k=1

2−2k+1

+
L2

2

(
1 +

m�−1∑
k=1

2−2k + 2−2m
�+1x

)
,

V
s∗−(2m

�+2) =
1

2

(
M

s∗−(2m
�+1) +M

2

)

= −
�

2

(
1 +

1

2

m
�−1∑
k=1

2
−2k+1

)
+

M
2

2

(
1 +

m
�∑

k=1

2
−2k+1

)

+
L
2

4

(
1 +

m
�−1∑
k=1

2
−2k + 2

−2m�+1
x

)
,

Ms∗−2
=
(
Vs∗−1

− 2� + L2
)
∕2 =

(
(1 − x)v + xM2 − 2� + L2

)
∕2,

Vs∗−(2m
�+1) =

1

2

(
Ms∗−2m

� +M2

)

= −
�

2

m�−1∑
k=0

2−2k + 2−12−2m
�+1(1 − x)v +

L2

2

m�∑
k=1

2−2k+1

+M2

(
2−1 + 2−1

m�−1∑
k=1

2−2k + 2−12−2m
�+1x

)
,
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which is Eq. (34) in the case m = m� + 1 . Hence Eqs. (33) and (34) are proved.
Finally we prove Eq. (35). Applying Eq. (14) to (8) recursively we obtain, for any 

integer s∗ ≥ 4 , that

which is equal to the right-hand side of (35). In the above multiline calculation, the 
first and second lines are due to V2 = s∗� (Theorem 1.iv). 	�  ◻

Lemma 13 Vs∗−2
− 2� ≥ L2 ⟹ ∀m ∈ {1,… , s∗∕2 − 1} ∶ Vs∗−2m

− 2� ≥ L2.

Proof  By the law of motion and Eq. (14), Eqs. (31), (32), (33), (34) and (35) hold. 
Denote

With the fact 
∑m−1

k=1
2−2k = (1 − 2−2m+2)∕3 , Eq. (32) becomes

Hence

M
s∗−(2m

�+2) =
1

2

(
V
s∗−(2m

�+1) − 2� + L
2

)

= − �

(
1 +

1

2

m
�∑

k=1

2
−2k+1

)
+ 2

−1
2
−2m�

(1 − x)v

+ L
2

(
1

2
+ 2

−1

m
�∑

k=1

2
−2k

)
+

M
2

2

(
m

�∑
k=1

2
−2k+1 + 2

−2m�

x

)
,

L2 =
1

2

(
V2 − 3� +

1

2

(
V2 − 4� +

1

2

(
⋯ +

1

2

(
V2 − (s∗ − 1)�

))))

=
�

2

(
s∗ − 3 +

1

2

(
s∗ − 4 +

1

2

(
⋯ +

1

2
⋅ 1

)))

=�
(
1

2
(s∗ − 3) +

1

22
(s∗ − 4) +

1

23
(s∗ − 5) +⋯ +

1

2s∗−3

)
,

�(m) ∶=2−2m+1,

�∗ ∶=2
−s∗+3.

Vs∗−2m
= − � ⋅

2

3
(1 − 2�(m)) +M2

(
2

3
(1 − 2�(m)) + �(m)

)

+ L2

(
1

3
(1 − 2�(m)) + �(m)x

)
.

Vs∗−2m
− 2� − L2 = − �

(
2

3
(1 − 2�(m)) + 2

)
+M2

(
2

3
(1 − 2�(m)) + �(m)

)

− L2

(
1 −

1

3
(1 − 2�(m)) − �(m)x

)

= −
4

3
(2 − �(m))� +

1

3
(2 − �(m))M2

−
(
s∗ − 4 + �∗

)
�
(
2

3
(1 + �(m)) − �(m)x

)
,
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with the second equality due to (35). Thus, Vs∗−2m
− 2� ≥ L2 is equivalent to

i.e.,

Since s∗ − 4 ≥ 0 by hypothesis, and

the right-hand side of  (36) is weakly increasing in �(m) , which in turn is strictly 
decreasing in m. Thus the right-hand side of (36) is weakly decreasing in m. Con-
sequently, Vs∗−2m

− 2� − L2 ≥ 0 is satisfied for all  m if the inequality holds at the 
minimum m = 1 , i.e., if Vs∗−2

− 2� − L2 ≥ 0 , as claimed. 	�  ◻

Proof of Lemma 3
Let s ∈ {1, 2,… , s∗ − 2} . If s is even and V3 − 2� ≥ L2 , then Lemma  11 

implies Vs+1 − 2𝛿 > L2 ; thus, by  (7) and by the fact that �� ,s = 1 due to the strat-
egy profile specified in Theorem 1, the � player at s gets L2 if he does not bid, and 
1

