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Abstract

Given a large market of individuals entitled to equal shares of a limited resource,

each allowed to buy or sell the shares, we characterize the interim incentive-constrained

Pareto frontier subject to market clearance and budget balance. At most two prices—

partitioning the type space into at most three tiers and using rations only on the

middle tier—are needed to attain any interim Pareto optimum. When the virtual

surplus function satisfies a single crossing condition without having to be monotone,

the optimal mechanism reduces to a single, posted price and requires neither rationing

nor lump sum transfers. We find which types gain, and which types lose, when the

social planner chooses a rationing mechanism over the single-price solution, as well

as the welfare weight of which type is crucial to the choice. The finding suggests a

market-like mechanism to distribute Covid vaccines optimally within the same priority

group.
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The haves and have-nots

live on each other.

—Laotzu

1 Introduction

Ever since Myerson and Satterthwaite (1983) discovered the impossibility of fully efficient bi-

lateral trades given asymmetric information, much has been done theoretically to characterize

the mechanisms that achieve the incentive-constrained Pareto frontier. New characterization

has been obtained by an emerging literature of redistribution-driven market design such as

Akbarpour, Dworczak and Kominers (2020, henceforth ADK), Dworczak, Kominers and Ak-

barpour (2021, henceforth DKA), and Kang (2020).1 Despite their large-market assumption

(continuum of atomless individuals) that eliminates the market power of individuals, the

general message from this literature is that a single market price is insufficient to implement

allocations on the incentive-constrained Pareto frontier. An optimal mechanism needs to

stratify the space of types (private valuations) into more than two tiers through tier-specific

prices, augmented with rationing that restricts the quantity of demand or supply for individ-

uals, as well as lump sum transfers among individuals to achieve redistribution objectives.

Meanwhile, they observe upper bounds for the number of such instruments. In DKA (2021),

there exists an optimal allocation that stratifies the type space into at most five tiers, im-

plemented through rationing on at most two of the tiers together with a lump sum transfer

and tier-specific prices. In Kang (2020), there exists an optimal allocation that stratifies the

type space into at most four tiers, and rationing is necessary to attain optimality.2

However, all the studies cited above impose on the market some kind of sectorial

restrictions, predetermined exogenously before the realization of types. An individual is ex-

1Kang and Zheng (2020), and Reuter and Groh (2020), consider redistribution-driven mechanism design

without the large-market assumption.
2DKA (2021) observe that there exists an optimal mechanism whose allocation for the buyers, and

allocation for the sellers, are each a monotone step function such that their total number of jumps or drops

is at most four. In other words, if the lowest tier among the buyers and that among the sellers are combined

into one tier (both excluded from trading), the total number of tiers, from the highest tier among the buyers

to the highest tier among the sellers, is at most five.

Kang (2020) observes that there exists an optimal mechanism that partitions the public-sector buyers into

at most three tiers. This combined with the private-market buyers means four tiers.
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ogenously assigned the role of a buyer or that of a seller in Myerson and Satterthwaite (1983)

and DKA (2021), or exogenously assigned to a group in ADK (2020). In Kang (2020), where

individuals choose between the public and the private sectors to trade, the private sector

is restricted to be operated under a competitive market price. If such exogenous restric-

tions are removed, would the policy instruments necessary to attain the Pareto frontier be

simplified so that merely a single market price could suffice, or would they get complicated

because the endogenous grouping of individuals now becomes an additional dimension in the

policymaker’s choice variable?

We therefore consider a large market with endogenous buyers and sellers. It is a

continuum of individuals each allowed to buy or sell a good at a marginal utility or marginal

cost equal to one’s type. The planner has the same set of instruments for the buyers and

for the sellers. As in the literature cited above, we consider the entire incentive-constrained

Pareto frontier through examining a social planner’s optimization problem where the given

welfare weight can vary with individuals’ types arbitrarily. Such type-dependent welfare

weights capture a social planner’s redistributive preferences for one type over another. Free

of restrictions on such redistributive preferences, the observations would then be applicable

to the various social welfare criteria according to which the planner designs the mechanism.

Across such arbitrary welfare weights, our characterization of optimal mechanisms

turns out to be simpler than those in the above cited. We find a tighter upper bound,

three, of the number of tiers that optimal mechanisms have to stratify the type space into

(Theorem 2.i). Furthermore, when the virtual surplus function is constant only on a measure-

zero set of types, we obtain the exact number of tiers, rather than only an upper bound

thereof, in any optimal mechanism: The optimal allocation is unique, and the associated

optimal number of tiers is equal to either two or three (Theorem 3). If the virtual surplus

satisfies a single crossing condition, the optimal mechanism reduces to a competitive price—

offering a single price to all types, be they sellers or buyers, without any other instrument

such as rationing, lump sum transfers or tier-specific prices (Theorem 2.ii). In particular, this

is true even when the virtual surplus function is non-monotone. In the related literature, by

contrast, the only case where a single price is known to implement interim Pareto optimality

is the exogenous buyer-seller bilateral trade model of DKA (2021), where the conditions

they require together imply that the endogenous virtual surplus functions in their model be
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monotone.3 Our optimality observation of a single market price without rationing is also

opposite to the finding in Kang’s (2020) model that rationing is in general necessary.

The simplicity of our characterization is due to a new observation, mainly driven by the

endogeneity of one’s buyer- or seller-role. The observation is that any incentive compatible

and market clearing allocation can always be implemented in a budget-balanced (BB) and

individually rational (IR) manner (Theorem 1). Thus, in contrast to the models of Myerson

and Satterthwaite (1983), DKA (2021), and Kang (2020), the BB and IR constraints can be

removed without loss in our model. That eliminates the two-sidedness (buyer- and seller-

sides) of the information asymmetry, a main driving force of the Myerson-Satterthwaite im-

possibility theorem. Then, as in a monopolist’s capacity-constrained second-degree price dis-

crimination problem (Bulow and Roberts 1989; or the one-group special case in ADK 2020),

or in the basic Bayesian persuasion problem (Kamenica and Gentzkow 2011), rationing is

needed to attain optimality only when the market clearing cutoff type is interior to an in-

terval on which the virtual surplus function has to be ironed.4 If that happens, rationing is

needed only on that interval, and the type space is stratified to at most three tiers. If that

does not happen, a single market price suffices optimality, and the type space is stratified

into only two tiers, one being all the buyers, the other all the sellers.

An implication of the characterization is that the welfare weight of the types near the

buyer-seller cutoff in the posted-price system is crucial to the social planner’s choice between

rationing versus posting a single price. We find that such types are better-off in a mechanism

with rationing than given a posted price, and the planner prefers the former to the latter

if the welfare weight on such types is sufficiently heavy. We can also tell which among the

other types are definitely worse-off under rationing than under the posted price based on the

curvature of the type-distribution on the types near the said buyer-seller cutoff (Theorems 4

and 5). Our model can also be modified to capture a kind of externalities without altering

any of the results (Corollary 4).

With endogenous buyers and sellers, our model is applicable to large-market exchange

3DKA’s (2021) Theorem 2 requires quasi-convexity of virtual surplus functions and positive derivative of

the virtual surplus function at the minimum type (“low same side inequality” in their language). The two

together imply that the virtual surplus function is monotone for both buyers and sellers.
4The Bayesian consistency condition in Bayesian persuasion models corresponds to the market clearance

in Bulow and Roberts’s (1989) second-degree price discrimination problem, with the prior probability that

a sender is supposed to split in the former corresponding to the market equilibrium quantity in the latter.
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economies where individuals have equal entitlements to a limited resource and are heteroge-

neous in their willingness to pay for the access to the resource. Applied to such situations,

our finding implies that, given any redistributive preferences, the social planner can attain

optimality through a market-like mechanism for individuals to trade their shares. It would

issue to each eligible individual a coupon that represents the person’s initial equal access

to the limited resource, and the coupon trading would eventually stratify the individuals

into at most three tiers in terms of their final shares of the limited resource, those who

give up their shares completely (the “have-nots”), those who max out their acquisition of

shares (the “haves”), and those in between. When the virtual surplus satisfies the afore-

mentioned conditions, even when the social planner has redistributive preferences across

types, the coupon-trading mechanism reduces to a single competitive price for the coupon.

We illustrate this in the context of Covid vaccine allocation within the same priority group

(Section 6).

