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Abstract

Le Treust and Tomala’s (2019) solution for constrained information design is re-

stricted to discrete distributions. This note extends it to general distributions on R.
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The concavification technique in Aumann, Maschler and Stearns [1], due to Kamenica and

Gentzkow’s [5] introduction, has become the standard workhorse in the large and grow-

ing literature on information design and further applied to the design of large markets by

Dworczak, Kominers and Akbarpour [4] (henceforth DKA). A recent development of the

concavification technique is Le Treust and Tomala’s [6] extension that allows for an inequal-

ity constraint, which can capture the capacity constraint in information transmission or the

budget balancing constraint in market design. However, the choice set they consider is re-

stricted to discrete distributions, while the works that apply their solution (e.g., DKA [4])

would look for an optimum among all distributions.1 This note proves that Le Treust and

Tomala’s solution is also optimal among all general distributions defined on R.

Let ∆[0, 1] denote the set of all cumulative distribution functions on R whose supports

are contained in [0, 1]. Given any (x, z) ∈ [0, 1] × R and any integrable functions g, h :

[0, 1]→ R, the optimal splitting problem is:

G(x, z) := supµ∈∆[0,1]

∫ 1

0

gdµ (1)

s.t.

∫ 1

0

sdµ(s) = x∫ 1

0

hdµ ≥ z.

In DKA [4], the x corresponds to the average quantity for the market under consideration

that the designer wants to split into a distribution, and the inequality constraint is the part

of the budget balancing condition that this market needs to satisfy. Note that the choice

set ∆[0, 1] in (1) includes all distributions on R with any support in [0, 1]. However, Le

Treust and Tomala restrict the choice set to the distributions whose supports are discrete.

To state the problem they have solved, denote for any n ∈ {1, 2, . . .}

Fn := {(αm, xm)nm=1 | ∀m [xm ∈ [0, 1]] ; (αm)nm=1 ∈ ∆{xm | m = 1, . . . , n}} ,

where ∆S denotes the set of probability measures on S. That is, an element (αm, xm)nm=1

of Fn is a discrete probability measure that assigns a probability αm to xm (m = 1, . . . , n).

1Citing Le Treust and Tomala’s solution, Doval and Skreta [3] restrict the choice set to distributions with

finite supports. See their proofs of Props. A.3 and 5.1 for the role played by the finite-support restriction.
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Le Treust and Tomala have solved the following discrete counterpart to (1):

G (x, z) := sup(αm,xm)nm=1∈
⋃∞

n=1 Fn

n∑
m

αmg(xm) (2)

s.t.
n∑
m

αmxm = x

n∑
m

αmh(xm) ≥ z.

The question is to what extent Le Treust and Tomala’s solution applies to (1). While it

seems intuitive that general distributions can be approximated by the discrete distributions

in (2), the approximations need to satisfy the equality constraint and in doing so might violate

the inequality constraint. Thus the implication requires a proof. With the theorem presented

next, Le Treust and Tomala’s solution does apply to (1) when g and h are continuous.

Theorem If g, h : [0, 1] → R are continuous, then G(x, z) = G (x, z) for any (x, z) ∈
[0, 1]× R.

Lemma If g, h : [0, 1]→ R are continuous, then for any (x, z) ∈ [0, 1]× R,

lim
ε↓0

G (x, z − ε) = G (x, z). (3)

Proof For any (x, z) ∈ [0, 1]× R, denote

Γ(z) :=

{
(αm, xm)nm=1 ∈

∞⋃
n=1

Fn

∣∣∣∣∣ ∑
m

αmxm = x;
∑
m

αmh(xm) ≥ z

}
.

Pick any z ∈ R and let (zk)∞k=1 converge to z such that zk ≤ z for all k.2 (The hypothesis

zk ≤ z for all k is justified because the limit in (3) is taken when ε is converges to zero.)

Note: If Γ(z) 6= ∅ then Γ(zk) 6= ∅ for all k. That is because zk ≤ z and hence

Γ(zk) ⊇ Γ(z) for all k. Consequently, if Γ(zk) = ∅ for all sufficiently large k then Γ(z) = ∅,

so by (2) both sides of (3) are equal to −∞.3

2The theorem of maximum is not readily available for the lemma, because one needs to topologize the space⋃∞
n=1 Fn appropriately even before establishing the desired properties of Γ (cf. Ausubel and Deneckere [2]).
3We adopt the convention that sup∅ := −∞.