2
(Vs+1 − 2�) +

1

2
L2 if he does. Hence bidding is the unique best response for � at s. 

If s is odd and Vs∗−2
− 2� ≥ L2 , then Lemma 13 implies that Vs+1 − 2� ≥ L2 ; thus, by 

the same token as in the previous case, the � player at s weakly prefers to bid. 	�  ◻

B.6 Theorem 2

Lemma 14  For any even number s∗ ≥ 4 , if Eqs.  (14) and  (35) hold and 
M2 ≥ V2 = s∗� , then at the initial and second rounds each player strictly prefers to 
bid.

Proof  First, consider the second round, which means s = 1 . For each non-� player, 
becoming the next � player gives him an expected payoff V2 − 2� = (s∗ − 2)� by the 
hypothesis V2 = s∗� , whereas staying put gives payoff L2 , which is less than (s∗ − 3)� 
by Eq. (35). Thus, each non-� player strictly prefers to bid at state one, hence s = 2 
occurs for sure given s = 1 . Second, consider the initial state. Based on the analysis 
of the previous step (from s = 1 to s = 2 ), becoming the first � yields the expected 
payoff −� +M2 , whereas staying put yields 1

2
(V2 − 2� + L2) . Since M2 ≥ V2 by 

hypothesis and V2 − 2𝛿 > L2 by the previous analysis, each player strictly prefers to 
become the first � player. 	�  ◻

1

3
(2 − �(m))M2 ≥ �

(
4

3
(2 − �(m)) +

(
s∗ − 4 + �∗

)(2
3
(1 + �(m)) − �(m)x

))
,

(36)
M2

�
≥ 4 +

2(1 + �(m)) − 3�(m)x

2 − �(m)
(s∗ − 4 + �∗).

d

d�(m)

(
2(1 + �(m)) − 3�(m)x

2 − �(m)

)

=
(2 − �(m))(2 − 3x) + 2(1 + �(m)) − 3�(m)x

(2 − �(m))2

=
6(1 − x)

(2 − �(m))2
≥ 0,
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Lemma 15  Any integer s∗ ≥ 3 constitutes an equilibrium if s∗ is an even number and 
there exists (M2, x, L2) ∈ ℝ

3
+
 such that— 

a.	 (M2, x, L2) ∈ ℝ+ × [0, 1] ×ℝ+ and it solves simultaneously Eq. (32) in the case 
m = s∗∕2 − 1 , Eq. (34) in the case m = s∗∕2 − 1 such that V2 = s∗� , and Eq. (35);

b.	 M2 ≥ s∗� (which is equivalent to V3 − 2� ≥ L2 , cf. (12));
c.	 Ineq. (36) is satisfied in the case m = 1.

Proof  Pick any even number s∗ ≥ 4 and assume Conditions  (a)–(c). Consider the 
strategy profile such that everyone bids in the initial round and, in any future round, 
acts according to the strategy profile specified in Theorem 1. This strategy profile 
implies Eq. (14), which allows calculation of the value functions (Vs,Ms, Ls)

s∗
s=2

 via 
the law of motions. By Conditions  (a) and  (b), M2 ≥ V2 = s∗� , hence Lemma  14 
implies that bidding at the initial round is a best response for each player, and bid-
ding at second rounds a best response for each non-� player. The incentive for 
each player to abide by the strategy profile at any state s ≥ s∗ is the same as in the 
surplus-dissipating subgame equilibrium. At the state  s∗ − 1 , bidding with proba-
bility x is a best response for the � player because he is indifferent about bidding, 
since V2 − s∗� = 0 = Ls∗ , and not bidding at all is the best response for the � player 
because Vs∗

− 2𝛿 = 0 < L2 . At any state  s with 2 ≤ s ≤ s∗ − 2 , bidding is the best 
response for the � player because V2 − (s + 1)𝛿 > Ls+1 (by Eq.  (8)); Condition  (c) 
by Lemma 13 suffices the incentive for the � player at every odd state to bid. To 
incentivize the � player at every even state s ≤ s∗ − 2 to bid, Lemma 11 says that it 
suffices to have V3 − 2� ≥ L2 , which is equivalent to M2 ≥ L2 since, by the law of 
motion and Eq. (14), M2 is the midpoint between V3 − 2� and L2 . Since L2 < s∗𝛿 by 
Eq. (35), the condition M2 ≥ L2 is guaranteed by Condition (b), M2 ≥ s∗� . 	�  ◻

Lemma 16  For any s∗ ≥ 4 , Condition  (c) in Lemma  15 implies Condition  (b) in 
Lemma 15.