Our model shares a similarity with partnership dissolution models in treating the

roles of buyers and sellers as endogenous (Cramton et al. 1987; Lu and Roberts 2001;

Kittsteiner 2003; Chien 2007; Mylovanov and Tröger 2014; Segal and Whinston 2016; Lo-

ertscher and Cédric 2019). Theorem 1 can be extended to those models provided that the

values are private and partners are not overly asymmetric ex ante (though we find no prece-

dent thereof in that literature).5 That is consistent with the observation of Cramton et

al. (1987) that full efficiency can be attained in some partnership dissolution cases where

the initial ownership is nearly equal across partners. However, the full efficiency result in

partnership dissolution is based on a particular welfare weight that is neutral across types,

while the counterpart in our model is valid for a nondegenerate set of welfare weights that

may favor one type or another in various manners. In our model, it is trivial that a single

market price implements optimality if our design objective is restricted to the neutral welfare

weight. Recently, full efficiency is shown to be implementable by Yang et al. (2017) in their

endogenous buyer-seller queuing model, where customers can trade their queuing positions.6

Our model differs from their work in a similar way that ours differs from the partnership

dissolution models.

5The extension requires that the sets of no-trade types according to an allocation should have nonempty

intersection across all ex ante asymmetric partners.
6A model of exogenous buyers and sellers of queuing positions has been considered by Yang et al. (2021).
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Our design objective, maximizing the integral of agents’ interim expected payoffs across

all types measured by any welfare weight distribution, is in the spirit of Holmström and

Myerson’s (1983) notion of interim incentive efficiency. This notion has been considered

by a long strand of literature including Wilson (1985), Gresik (1996), Pérez-Nievas (2000),

Laussel and Palfrey (2003), Ledyard and Palfrey (1999, 2007) and, recently, ADK (2020),

Kang and Zheng (2020), Kang (2020), Reuter and Groh (2020), and DKA (2021). Our focus

is the endogeneity of an agent’s buyer- or seller-role. This has not been the focus of the

literature except Kang and Zheng (2020), where we consider a design problem with finitely

many players and without the market clearing condition.7

A main perspective of the above literature is that the welfare weight according to which

the social planner maximizes the social welfare should be allowed to vary with individuals’

types. The importance of this perspective is renewed by recent works on redistributive

mechanisms such as ADK (2020), Kang (2020) and DKA (2021), where the social planner’s

redistributive preferences need not be aligned with the distribution of types across individ-

uals. Moreover, as DKA (2021) have shown recently, even if the social planner is neutral

across the fundamental characteristics of individuals, the planner would still be biased for

some types against others when the type is not a sufficient statistic of the fundamental

characteristics.

Allowing for all continuous welfare weight distributions, our characterization of the

optimal mechanisms has the merit of being relatively value-free. Without making the abso-

lute continuity assumption of the welfare weight distribution in the literature (ADK 2020;

DKA 2021; Ledyard and Palfrey 1999 and 2007), our model allows for a larger variety of

welfare weight distributions.

The next section defines the model. Section 3 observes that the budget balance con-

straint is never binding in our model. Section 4 characterizes the optimal mechanisms.

Section 5 shows which types gain and which types lose when the planner chooses rationing

over the posted-price solution, and whose welfare weight is crucial to the planner’s choice

between the two. Section 6 presents an application to a Covid vaccine distribution problem.

Section 7 concludes.

7The model of Ledyard and Palfrey (2007) allows for such endogeneity but focuses on other topics.

6



2 The Model

There is a continuum of individuals, each characterized by a type. The type is distributed

among the population according to a cdf F with support [0, 1] and density f positive and

continuous on the support. An individual of type t can produce up to one unit of a good at

a marginal cost equal to t, and can acquire up to B units of the good at a marginal utility

equal to t, with parameter B ∈ R++. (The case B =∞ is considered in Appendix J.)

By the revelation principle, a mechanism is modeled as a measurable function (Q, p) :

[0, 1] → [−1, B] × R such that Q(t) is the net position of the good for any individual of

type t, and p(t) the expected value of the net money transfer from the individual to others,

so that the expected payoff for anyone of type t who acts as type t′ is equal to tQ(t′)−p(t′).8

Of particular interest is a kind of payment rules such that p(t) is a piecewise affine

function of Q(t) with the same constant term. That is, there exist c ∈ R, integer n and

mutually distinct k1, . . . , kn ∈ R such that for any t ∈ [0, 1], p(t) = c + kiQ(t) for some

i ∈ {1, . . . , n}. Given such a payment rule, c is the lump sum transfer to all types, and n is

the number of prices. The payment rule is called posted price iff n = 1, namely, it offers a

constant per-unit price to all types, be they buyers or sellers. If Q is equal to a constant on

some nondegenerate interval S of [0, 1] and the constant is neither −1 nor B, the mechanism

is said to entail rationing on S.9

By welfare weight distribution we mean a cdf W with support [0, 1] that is continuous

on R. Given any welfare weight distribution W , the design problem is to maximize∫ 1

0

(tQ(t)− p(t)) dW (t) (1)

among all mechanisms (Q, p) subject to incentive compatibility (IC) that tQ(t) − p(t) ≥
tQ(t′) − p(t′) for any t, t′ ∈ [0, 1], individual rationality (IR) that tQ(t) − p(t) ≥ 0 for all t,

budget balance (BB) that ∫ 1

0

p(t)dF (t) ≥ 0,

8More explicitly, any individual acting as type t′ acquires a quantity q1(t′) of the good, supplies a quan-

tity q2(t′) thereof, and delivers a payment p(t′). Consequently, given quasilinear preferences, the payoff to

the individual of type t is equal to (q1(t′)− q2(t′)) t− p(t′), or tQ(t′)− p(t′) with the notation Q := q1 − q2.
9The term rationing makes sense because, by the envelope formula, the constancy of Q on S implies

that p(t) is an affine function of t on S. Thus, the per-unit price is constant while the type (marginal utility)

ranges in S. Consequently, almost all types in S would like to either buy or sell up to full capacities, while

they are allocated only a constant fraction of the full capacity.
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and market clearance that ∫ 1

0

Q(t)dF (t) = 0.

Any solution (Q∗, p∗) to this design problem is called optimal mechanism, and Q∗ optimal

allocation.

Comments First, the welfare weight distribution W reflects the social planner’s redis-

tributive preferences across types. It corresponds to the supporting hyperplane at a point

on the interim incentive-constrained Pareto frontier, as in the interim incentive efficiency

literature initiated by Holmström and Myerson (1983). DKA (2021) interpret the Radon-

Nikodym derivative of W (with respect to the type distribution F ) at any type t as the

expected value of an individual’s marginal utility of money (MUm) conditional on that the

marginal rate of substitution (MRS) of the good relative to money is equal to the type t.

They show that a social planner whose objective is (1) subject to such welfare weights is

equivalent to the planner who is neutral across the underlying individual characteristics that

determine the MUm and MRS. Thus, the planner prefers redistributions from types with low

MUm in expectation (“the rich”) to types with high MUm in expectation (the “poor”).

Second, the continuity assumption of the welfare weight distribution W is consistent

with the continuum-type (or large-market) model, as each type is supposed to be atomless.

The assumption is weaker than its counterpart in the literature. For example, Ledyard

and Palfrey (1999, 2007) and DKA (2021) assume absolute continuity of W . Allowing for

singular W , we can consider situations where the planner cares only about a measure-zero

set of types. Such an example is provided in Section 4.

3 The Budget Balance Condition

As is well-known in the market or mechanism design literature of bilateral trades (Myerson

and Satterthwaite 1983; Ledyard and Palfrey 2007; DKA 2021; etc.), the main source of

complication in characterizing the optimal mechanisms is a constraint that captures the BB

condition (as well as IR and part of IC). In the literature, the possibility that the constraint

is binding cannot be ruled out a priori. When it is binding, characterization of the optimal

mechanisms depends on endogenous variables and hence in general cannot be described

purely in terms of the primitives. In our model, by contrast, the constraint is never binding,
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as long as the allocation is incentive compatible (namely, weakly increasing) and market

clearing:

Theorem 1 For any weakly increasing allocation Q : [0, 1] → R that satisfies the market

clearing condition, there exists a payment rule p : [0, 1] → R with which (Q, p) satisfies IR,

IC and BB.