3



Thus, assume without loss of generality that for any k there exist an nk and an

(αkm, x
k
m)nk

m=1 ∈ Γ(zk). For each k, letting αkm := xkm := 0 for all m > nk, we can write

(αkm, x
k
m)nk

m=1 equivalently as (αkm, x
k
m)∞m=1. Thus we have a sequence ((αkm, x

k
m)∞m=1)∞k=1 such

that, for each k, αkm = xkm = 0 for all sufficiently large m. Since (αkm, x
k
m) ∈ [0, 1]2 for all m

and k, we can extract by the diagonal trick an infinite subsequence ((α
kj
m , x

kj
m)∞m=1)∞j=1 that

converges to some (αm, xm)∞m=1 such that αm = xm = 0 for all m > n for some n. That

is, ((α
kj
m , x

kj
m)∞m=1)∞j=1 converges to some (αm, xm)nm=1 ∈ Fn for some n. For each j, since

(α
kj
m , x

kj
m)∞m=1 ∈ Γ(zkj), we have

∑
j α

kj
mx

kj
m = x and

∑
j α

kj
mh(x

kj
m) ≥ zkj . Take the limit to

j → ∞ and use the continuity of h to obtain
∑

m αmxm = x and
∑

m αmh(xm) ≥ z. Thus

(αm, xm)nm=1 ∈ Γ(z).

If G (x, zk) = ∞ for all sufficiently large k, there exists a sequence
(
(αkm, x

k
m)nk

m=1

)∞
k=1

such that (αkm, x
k
m)nk

m=1 ∈ Γ(zk) for any k and limk→∞
∑

m α
k
mg(xkm) = ∞. By the previous

paragraph, this sequence has an infinite subsequence that converges to some (αm, xm)nm=1 ∈
Γ(z) and, by continuity of g, G (x, z) ≥

∑
m αmg(xm) = limk→∞

∑
m α

k
mg(xkm) =∞. Thus (3)

holds in this case.

Thus, assume without loss of generality that, for any k, G (x, zk) < ∞ and hence the

maximization problem corresponding to (2) is solved by some (αkm, x
k
m)nk

m=1 ∈ Γ(zk). As

shown above, we can extract an infinite subsequence ((α
kj
m , x

kj
m)∞m=1)∞j=1 that converges to

some (αm, xm)nm=1 ∈ Γ(z). We claim that (αm, xm)nm=1 solves Problem (2) given z. To show

that, consider any (α̂m, x̂m)nm=1 ∈ Γ(z). For all j, since zkj ≤ z by hypothesis, (α̂m, x̂m)nm=1 ∈
Γ(zkj). Then the optimality of (α

kj
m , x

kj
m)

nkj

m=1 given zkj implies
∑

m α
kj
mg(x

kj
m) ≥

∑
m α̂mg(x̂m)

for all j. Take the limit to j → ∞ and use the continuity of g to obtain
∑

m αmg(xm) ≥∑
m α̂mg(x̂m). Thus the claim is true. It follows that

G (x, z) =
∑
m

αmg(xm) = lim
j→∞

G (x, zkj).

For any infinite subsequence that attains lim supk G (x, zk), we apply the above reason-

ing to further extract an infinite subsequence for which the above-displayed equation holds.

The same is true for any infinite subsequence that attains lim infk G (x, zk). Thus we obtain

lim sup
k

G (x, zk) = G (x, z) = lim inf
k

G (x, zk),

namely, (3).
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Proof of the Theorem Clearly G(x, z) ≥ G (x, z). Conversely, to prove G(x, z) ≤ G (x, z),

pick any ε > 0 and any µ ∈ ∆[0, 1] feasible to (1), so
∫
sdµ(s) = x and

∫
hdµ ≥ z. According

to Miller and Rice [7], the distribution µ can be approximated by a subset {(αm, xm)nm=1 : n}
of
⋃
n Fn that preserves the mean x of µ and, with g and h assumed continuous on [0, 1] and

hence each approximated uniformly by polynomials (Stone-Weierstrass Theorem), the sums∑
m αmg(xm) and

∑
m αmh(xm) approximate the integrals

∫
gdµ and

∫
hdµ. Thus, there

exists (αm, xm)nm=1 ∈ Fn for some n such that∑
m

αmxm =

∫ b

0

sdµ(s) = x,

∑
m

αmg(xm) ≥
∫ b

0

gdµ− ε,

∑
m

αmh(xm) ≥
∫ b

0

hdµ− ε ≥ z − ε.

Consequently, (αm, xm)nm=1 ∈ Γ(z − ε) and hence

G (x, z − ε) ≥
∑
m

αmg(xm) ≥
∫
gdµ− ε.

This being true for all µ feasible to the problem that defines G(x, z), we have

G (x, z − ε) ≥ G(x, z)− ε.

Taking the limit to ε→ 0 and applying the lemma, we obtain G (x, z) = G(x, z). �
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