Proof  Condition  (c) in Lemma  15 is Ineq.  (36) in the case m = 1 , i.e., when 
�(m) = 2−2m+1 = 1∕2 . Hence the condition is equivalent to

To prove that this inequality implies Condition  (b), i.e., M2∕� ≥ s∗ , it suffices to 
show

i.e.,

which is true because s∗ ≥ 4 , 𝜇∗ = 2−s∗+3 > 0 and x ≤ 1 . 	�  ◻

(37)
M2

�
≥ 4 + (2 − x)(s∗ − 4 + �∗).

4 + (2 − x)(s∗ − 4 + 𝜇∗) > s∗,

(1 − x)(s∗ − 4) + 𝜇∗(2 − x) > 0,
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Lemma 17  Condition (a) in Lemma 15 is equivalent to existence of an x ∈ [0, 1] that 
solves Eq. (15).

Proof  Condition  (a) requires existence of (M2, x, L2) ∈ ℝ+ × [0, 1] ×ℝ+ that satis-
fies Eqs. (32), (34) and (35) in the case of m = s∗∕2 − 1 and V2 = s∗� . Combine (32) 
with (35) and use the notation �∗ ∶= 2−s∗+3 and the fact 

∑m−1

k=1
2−2k = (1 − 2−2m+2)∕3 

to obtain

i.e.,

By the same token, (34) coupled with (35) is equivalent to

i.e.,

Plug (38) into (39) and we obtain Eq. (15). 	�  ◻

Lemma 18  For any even number s∗ ≥ 4 , suppose that Eq. (38) holds. Then Condi-
tion (c) in Lemma 15 is equivalent to Ineq. (16), which is implied by x ≥ 0 if and 
only if s∗ ≤ 6.

Proof  Condition  (c) in Lemma 15 has been shown to be equivalent to Ineq.  (37). 
Provided that Eq. (38) is satisfied, Ineq. (37) is equivalent to

This inequality, given the fact 1 − 2�∗ ≥ 0 , is equivalent to

s∗� = V2 = − � ⋅
2

3
(1 − 2�∗) +M2

(
2

3
(1 − 2�∗) + �∗

)

+ �(s∗ − 4 + �∗)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

L2

(
1

3
(1 − 2�∗) + �∗x

)
,

(38)
M2

�
=

1

2 − �∗

(
3s∗ + 2(1 − 2�∗) − (s∗ − 4 + �∗)(1 − 2�∗ + 3�∗x)

)
.

M2

(
1 −

1

3
(1 − 2�∗) − �∗x

)
= − �

(
1 +

1

3
(1 − 2�∗)

)

+ (1 − x)�∗v + �(s∗ − 4 + �∗)
(
2

3
(1 − 2�∗) + �∗

)
,

(39)
M2

�

(
2(1 + �∗) − 3�∗x

)
=

3�∗v

�
(1 − x) + (2 − �∗)(s∗ − 6 + �∗).

4 + (2 − x)(s∗ − 4 + �∗)

≤
1

2 − �∗

(
3s∗ + 2(1 − 2�∗) − (s∗ − 4 + �∗)(1 − 2�∗ + 3�∗x)

)
.

x ≥
1

2(1 − 2�∗)

(
5 − 4�∗ −

3(s∗ − 2)

s∗ − 4 + �∗

)
,
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i.e., Ineq (16). Given Condition (a) in Lemma 15, which implies x ≥ 0 , Ineq. (16) is 
redundant if and only if the right-hand side of (16) is nonpositive, i.e.,

i.e.,

This inequality is satisfied when s∗ ∈ {4, 6} , as its right-hand side is equal to ∞ 
when s∗ = 4 , and 61/8 when s∗ = 6 . The inequality does not hold, by contrast, when 
s∗ ≥ 8 , as

Thus, for all even numbers s∗ ≥ 4 , Ineq. (37) follows if and only if s∗ ≤ 6 . 	�  ◻

Lemma 19  Any s∗ ≥ 3 constitutes an equilibrium if s∗ is an even number and— 

	 i.	 either s∗ ≤ 6 and Eq. (15) admits a solution for x ∈ [0, 1];
	 ii.	 or s∗ ≥ 8 and Eq. (15) admits a solution for x ∈ [0, 1] such that Ineq. (16).