Proved in Appendix A, Theorem 1 is driven by our assumption that each individual is

free to choose between buying and selling. To understand the theorem, let us start with a

routine in mechanism design that a mechanism (Q, p) is IC if and only if Q(t) is a weakly

increasing function of the type t and

p(t) = tQ(t)−
∫ t

c

Q(t′)dt′ − U(c) (2)

for any types t, c ∈ [0, 1] and any U(c) ∈ R, standing for the truth-telling expected payoff

to type c. Let c1 be the highest seller-type, and c2 the lowest buyer-type, according to Q.

That is, c1 := sup{t ∈ [0, 1] | Q(t) < 0} and c2 := inf{t ∈ [0, 1] | Q(t) > 0}. From (2), one

readily sees that (Q, p) satisfies IR if and only if U(c) ≥ 0 for all c ∈ [c1, c2].

Now let us rewind the complication about the BB constraint in the literature, where

an individual is exogenously assigned the role of a buyer or that of a seller. As noted

previously, we need only to consider any weakly increasing allocation. Define the c1 and c2

in this allocation as above. If c1 ≤ c2 then the social planner can easily implement this

allocation in a BB and IR manner. For example, she can use the payment rule according

to (2) such that U(c) = 0 for all c ∈ [c1, c2], which as noted above suffices IR. With this

payment rule, the planner squeezes the minimum surplus among all types down to zero,

and hence she does not sell the good to any buyer at a price lower than their minimum

marginal utility c2, nor buy the good from any seller at a price higher than their maximum

marginal cost c1. Thus the planner’s profit is no less than c2 times the aggregate demand

subtracted by c1 times the aggregate supply. With market clearance and c1 ≤ c2, this profit

is nonnegative and hence the planner’s budget is balanced.

The problem, however, is that c1 ≤ c2 cannot be guaranteed when individuals are not

free to choose between buying and selling: When the set of buyer-types and that of seller-

types are exogenous, an allocation has two functions, Q1 defined on the buyer-types, and Q2

defined on the seller-types. The monotonicity condition becomes Q1 and Q2 be each weakly
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increasing, which can be consistent with c1 > c2. Now that c1 ≤ c2 cannot be guaranteed,

the planner in considering a mechanism with c1 > c2 may need to pay more per unit of

procurement than she charges per unit of sales. But that would break her budget unless the

planner compromises on some other aspects of the allocation. Thus the BB constraint may

be binding at an optimal mechanism. In our model, by contrast, individuals are free to switch

between buying and selling, and so the allocation is a single function Q defined on all types.

Then c1 > c2 would violate the monotonicity condition of Q, and the mechanism would fail

to be IC: If c1 > c2, every buyer-type in (c2, c1) values the good less than some seller-types

in (c2, c1), and so such buyers and sellers would rather switch roles. Now that c1 ≤ c2 is

guaranteed, the BB constraint is automatically satisfied as in the previous paragraph.

In a nutshell, Theorem 1 comes from the simple fact that, in a market where everyone

is free to switch between buying and selling, any buyer’s marginal value of the good is higher

than any seller’s marginal cost of supplying it. The social planner can therefore profit from

buying the good from the sellers and selling it to the buyers.

Due to Theorem 1, our design problem is reduced to an optimization among allocations

without the IR and BB constraints:

Corollary 1 A mechanism (Q∗, p∗) is an optimal mechanism if and only if Q∗ solves

maxQ

∫ 1

0
QV dF

s.t. Q : [0, 1]→ [−1, B] is weakly increasing∫ 1

0
QdF = 0,

(3)

where V : [0, 1]→ R is the virtual surplus function defined by, for any t ∈ [0, 1],

V (t) := t− W (t)− F (t)

f(t)
. (4)

To prove the corollary, use the routine of envelope theorem and integration by parts to

show (Lemma 1, Appendix B) that a mechanism (Q∗, p∗) is an optimal mechanism (a solution

to the design problem defined in Section 2) if and only if Q∗ maximizes
∫ 1

0
Q(t)V (t)dF (t)

among all weakly increasing allocations Q : [0, 1] → [−1, B] subject to two conditions: (i)

market clears (
∫ 1

0
QdF = 0), and (ii) there exists a payment rule that implements Q with

respect to the IR and BB constraints. Condition (ii), by Theorem 1, is guaranteed by

Condition (i) and the monotonicity of the allocation. Thus, the maximization problem is

equivalent to Problem (3), and hence the corollary follows.
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4 Optimal Mechanisms

Problem (3), with a harmless change of variables, is essentially the same as the single-market

monopoly problem considered by Bulow and Roberts (1989), our market clearing condition

being the counterpart to their capacity constraint. As has been understood in the literature,

the virtual surplus V (t) corresponds to the monopolist’s marginal revenue extracted from

type-t individuals. The problem can be solved by the standard ironing method.

If a single price τ per unit is offered to all individuals without quantity restrictions, so

that every type above τ would buy B units of the good, and every type below τ would sell one

unit thereof, then the market clearing condition
∫ 1

0
QdF = 0 is satisfied iff τ = F−1

(
B

B+1

)
.

Thus we call F−1
(

B
B+1

)
market clearing price. With the marginal revenue interpretation

of V (t), it is clear that a posted price equal to the market clearing price attains the optimality

of (3) if the marginal revenue of any type below the market clearing price is no higher than

the marginal revenue of any type above the market clearing price. In other words, the posted

price is optimal if V (·)− V
(
F−1

(
B

B+1

))
is single-crossing on [0, 1].

Without the single-crossing condition, there may be a type below the market clearing

price that contributes a larger marginal revenue than some type above the price does. To

exploit the larger marginal revenues of such lower types without violating the monotonicity

(IC) condition of the allocation, the planner needs to find an appropriate interval [a, b] that

contains the market clearing price and treat the types in [a, b] equally. As long as the

average marginal revenue in [a, b] is not less than the average marginal revenue in [0, a),

and not greater than that in (b, 1], the planner can attain optimality through stratifying

the types into at most three tiers:10 Types in [0, a) sell and types in (b, 1] buy, each in full

capacity, while types in (a, b) are rationed a constant quantity that clears the market. This

characterization is formalized by the next theorem, proved in Appendix D.

Theorem 2 (i) There exists an optimal mechanism consisting of an allocation

Q∗(t) :=


−1 if 0 ≤ t < a
F (a)−B(1−F (b))

F (b)−F (a)
if a < t < b

B if b < t ≤ 1,

(5)

10By a tier in an incentive compatible (and hence monotone) allocation Q : [0, 1] → R, we mean the

inverse image Q−1(s) of some s in the range of Q such that Q−1(s) is a nondegenerate interval.
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where 0 ≤ a ≤ F−1
(

B
B+1

)
≤ b ≤ 1, and a payment rule that has at most two prices. (ii) If

the function V (·)− V
(
F−1

(
B

B+1

))
is single-crossing on [0, 1], then

Q∗(t) =

 −1 if 0 ≤ t < F−1
(

B
B+1

)
B if F−1

(
B

B+1

)
< t ≤ 1,

(6)

and the payment rule becomes a posted price equal to F−1
(

B
B+1

)
without rationing or lump

sum rebate.

Theorem 2 implies that an optimal allocation exists and it is a tiered allocation consist-

ing of at most three tiers. Moreover, when the single crossing condition of V −V
(
F−1

(
B

B+1

))
is satisfied, the optimal allocation has only two tiers and is implemented by offering the

market clearing price F−1
(

B
B+1

)
to everyone. Allocating the full capacity (−1 or B) to each

buyer- or seller-type, the optimal allocation does not entail rationing. It is easy to check that

the posted price yields zero profit for the planner (since the allocation satisfies the market

clearing condition), and hence the optimal mechanism has no lump sum rebate. Note that

the single-crossing condition can be satisfied by even non-monotone virtual surplus functions.

For the three-tier allocation (5), the interval (a, b) can be constructed from the prim-

itives with the definition of ironing. As shown in the proof (Appendix D), when (6) is not

optimal, the interval (a, b) for (5) to be optimal contains the market clearing price F−1
(

B
B+1

)
as an interior point. From the envelope formula one can derive the optimal payment rule

that implements (5), described by the next corollary (proved in Appendix E).