Proof  The lemma follows from Lemma 15, where Condition (a) has been character-
ized by Lemma 17, Condition (b) by Lemmas 16 can be dispensed with, and Condi-
tion (c), by Lemma 18, can be dispensed with when s∗ ≤ 6 (hence Claim (i) of the 
lemma) and is equivalent to Ineq (16) when s∗ > 6 (hence Claim (ii) of the lemma). 	
� ◻

Lemma 20  If x = 1 , the left-hand side of (15) is less than the right-hand side of (15).

Proof  When x = 1 , the left-hand side of (15) is equal to (2 − �∗)
2(s∗ − 6 + �∗) , and 

the right-hand side equal to

Thus, the lemma follows if

i.e., 9𝜇∗ < 18 , which is true because �∗ = 2−s∗+3 . 	�  ◻

3(2 − �∗)

2(1 − 2�∗)(s∗ − 4 + �∗)
≥ 1,

s∗ ≤ 4 − 2−s∗+3 +
3
(
2 − 2−s∗+3

)

2
(
1 − 2−s∗+4

) .

s∗ ≥ 8 ⇒2−s∗+2 ≤ 2−6 ⇒
1 − 2−s∗+2

1∕4 − 2−s∗+2
≤

1 − 2−6

1∕4 − 2−6
=

63

15

⇒4 − 2−s∗+3 +
3
(
2 − 2−s∗+3

)

2
(
1 − 2−s∗+4

) < 4 +
3

2
⋅

2

4
⋅

63

15
< 8 ≤ s∗.

(
2(1 + �∗) − 3�∗

)(
3s∗ + 2(1 − 2�∗) − (s∗ − 4 + �∗)(1 − 2�∗ + 3�∗)

)

= (2 − �∗)
(
2s∗ + 6 − �∗ − �∗s∗ − �2

∗

)
.

(2 − 𝜇∗)(s∗ − 6 + 𝜇∗) < 2s∗ + 6 − 𝜇∗ − 𝜇∗s∗ − 𝜇2
∗
,
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Lemma 21  s∗ = 4 constitutes an equilibrium if and only if v∕𝛿 > 35∕2 , and s∗ = 6 
constitutes an equilibrium if and only if v∕𝛿 > 6801∕120 ( = 56.675).

Proof  By Lemma 19, with s∗ ≤ 6 the necessary and sufficient condition for equilib-
rium is that Eq. (15) admits a solution for x ∈ [0, 1] . By Lemma 20, the left-hand 
side of that equation is less than its right-hand side when x = 1 . Thus, it suffices to 
show that the left-hand side is greater than the right-hand side when x = 0 , i.e.,

which is equivalent to

Since �∗ is equal to 1/2 when s∗ = 4 , and equal to 1/8 when s∗ = 6 , the above ine-
quality is equivalent to v∕𝛿 > 35∕2 when s∗ = 4 , and v∕𝛿 > 6801∕120 when s∗ = 6 . 	
� ◻

Proof of Theorem 2
Claims (i) and (ii) of the theorem are just Lemma 21. To prove Claim (iii), pick 

any even number s∗ ∈ {8, 10, 12,…} . By Lemma 19.ii, s∗ constitutes an equilibrium 
if Eq. (15) admits a solution for x ∈ [0, 1] that satisfies Ineq. (16). By Lemma 20, 
the left-hand side of  (15) is less than its right-hand side when x = 1 . Thus, it suf-
fices to show that the left-hand side is greater than the right-hand side when x is 
equal to some number greater than or equal to the right-hand side of Ineq.  (16). 
To that end, note from s∗ ≥ 8 that �∗ = 2−s∗+3 ≤ 1∕32 , hence 2 − �∗ ≥ 63∕32 and 
1 + 𝜇∗ < 33∕32 . Thus, the left-hand side of (15) is greater than

and the right-hand side of Ineq. (16)

Therefore, it suffices, for s∗ to constitute an equilibrium, to have

greater than or equal to the right-hand side of (15) when

3𝜇∗v

𝛿
(2 − 𝜇∗) + (2 − 𝜇∗)

2(s∗ − 6 + 𝜇∗)

>2(1 + 𝜇∗)
(
3s∗ + 2(1 − 2𝜇∗) − (s∗ − 4 + 𝜇∗)(1 − 2𝜇∗)

)
,

v

𝛿
(2 − 𝜇∗) > s∗(4 + 𝜇∗) + (6 − 𝜇∗)(2∕𝜇∗ − 2 − 𝜇∗).

3�∗v

�
(1 − x)

63

32
+
(
63

32

)2

(s∗ − 6),

1 −
3(2 − 𝜇∗)

2(1 − 2𝜇∗)(s∗ − 4 + 𝜇∗)
< 1 −

3 × 63∕32

2 × 1 × (s∗ − 3)
.