Corollary 2 For any a, b ∈ [0, 1] such that a < F−1
(

B
B+1

)
< b, any optimal mechanism

that implements allocation (5) is equivalent to a mechanism that transfers a positive lump

sum to every type, entails rationing only on (a, b) with the rationed quantity

x :=
F (a)−B (1− F (b))

F (b)− F (a)
, (7)

and uses the following payment schedule p for each type t to deliver a payment p(t) (in

addition to receiving the lump sum transfer):

i. if x ≥ 0,

p(t) =


−a if t ∈ [0, a)

ax if t ∈ [a, b]

bB − (b− a)x if t ∈ (b, 1];
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ii. if x ≤ 0,

p(t) =


−a+ (b− a)x if t ∈ [0, a)

bx if t ∈ [a, b]

bB if t ∈ (b, 1].

As is implied by the corollary, an optimal mechanism implementing the three-tier

allocation (5) makes a positive lump sum transfer to all individuals, entails rationing only

on the middle tier, and uses only two distinct prices. When the rationed quantity x is

positive, the price is equal to either a, for the low and middle tiers to sell or buy the good, or

equal to b− (b−a)x/B, for the high tier to buy the good (up to the quantity B). When x is

negative, the price is equal to either b, for the middle and high tiers to sell or buy the good,

or equal to a− (b− a)x, for the low tier to sell the good (up to the entire one unit).

The next theorem (proved in Appendix F) says that the optimal allocation character-

ized above is unique given a nondegenerate set of parameter values. Thus, not only is there

no need to stratify the types into more than three tiers, often it is also suboptimal to do so.

Combined with the previous theorem, Theorem 3 implies that, even when the virtual surplus

function is non-monotone, there still exists a unique optimal allocation and it is implemented

by a single posted price alone, requiring neither rationing nor lump sum transfers.

Theorem 3 If there exists no positive-measure subset S of [0, 1] such that V is constant

on S, the optimal allocation is unique (modulo measure zero).

To see the role played by the non-constancy assumption of V , consider a case where

the rationed interval (a, b) in (5) is a proper subset of another interval (a′, b′) in [0, 1] such

that V restricted on (a′, b′) \ (a, b) happens to be constantly equal to the average marginal

revenue on (a, b). Then there may be a continuum of optimal allocations: Pick any (a′′, b′′)

for which a′ ≤ a′′ ≤ a < b ≤ b′′ ≤ b′, extend the rationed interval from (a, b) to (a′′, b′′), and

vary the allocation for the types in (a′, a′′) ∪ (b′′, b′) in whatever fashion that satisfies the

monotonicity and market clearing conditions. The allocation thereby obtained is optimal

because it is the average marginal revenue within a set of types that determines how much the

planner should prioritize the set (cf. the proof of Lemma 2, Appendix C). Such multiplicity

of optimal allocations is ruled out by the non-constancy assumption in the theorem.

Whether there can be multiple optimal allocations or not, any optimal allocation re-

quires stratifying the type space into at least two tiers:
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Corollary 3 Egalitarian allocations (Q = 0 a.e. [0, 1], or autarky) are never optimal.

The proof of the corollary (Appendix E) uses an observation in the proof of Theorem 2.

The intuition is simply that there is always a gain of trade between the sufficiently low types

and the sufficiently high ones. When a type t near zero supplies a unit of the good, the cost

to the society is V (t) ≈ 0. When a type t′ near the supremum type acquires a unit of the

good, the social benefit is V (t′) ≈ 1.

Example: The Cantor Welfare Weight Distribution Suppose that the type distribu-

tion F is the uniform distribution U[0, 1] on [0, 1], and that the welfare weight distribution W

is the Cantor-Lebesgue function ϕ, so the support of the distribution is the (ternary) Can-

tor set.11 By the well-known properties of the Cantor-Lebesgue function, ϕ is a continuous

cdf that assigns positive welfare weights only to the (ternary) Cantor set, which is of zero

(Lebesgue) measure, and ϕ increases at unbounded rates on the Cantor set. Thus the social

planner cares only about a set of types of zero measure, and her redistributive preferences

cannot be described by welfare densities (or the “Pareto weights” in DKA 2021). Plug

W = ϕ and F = U[0, 1] into (4) to obtain the virtual surplus function V :

V (t) = 2t− ϕ(t)

for all t ∈ [0, 1]. Obviously, V is not monotone, graphed in the left panel of Figure 1.

Nonetheless, our result applies. There are countably many intervals in [0, 1] on which

V = V because V is single-crossing at any point in those intervals. They are the intervals

on which the graph in the right panel of Figure 1 has a positive slope. If the market clearing

price B
B+1

belongs to any of such positively sloped intervals, the optimal allocation is uniquely

the two-tier stratification with B
B+1

being the buyer-seller cutoff. Else, B
B+1

is interior to an

interval where V needs to be ironed, and a three-tier allocation is optimal. Furthermore,

this is the unique optimal allocation by Theorem 3, as the inverse image V −1(x) is of zero

measure for any x in the range of V .

Although almost all types carry zero welfare weight according to the Cantor-Lebesgue

function, the optimal mechanism gives positive surpluses to almost all types. That is because

the IC condition requires that the surplus for any type be at least as large as the surplus for

type B
B+1

, the buyer-seller cutoff.

11See Royden and Fitzpatrick (2010, Section 2.7) for the definition and properties of the Cantor set and

the Cantor-Lebesgue function.
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Figure 1: The virtual surplus (left panel) and its ironed copy (right panel) given the Cantor welfare

weights and uniform distribution of types

5 Posted Price versus Rationing

The previous section shows that any optimal mechanisms—supported as a Pareto frontier

point by some continuous welfare weight distribution—can be simplified to one of only two

alternatives: It is either the posted-price system, implementing the two-tier allocation (6),

or a rationing system that implements a three-tier allocation (5) and entails rationing on

the middle tier. This section shows who gains, and who loses, when the mechanism switches

from one kind to the other, each being Pareto optimal. We shall also see whose welfare

weight plays a crucial role in the social planner’s choice between the two alternatives.

5.1 Who Gains and Who Loses from Rationing

It is intuitive that the types near the market clearing price F−1
(

B
B+1

)
gain when the mech-

anism switches from the posted price to rationing. Given the posted price, which is equal to

F−1
(

B
B+1

)
, the type F−1

(
B

B+1

)
gets zero net payoff whether it buys or sells the good, as its

valuation of the good is equal to the type. The type has no other source of surplus because

the posted-price system, essentially a competitive equilibrium, yields no profit for the plan-

ner to rebate to the individuals. Given rationing, by contrast, the type has at least a positive

lump sum rebate as part of its surplus. The lump sum is positive because the planner gets a
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positive profit from rationing on the middle tier (a, b) that contains the market clearing price

F−1
(

B
B+1

)
as an interior point: The planner exploits her monopsony power in squeezing the

range of her full-capacity procurement from
[
0, F−1

(
B

B+1

))
to [0, a), and monopoly power in

squeezing the range of her full-capacity sales from
[
F−1

(
B

B+1

)
, 1
]

to (b, 1]. Thus, the type

F−1
(

B
B+1

)
gains strictly when the mechanism changes from the posted price to rationing.

By continuity, so do the nearby types.

The more complicated question is which types get hurt in order for such middle types to

gain. While the general answer may depend on the parameter values, we can tell whether the

high or the low types are definitely worse-off based on the curvature of the type distribution F

around the market clearing price. According to the next theorem, if the distribution F of

types is convex on the middle tier in a rationing mechanism, the low types—those who get

to sell at full capacity in both mechanisms—are definitely worse-off when the posted price

is replaced by the rationing mechanism: In Figure 2, on the set [0, a) of low types, the red

dotted line—the surplus given rationing—lies below the blue solid line—the surplus given

the posted price. If F is concave on the middle tier, by contrast, the high types—those who

get to buy at full capacity in both mechanisms—are definitely worse-off: In Figure 3, the

red dotted line lies below the blue solid line on (b, 1], the set of high types.

Theorem 4 If the allocation in an optimal mechanism switches from the two-tier (6) to a

three-tier (5) that entails rationing on some (a, b) for which 0 < a < F−1
(

B
B+1

)
< b < 1,

then:

a. all the types sufficiently near to the market clearing price F−1
(

B
B+1

)
are better-off;

b. if F is convex on (a, b), any type in [0, a) is worse-off;

c. if F is concave on (a, b), any type in (b, 1] is worse-off.

Theorem 4 is proved in Appendix G. To understand the less intuitive parts, Claims (b)

and (c), let us consider a stochastic counterpart to the rationing allocation (5): For each

individual, the allocation is independently and randomly selected so that it is

Qa(t) :=

 −1 if t ∈ [0, a]

B if t ∈ (a, 1]
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Surplus

Type
0 1F−1

(
B

B+1

)
a b

Figure 2: Posted-price (blue solid) vs. rationing (red dotted) given convex F

with probability (1 + x)/(B + 1), and

Qb(t) :=

 −1 if t ∈ [0, b]

B if t ∈ (b, 1]

with probability 1 − (1 + x)/(B + 1), where x is determined by (7). By the choice of x,

F (a)(1 + x)/(B + 1) + F (b) (1− (1 + x)/(B + 1)) = B/(B + 1). That is, from the ex ante

or the social planner’s viewpoint, the expected quantity to procure from the individual is

equal to B/(B + 1). By the same token, the expected quantity to sell to the individual is

equal to B/(B + 1). Thus, when the same lottery is run independently for all individuals,

supply is equal to demand at the aggregate level. Note that from each (privately informed)

individual’s viewpoint, the stochastic allocation is equivalent to the rationing allocation (5).

The stochastic allocation can be implemented by the corresponding stochastic payment

rule: To each individual, if the lottery picks Qa then offer him a per-unit price equal to a for

the individual to buy or sell the good in full capacity; if the lottery picks Qb then analogously

offer him the price b per unit for buying and selling. This stochastic payment rule generates

a negative expected profit for the social planner: When the lottery draws Qa, the planner

sells the good to balance the excess demand B(1− F (a))− F (a) (which is positive because

B/(B+ 1) > F (a)), and the average revenue she gets according to the payment rule is equal

to a. When the lottery draws Qb, the planner buys the good to balance the excess supply

F (b)−B(1−F (b)) (> 0 because B/(B+ 1) < F (b)), and the average price she pays is equal

to b. Since b > a and the market clears, the planner is losing profit.

Thus, under any optimal mechanism that implements the stochastic allocation, which

is required to be budget balanced, the payment rule differs from the stochastic payment
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Surplus

Type
0 1F−1

(
B

B+1

)
a b

Figure 3: Posted-price (blue solid) vs. rationing (red dotted) given concave F

Type

Quantile
0 1B

B+1
F (a) F (b)

F−1
(

B
B+1

)b

a

F−1

Figure 4: The red dot: Expected revenue upper bound for low types

rule, in expectation, only by a lump sum transfer to the individuals that is a nonpositive

constant across types. Consequently, each individual’s surplus under any optimal mechanism

of the stochastic allocation, or equivalently the rationing allocation, is bounded from above

by the surplus he receives from the stochastic payment rule, as the latter has yet to count

the nonpositive lump sum transfer. That is, in any optimal mechanism that implements

the rationing allocation Q∗, the surplus for any type t ∈ [0, a) is bounded from above by

the convex combination between a and b—the revenue received by type t in the stochastic

payment rule—according to the probability mix in the lottery, plus tQ∗(t). This convex

combination is labeled by the red dot in Figure 4. As shown in that figure, when F is

convex on (a, b) and hence F−1 concave on (F (a), F (b)), the convex combination is less

than F−1
(

B
B+1

)
. Since F−1

(
B

B+1

)
is the revenue received by any type in [0, a) under the

deterministic posted-price system without rationing, the type receives less expected revenue,
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and hence less surplus, in the rationing mechanism than in the posted-price system, as

claimed in Part (b) of the theorem. Part (c) of the theorem is analogous from the perspective

of the high types in (b, 1].

Intuitively speaking, if F is the uniform distribution, the market clearing cutoff value

F−1
(

B
B+1

)
would be equal to the quantile B/(B + 1). Now make F convex around the

cutoff value. That means moving a mass of types from below the cutoff to above the cutoff.

Consequently, the cutoff value F−1
(

B
B+1

)
, whose quantile is supposed to be B/(B+1), needs

to be adjusted upward. Thus, the convexity of F enlarges the revenue received by the low

types if there is no rationing. Rationing partially removes this advantage by averaging the

revenue across types. That is the intuition of Part (b) of Theorem 4.

5.2 The Welfare Weight of the Market Clearing Cutoff Type

Since the middle types around the market clearing price gain from rationing (Part (a) of

Theorem 4), it is natural that the heavier is the welfare weight on such middle types, the

more is the social planner leaning towards a rationing mechanism. To formalize that, for

any welfare weight distributions W and W∗, let us say—

• W∗ is a spread of W away from F−1
(

B
B+1

)
iff W∗ ≥ W on

[
0, F−1

(
B

B+1

))
and W∗ ≤ W

on
(
F−1

(
B

B+1

)
, 1
]
;

• W∗ is a contraction of W towards F−1
(

B
B+1

)
iff W∗ ≤ W on

[
0, F−1

(
B

B+1

))
and

W∗ ≥ W on
(
F−1

(
B

B+1

)
, 1
]
.

Intuitively speaking, a spread away from F−1
(

B
B+1

)
moves some welfare weights around the

market clearing cutoff type to the higher and lower types, and a contraction towards F−1
(

B
B+1

)
does the opposite. The next theorem shows that the two operations have opposite effects on

the optimality of the posted-price system.

Theorem 5 Suppose that the posted-price system is optimal given a welfare weight distri-

bution W . Then:

a. if W∗ is a spread of W away from F−1
(

B
B+1

)
, then the posted-price system is optimal

when the welfare weight distribution is W∗ instead of W ;
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b. for any ε > 0 there exists a contraction W∗ of W towards F−1
(

B
B+1

)
such that

‖W∗ −W‖max ≤ ε and the posted-price system is not optimal when the welfare weight

distribution is W∗ instead of W .

Theorem 5 is proved in Appendix H. Its intuition, as mentioned above, has been

suggested by Part (a) of Theorem 4. We can get a more explicit intuition by adopting

DKA’s (2021) rich-vs-poor interpretation of the welfare weight distribution. According to

them, the density of the welfare weight distribution at a type t corresponds to the average

marginal utility of money among the individuals whose marginal rate of substitution of the

good relative to money is equal to t (cf. Section 2). When W spreads the weight away

from F−1
(

B
B+1

)
, the types near F−1

(
B

B+1

)
are having lower marginal utilities of money in

average and hence there is less a need for transferring money to such types through deviating

from the zero-rebate posted-price system. When W contracts the weight towards F−1
(

B
B+1

)
,

by contrast, the nearby types value money more in average, which strengthens the need to

transfer money to them through moving away from the posted-price system.

6 Application: Vaccine Allocation with Externalities

Our model is equivalent to the following exchange economy up to normalization. Every

(atomless) individual is endowed with one unit of the good, individuals can sell any fraction

of their endowments for money, and each can consume up to B + 1 units of the good. The

good can be interpreted as the access to a limited public resource that everyone is equally

entitled to. Individuals’ types are their willingness to pay for the access to the resource. The

social planner’s welfare weight distribution W need not be aligned with the distribution F of

the willingness to pay. Our model then applies and the planner’s optimality can be achieved

by a market-like mechanism where individuals trade their shares of the public resource given

a menu containing at most three price-quantity contracts.

To be explicit, let us apply the idea to the allocation of Covid vaccines. While a social

planner often has explicit preferences over who should receive the vaccines before others

and hence might want to prioritize vaccine allocation across groups (Akbarpour et al. 2021;

Sömet et al. 2021), it has often been reported that individuals of the same priority level

(e.g., healthcare workers) are heterogeneous in their vaccine willingness or hesitancy. Thus,

20



let us focus on the issue about the limited supply of Covid vaccines on one hand and the

heterogeneous willingness to vaccination within the same priority group on the other.12

To capture this issue with a stylized model, normalize to one the measure of the popu-

lation in a priority group, and suppose that the quantity of Covid vaccines available to this

population is equal to α ∈ (0, 1). (In other words, only up to a fraction α of the population

gets to be inoculated.) Suppose that an individual’s willingness to get vaccinated is repre-

sented by a type t ∈ [0, 1], drawn from a cdf F . Let ψ : [0, 1]→ R be a measurable function.