3�∗v

�
(1 − x)

63

32
+
(
63

32

)2

(s∗ − 6)

x = x∗ ∶= 1 −
3 × 63

64(s∗ − 3)
.
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To that end, denote �(s∗, x) for the right-hand side of (15), i.e.,

(recall that �∗ = 2−s∗+3 ). Note, from 0 < x < 1 , that −1∕32 < 𝜇∗(2 − 3x) < 1∕16 . 
Hence

Thus, the first factor 2(1 + �∗) − 3�∗x of �(s∗, x) is positive for all x ∈ (0, 1) . If 
the second factor of �(s∗, x) is nonpositive when x = x∗ then �(s∗, x∗) ≤ 0 and we are 
done, as the left-hand side of (15) is positive. Hence we may assume, without loss of 
generality, that

Consequently, �(s∗, x∗) can only get bigger if we replace its first factor by the 
upper bound 33/16, and the term 1 − 2�∗ + 3�∗x in the second factor by its lower 
bound 15/16 (note that, in the second factor, s∗ − 4 + 𝜇∗ > 0 because s∗ ≥ 8 ). I.e., 
�(s∗, x∗) is less than

Therefore, the above observations put together, we are done if

In other words, it suffices to have

i.e.,

With 32×64
632

≈ 0.516 , the above inequality holds if

�(s∗, x)

∶=
(
2(1 + �∗) − 3�∗x

)(
3s∗ + 2(1 − 2�∗) − (s∗ − 4 + �∗)(1 − 2�∗ + 3�∗x)

)

63

32
= 2 −

1

32
<2(1 + 𝜇∗) − 3𝜇∗x < 2 +

1

16
=

33

16
,

15

16
= 1 −

1

16
<1 − 2𝜇∗ + 3𝜇∗x < 1 +

1

32
=

33

32
.

3s∗ + 2(1 − 2𝜇∗) − (s∗ − 4 + 𝜇∗)(1 − 2𝜇∗ + 3𝜇∗x∗) > 0.

33

16

(
3s∗ + 2(1 − 2𝜇∗) −

15

16
(s∗ − 4 + 𝜇∗)

)
=
33

16

(
33

16
s∗ +

23

4
−

79

16
𝜇∗

)

<
33

16

(
33

16
s∗ +

23

4

)

<5s∗ + 12.

3�∗v

�
(1 − x∗)

63

32
+
(
63

32

)2

(s∗ − 6) ≥ 5s∗ + 12

3�∗v

�
⋅

3 × 63

64(s∗ − 3)
⋅

63

32
+
(
63

32

)2

(s∗ − 6) ≥ 5s∗ + 12,

32�∗v

�
≥ −2(s∗ − 6)(s∗ − 3) +

32 × 64

632

(
5s∗ + 12

)
(s∗ − 3).
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i.e.,

which, coupled with �∗ = 2−s∗+3 , is equivalent to the hypothesis (17) of Claim (iii). 	
� ◻

B.7 Theorems 3

First, when s = s∗ = 1 , clearly Ms = 𝜋𝛽,s∗−1L2 = 𝜋𝛽,s∗−1𝛿∕2 > 0 and Ls = Ls∗−1 = 0 . 
Second, we show that if s < s∗ − 1 then Ms > 0 and Ls > 0 . By Eq. (8) and Theo-
rem  1, Ls ≥

1

2
(V2 − (s + 1)𝛿) =

1

2
(s∗𝛿 − (s + 1)𝛿) > 0 , with the last inequality due 

to s ≤ s∗ − 2 . By  (7), the follower can secure an expected payoff no less than L2 , 
through staying put at  s (while the underdog bids for sure), hence M2 ≥ L2 > 0 . 
Third, for any state s ≤ s∗ − 1 , we show that Vs > 2𝛿 . With s ≤ s∗ − 1 , the frontrun-
ner’s surplus, by (6), is 

	 i.	 either Vs = (M2 +Ms+1)∕2 (if s < s∗ − 1)
	 ii.	 or Vs = (1 − �� ,s∗−1)v + �� ,s∗−1M2 (if s = s∗ − 1).

In Case (i), his surplus is

with the second inequality due to Lemma 9, and the third inequality due to V2 = s∗� 
and s∗ ≥ 4 . In Case (ii), his surplus is

with the first inequality due to v > 2𝛿 by assumption, the fact M2 > V2 by Lemma 9, 
and the fact V2 ≥ 4� as in Case (i) 	�  ◻
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