Assume that, if q is the probability for an individual to get vaccinated, m his net monetary

receipt, and each individual of type t′ is allocated a probability q̃(t′) of getting vaccinated,

then the type-t individual’s gross payoff is equal to

qt+m+ ψ(t)

∫ 1

0

q̃(t′)dF (t′). (8)

In (8), the term ψ(t)
∫ 1

0
q̃(t′)dF (t′) captures a kind of externalities spilled over to the

type-t individual: When an individual gets vaccinated with probability q̃(t′) (through acting

as type t′), the externality spilled over to any other individual of type t, for any t ∈ [0, 1],

is equal to ψ(t)q̃(t′). Given truthtelling, the aggregate of the externalities spilled over to

a type-t individual is therefore equal to ψ(t)
∫ 1

0
q̃(t′)dF (t′). For instance, a strictly increas-

ing ψ corresponds to situations where the more one is willing to get himself inoculated the

more strongly he believes that his health is affected by the size of the vaccinated population.

However, (8) does not apply to situations where an individual’s evaluation of the external-

ity spilled over to him depends on some other personal characteristics in addition to his

willingness to pay.13

While externality is absent in our main model, changing the utility definition to (8)

does not alter any of our results. That is because the aggregate externality spilled over to an

individual of type t, given allocation q̃, is equal to ψ(t)
∫ 1

0
q̃(t′)dF (t′), which is constant to

the individual’s own action. Thus, the design constraints remain the same as in the original

model. Furthermore, mimicking the argument for Corollary 1, one can prove (Appendix I)

that the planner’s problem is exactly the same as (3):

12Akbarpour et al. (2021) consider both the issue of within-group heterogeneity and the planner’s cross-

group preferences in vaccine distributions. We consider only the within-group heterogeneity issue to focus

on how it can be solved by simple market mechanisms once the quantity of vaccines available to a group has

been determined.
13See Akbarpour et al. (2021) for a model that applies to such a situation.
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Corollary 4 In the modified model with externalities such that the utility for any individual

of type t is defined by (8), an allocation is optimal if and only if it solves Problem (3).

Since we consider the allocation within the same priority group, at the outset everyone is

entitled to an equal access to vaccination. That is, any individual is entitled to a probability α

of getting inoculated. Implicitly, each member of the population is initially issued a coupon,

so that one coupon gives a person the probability α of getting vaccinated.

In the real world, Covid vaccines are often distributed to the individuals of the same

priority group in an egalitarian manner without the possibility for individuals to trade their

entitlements among themselves. That is never socially optimal, as we have observed in

Corollary 3. Alternatively, a government should allow individuals to trade their vaccine

entitlements, say, by issuing digital coupons to individuals, one unit to each, to represent

their initial entitlements to inoculation. Then individuals can trade any fraction of their

coupons so that anyone who holds a quantity q of coupons gets to be inoculated with a

probability equal to qα. To get vaccinated for sure, a person needs only to hold a quantity 1/α

of coupons. Thus, the quantity of coupons that a person needs to acquire, in addition to the

one unit the person is endowed with, does not need to exceed 1/α− 1. That is,

B =
1

α
− 1.

A mechanism can be represented by (Q,P ) such that Q(t) is the quantity of coupons

that an individual acting as type t buys from others (which means a probability (Q(t) + 1)α

of getting vaccinated), and delivers a net payment P (t).14 By (8), a type-t individual’s

expected gross payoff from claiming to be type t′ is equal to

(Q(t′) + 1)αt− P (t′) + ψ(t)

∫ 1

0

α (Q(s) + 1) dF (s)

= α

(
Q(t′)t− 1

α
P (t′)

)
︸ ︷︷ ︸

u(t′,t|Q,P )

+αt+ αψ(t) + α

∫ 1

0

ψ(t)Q(s)dF (s).

Thus, any type t’s decision is equivalent to maximizing the expected net payoff u(t′, t|Q,P )

among all t′. This, coupled with Corollary 4, implies that the social planner’s design objective

is equivalent to
∫ 1

0
u(t, t|Q,P )dW (t) for some welfare weight distribution W . Thus our result

14Negative Q(t) means selling the corresponding quantity, and negative P (t) means being paid.
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applies and, if it entails (Q∗, p∗) as the mechanism, the planner would construct the payment

rule P ∗ by P ∗ := αp∗.

If W = F , namely, the social planner is neutral across types, then V (t) = t for all t and

the optimal mechanism is a single posted price equal to the market clearing cutoff F−1
(

B
B+1

)
(= F−1(1 − α)). That is, if the planner has no redistribution bias across types, she would

opt for the free-market solution to distribute vaccines within the same priority group.

In reality, however, the planner often puts heavier welfare weights on some types than

on others. For instance, consider a situation where individuals’ types represent their Covid

comorbidities and that the type-distribution F is concave (say, due to the prevalence of

the Omicron variant, more severe comorbidity occurs less frequently). Meanwhile, suppose

that the social planner puts heavier weights on types of more severe comorbidities, because

severe comorbidities entail heavy social costs for healthcare, so much so that the welfare

weight distribution W is convex.15 Thus, F is concave, and W convex. This, coupled with a

technical condition that the Radon-Nikodym derivative w of W is bounded from above by 2,

implies that the virtual surplus function is increasing and so the social planner would stay

with the free-market solution (Theorem 2.ii). Even without the technical condition of w and

the global concavity of F , as long as F is concave around the market clearing cutoff type,

Part (c) of Theorem 4 would still imply that the planner is unlikely to forgo the free-market

solution, because any other mechanism, entailing rationing, would hurt the types of severe

comorbidities that she cares about.

Even when the free-market solution is not optimal, the planner can still achieve opti-

mality through a market-like mechanism that uses at most two distinct prices and entails

rationing on only one tier among the types (Theorem 2 and Corollary 2). For example, when

the rationed quantity x in the optimal allocation (5) is positive, the planner can set the price

per coupon to be equal to a for those who want to sell their coupons, and offer to those who

want to acquire coupons a menu of two options, one to buy B coupons at the unit price

equal to b− x(b− a)/B (thereby getting vaccinated for sure), the other to buy x coupons at

the unit price a (thereby getting vaccinated with probability (x+ 1)α).

Contrary to the vaccine wastefulness problem of the mechanisms in current practice,

none of the optimal allocations prescribed above leaves any vaccine unused. That is due to

the market clearing condition satisfied by the optimal allocations. The bottom line is: A

15We thank the associate editor for suggesting comorbidity as a direction to interpret the welfare weights.
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market-like Covid vaccine distribution mechanism, which sets at most two prices for vaccine

entitlements to stratify the population of the same priority group into at most three tiers

and uses rationing to at most one of the three, would outperform the current within-group

egalitarian rationing mechanism.

7 Conclusion

It is common that individuals start on an equal footing and end with different outcomes,

just because of the idiosyncrasy in one’s ability, taste or pure luck. It is also common that

such inequality in the outcomes, like it or not, is often class-oriented, grouping individuals

into several tiers and treating the members of each roughly indiscriminately. This paper

provides a mathematical fable for such stratification. It says that, even in the idealized

situation where the society is framed in an interim incentive-constrained Pareto optimal

manner, stratification is still unavoidable and, in fact, necessary for the social wellbeing.

Meanwhile, our finding implies that stratification of more than three tiers is unnecessary,

and often suboptimal. Consequently, while the people should be stratified into at least two

tiers and, due to the market clearing condition, there should be at least one tier for the haves

and another for the have-nots, oftentimes there should not be more than two subdivisions in

either category. Thus, while the bisection of the rich into East Egg and West Egg, under the

penetrating pen of F. Scott Fitzgerald, may be understood as part of a three-tier optimal

allocation, any further subdivision of either Egg is likely suboptimal.

An insight from this study is that, in a large market where individuals are free to choose

between buying and selling, a single competitive market price—without the help from any

other instruments such as rationing, redistribution or tier-specific prices—is often capable

of implementing interim Pareto optimality despite the presence of asymmetric information.

It should be emphasized that such robustness of the competitive market is not an artifice

of any specific social welfare criterion say a pro-market value system; but rather it holds

true for a wide variety of welfare weight distributions that may favor one type or another,

as long as the welfare weight is not overly contracted towards the market clearing cutoff

type. From such a relatively value-free perspective, one could understand the institutional

evolution in the United States regarding the allocation of the radio frequency spectrum, from

hearings and lotteries to market-like auctions, as a movement towards the Pareto frontier
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that should still have happened even if the policymaker’s objective is something other than

to raise revenues or to develop the wireless industries. From the same perspective one could

see a robust normative force towards market-oriented solutions to problems of prioritizing

citizens for the access to limited resources, be they Covid vaccines or magnet schools.
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A Proof of Theorem 1

Let Q : [0, 1]→ R be weakly increasing and market clearing. Denote

c1 := sup{t ∈ [0, 1] | Q(t) < 0}, (9)

c2 := inf{t ∈ [0, 1] | Q(t) > 0}. (10)

Since Q weakly increasing, we have c1 ≤ c2. Furthermore, by the envelope theorem, one

can construct a payment rule p that implements Q such that IC is satisfied and the surplus

cQ(c) − p(c) is equal to zero for some c ∈ [c1, c2]. With c1 ≤ c2 and Q weakly increasing,

tQ(t) − p(t) is weakly decreasing on [0, c] and weakly increasing on [c, 1]. Thus (Q, p) also

satisfies IR. The rest of the proof shows that (Q, p) satisfies BB.

First, we claim that (Q, p) satisfies BB if the following condition holds:

t < c1 ≤ c2 < t′ =⇒ p(t)

Q(t)
≤ c1 ≤ c2 ≤

p(t′)

Q(t′)
. (11)

By the definitions of c1 and c2, Q = 0 on (c1, c2). Thus, tQ(t)− p(t) = 0 and p(t) = 0 for all

t ∈ (c1, c2) by the envelope theorem and cQ(c)− p(c) = 0. It follows that∫ 1

0

p(t)dF (t) =

∫ c1

0

p(t)dF (t) +

∫ 1

c2

p(t)dF (t)

=

∫ c1

0

p(t)

Q(t)
Q(t)dF (t) +

∫ 1

c2

p(t)

Q(t)
Q(t)dF (t)

≥
∫ c1

0

c1Q(t)dF (t) +

∫ 1

c2

c2Q(t)dF (t)

≥ c1

(∫ c1

0

Q(t)dF (t) +

∫ 1

c2

Q(t)dF (t)

)
= 0,

where the third line is due to (11) and the fact that Q < 0 on [0, c1) and Q > 0 on (c2, 1],

the fourth line due to c2 ≥ c1 and Q > 0 on (c2, 1], and the last line due to market clearing.

Thus, (Q, p) satisfies BB if (11) holds.

To prove (11), Pick any t ∈ [0, c1), IC implies

0 = c1Q(c1)− p(c1) ≥ c1Q(t)− p(t),

where the equality follows from extending the equation tQ(t) − p(t) = 0, which we have

proved for all t ∈ (c1, c2), to the boundary point c1 by continuity of the surplus function.
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The formula displayed above implies p(t)/Q(t) ≤ c1 because Q(t) < 0 for all t ∈ [0, c1).

Analogously, for any t ∈ (c2, 1], IC implies 0 = c2Q(c2)−p(c2) ≥ c2Q(t)−p(t), which implies

p(t)/Q(t) ≥ c2 since Q(t) > 0 for all t ∈ (c2, 1]. Thus (11) is true, as desired.

B Derivation of the Virtual Surplus Function

While various forms of the routine have appeared numerously in the literature, it is helpful

to formalize it so as to clarify the role of the constraints.

Lemma 1 For any nonempty subset S of R, the problem

max(Q,p)

∫ 1

0
(tQ(t)− p(t)) dW (t)

s.t. Q : [0, 1]→ S is weakly increasing

p(t′)− p(t) =
∫ t′

t
sdQ(s) (∀t, t′ ∈ [0, 1])∫ 1

0
pdF ≥ 0

(12)

is equivalent to

max(Q,p)

∫ 1

0
Q(t)V (t)dF (t)

s.t. Q : [0, 1]→ S is weakly increasing

p(t′)− p(t) =
∫ t′

t
sdQ(s) (∀t, t′ ∈ [0, 1])∫ 1

0
pdF = 0.

(13)

Proof First, there is no loss of generality to replace the constraint
∫ 1

0
pdF ≥ 0 in (12) by∫ 1

0
pdF = 0: If

∫ 1

0
pdF > 0, we can modify the payment rule by rebating the positive money

surplus
∫ 1

0
pdF back to the types uniformly. That enlarges tQ(t)− p(t) for all t ∈ [0, 1] and

hence enlarges the objective
∫ 1

0
(tQ(t)− p(t)) dW (t) because the distribution W assigns a

positive measure on [0, 1]. Thus, in any optimum,
∫ 1

0
pdF > 0 does not hold.

Second, with
∫ 1

0
pdF = 0, we show that the objective in (12) is equal to that in (13).16

Denote U(t) := tQ(t)−p(t) for all t. By the envelope theorem, dU(t) = Q(t)dt. This coupled

with integration-by-parts gives∫ 1

0

UdF = U(1)−
∫ 1

0

FdU = U(1)−
∫ 1

0

F (t)Q(t)dt.

16We thank the associate editor for suggesting the following short proof. Our previous proof is longer and

suitable to asymmetric models where individuals’ types are drawn from different distributions.
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Likewise, ∫ 1

0

UdW = U(1)−
∫ 1

0

W (t)Q(t)dt.

Plug the expression of U(1) from the former equation into the latter equation to obtain∫ 1

0

UdW =

∫ 1

0

UdF +

∫ 1

0

F (t)Q(t)dt−
∫ 1

0

W (t)Q(t)dt

=

∫ 1

0

tQ(t)dF (t)−
∫ 1

0

p(t)dF (t)−
∫ 1

0

W (t)− F (t)

f(t)
Q(t)dF (t)

=

∫ 1

0

Q(t)V (t)dF (t),

with the last equality due to
∫ 1

0
pdF = 0 and the definition of V .

C Lemmas of Ironing

Define for each s ∈ [0, 1]

H(V )(s) :=

∫ s

0

V
(
F−1(r)

)
dr. (14)

Denote H̃(V ) for the convex hull of H(V ) on [0, 1] (cf. Myerson 1981). Then the ironed

virtual surplus V : [0, 1]→ R is defined by

V (t) =
d

ds

(
H̃(V )

)
(s)

∣∣∣∣
s=F (t)

(15)

whenever H̃(V ) is differentiable at F (t), and extended to all of [0, 1] by one-sided continuity.

If 0 ≤ a < b ≤ 1, (a, b) is called ironed interval iff H̃(V ) < H(V ) on (F (a), F (b)),

H̃(V ) (F (a)) = H(V ) (F (a)) and H̃(V ) (F (b)) = H(V ) (F (b)). That is, an ironed interval is

an inclusion-maximal open interval on which H(V ) (F (·)) > H̃(V ) (F (·)). As is well-known,

on an ironed interval the monotonicity condition of Q is binding, and V is constant.17

Lemma 2 For any a, b ∈ [0, 1] such that a ≤ F−1
(

B
B+1

)
≤ b, if V is constant on (a, b)

(unless (a, b) = ∅) and neither a nor b is an interior point of any ironed interval, then

the Q∗ defined in (5) is an optimal solution for (3) and, for any Q that is feasible to (3),∫ 1

0
QV dF <

∫ 1

0
Q∗V dF in any of the following three cases:

17While V is constant on any ironed interval, an interval on which V is constant need not be an ironed

interval, as it is possible that V = V on some interval where V happens to be constant.
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i a ≤ a′ < b′ ≤ b, (a′, b′) is an ironed interval, and Q is not constant on (a′, b′);

ii Q 6= Q∗ on a positive-measure subset S of [0, a) such that V < inft>a V (t) on S;

iii Q 6= Q∗ on a positive-measure subset S of (b, 1] such that V > supt<b V (t) on S.

Proof By (5),
∫ 1

0
Q∗dF = 0. Since a ≤ F−1

(
B

B+1

)
≤ b, it follows again from (5) that Q∗

is weakly increasing. Thus Q∗ is feasible to (3). To prove that it is optimal for (3), use

Myerson’s (1981) equation (from (14), (15), and integration by parts)∫ 1

0

Q(t)V (t)dF (t) =

∫ 1

0

Q(t)V (t)dF (t)−
∫ 1

0

(
H(V ) (F (t))− H̃(V ) (F (t))

)
dQ(t) (16)

for any weakly increasing function Q on [0, 1]. Observe that the second integral on the right-

hand side of (16) is nonnegative as Q is weakly increasing, and that it is strictly positive if

and only if Q is not constant on some ironed interval. It then follows from the definition

of Q∗ that the said integral is zero when Q = Q∗, because Q∗ by construction has only a

and b as jump points and, by the hypothesis of the lemma, neither a nor b is interior to any

ironed interval. Thus, to prove optimality of Q∗ it suffices to show
∫ 1

0
Q∗V dF ≥

∫ 1

0
QV dF

for any Q feasible to (3). To show that, note∫ 1

0

Q∗V dF −
∫ 1

0

QV dF =

∫ a

0

(Q∗ −Q)V dF︸ ︷︷ ︸
X

+

∫ b

a

(Q∗ −Q)V dF︸ ︷︷ ︸
Y

+

∫ 1

b

(Q∗ −Q)V dF︸ ︷︷ ︸
Z

.

Let v := inf{V (t) | t > a}. By the the hypothesis of the lemma, V = v on (a, b) if

(a, b) 6= ∅. Note: X ≥ v
∫ a

0
(Q∗ −Q)dF because Q∗ −Q = −1−Q ≤ 0 and V ≤ v on [0, a);

Y = v
∫ b

a
(Q∗ − Q)dF because either a = b, or V = v on (a, b); and Z ≥ v

∫ 1

b
(Q∗ − Q)dF

because Q∗ −Q = B −Q ≥ 0 and V ≥ v on (b, 1]. Thus,∫ 1

0

Q∗V dF−
∫ 1

0

QV dF ≥ v

∫ a

0

(Q∗−Q)dF+v

∫ b

a

(Q∗−Q)dF+v

∫ 1

b

(Q∗−Q)dF = 0, (17)

with the equality due to
∫
Q∗dF = 0 =

∫
QdF . Thus, Q∗ is optimal for (3).

To prove the rest of the lemma, pick any Q feasible to (3). Then Q : [0, 1] → [−1, B]

is weakly increasing and
∫
QdF = 0. In Case (i), a′ < b′ and Q is not constant on (a′, b′).

Then Q, weakly increasing, is strictly increasing on a positive-measure subset of (a′, b′).

Thus, the distribution induced by Q assigns a positive measure on (a′, b′). This, coupled

with the hypothesis that (a′, b′) is an ironed interval, implies that the second integral on the
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right-hand side of (16) is strictly positive given Q. By contrast, the integral given Q∗ is zero.

This, coupled with
∫ 1

0
Q∗V dF ≥

∫ 1

0
QV dF proved above, implies

∫ 1

0
V QdF <

∫ 1

0
V Q∗dF .

In Case (ii), since Q∗ = −1 on [0, a), the hypothesis Q 6= Q∗ on S ⊆ [0, a) implies that

Q∗ − Q < 0 on the positive-measure subset S of [0, a). This, combined with Q∗ − Q ≤ 0

on [0, a) and V < V (a) ≤ v on S, implies
∫ a

0
(Q∗ −Q)V dF > v

∫ a

0
(Q∗ −Q) dF . Thus the

inequality in (17) is strict. Case (iii) is analogous to Case (ii).

Since (15) defines V only at t for which H̃(V ) is differentiable at F (t), let us specify

the extension of V to the two endpoints:

V (1) := sup
t′↑1

V (t′) and V (0) := inf
t′↓0

V (t′). (18)

Lemma 3 V (0) < V (1).

Proof First, we observe that V (0) ≤ 0. To see that, note from the definition of ironing

that V (0) is the slope of the supporting line at the point 0 of the epigraph of H(V ). Since

V (0) = 0 by the definition of V and V is continuous by the assumption that both f and W

are continuous, the right-derivative of H(V ) at point 0 is well defined and is equal to 0.

Thus, the slope V (0) of the supporting line of H(V ) at point 0 is less than or equal to 0.

Now that V (0) ≤ 0, we need only to show V (1) > 0. Suppose not, then V ≤ 0 on [0, 1]

by its monotonicity. Then

0 ≥
∫ 1

0

V (t)dF (t) = H̃(V )(1) = H(V )(1) =

∫ 1

0

V (t)dF (t),

where the first equality is due to (15), the absolute continuity of H̃(V ) and H̃(V )(0) = 0,

the second equality due to H̃(V ) being the convex hull of H(V ) on [0, 1] and H(V )(0) = 0,

and the last equality due to (14). Thus, 0 ≤
∫ 1

0
V (t)dF (t) and hence, by the definition of V ,∫ 1

0

W (t)dt ≥
∫ 1

0

tdF (t) +

∫ 1

0

F (t)dt = 1,

with the equality due to integration by parts. Since W is a cdf that is supported by [0, 1]

and continuous on R, W ≤ 1 on [0, 1] and strictly so on a positive-measure subset thereof.

Thus
∫ 1

0
W (t)dt < 1 and the above-displayed inequality is impossible, which leads to the

desired contradiction.

Lemma 4 V is continuous at the points 0 and 1.
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Proof We shall prove that V is continuous at point 1. The case of point 0 is symmetric.

If H̃(V ) = H(V ) on (F (1 − δ), 1] for some δ > 0, then by (15) V = V on (1 − δ, 1],

and hence the continuity V at point 1 follows from the continuity of V . If H̃(V ) < H(V )

on (F (1 − δ), 1) for some δ > 0, then (1 − δ, 1) is contained in an ironed interval, so V is

constant on (1 − δ, 1) and hence supt′↑1 V (t′) is equal to this constant. Then (18) implies

that V (1) is equal to the constant; thus again V is continuous at 1.

Thus, suppose that neither of the previous cases hold. That is, there exists an ironed

interval (a1, b1) such that 0 ≤ a1 < b1 < 1, there exists another ironed interval (a2, b2) for

which b1 ≤ a2 < b2 < 1, and furthermore for any ironed interval (ak, bk) for which bk < 1,

there exists another ironed interval (ak+1, bk+1) for which bk ≤ ak+1 < bk+1 < 1. Thus, by

recursion, [0, 1] is partitioned by

0 ≤ a1 < b1 ≤ a2 < b2 ≤ a3 < · · · ≤ ak < bk ≤ ak+1 < · · · < 1

such that

limk→∞ ak = limk→∞ bk = 1,

∀k ∃vk ∈ R :
[
V = vk on (ak, bk)

]
,

with the last line due to (ak, bk) being an ironed interval. Since V is weakly increasing,

v1 ≤ v2 ≤ v3 ≤ · · · vk ≤ vk+1 ≤ · · · .

Within this case, to prove the continuity of V at point 1, we start by observing that

lim
k→∞

vk = V (1). (19)

To show that, for each k pick any tk ∈ [bk, ak+1]. Then V (tk) = V (tk). With V weakly

increasing,

v1 ≤ V (t1) ≤ v2 ≤ V (t2) ≤ v3 ≤ V (t3) ≤ · · · .

Thus limk→∞ vk = limk→∞ V (tk) = V (1), with the second equality due to tk → 1 and V

being continuous at 1.

Next, pick any sequence (t′j)
∞
j=1 converging to 1 such that t′1 ≤ t′2 ≤ t′3 ≤ · · · . For

each j, either t′j ∈ (akj , bkj) for some kj, or t′j ∈ [bkj , akj+1] for some kj. In the former case,

V (t′j) = vkj ; in the latter, vkj ≤ V (t′j) ≤ vkj+1. Both cases considered,

lim
j→∞

V (t′j) = lim
j→∞

vkj = V (1),
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with the second equality due to (19). Since (t′j)
∞
j=1 can be any sequence converging to 1 from

below, the above equation also implies limt′↑1 V (t′) = V (1). Consequently, supt′↑1 V (t′) =

limt′↑1 V (t′) = V (1). This coupled with (18) implies V (1) = limt′↑1 V (t′), namely, V is

continuous at 1.

Lemma 5 If V (1) > V (t) for all t ∈ [0, 1), the followings are true for V :

a. there is no x ∈ [0, 1) for which V (t) 6= V (t) for all t ∈ (x, 1);

b. V (1) = V (1);

c. V (1) > V (t) for all t ∈ [0, 1).

Proof Proof of (a): Suppose, to the contrary, that there exists an x ∈ [0, 1) for which

V (t) 6= V (t) for all t ∈ (x, 1). Then (x, 1) is contained in some ironed interval say (x∗, 1)

such that H̃(V ) (F (t)) < H(V ) (F (t)) for all t ∈ (x∗, 1), H̃(V ) (F (x∗)) = H(V ) (F (x∗)),

H̃(V ) (F (1)) = H(V ) (F (1)), and H̃(V ) has a constant slope β on [F (x∗), 1]. Since H̃(V ) (F (t)) <

H(V ) (F (t)) for all t ∈ (x∗, 1), for any t < 1 sufficiently close to 1,

1

1− F (t)

∫ 1

t

V (s)dF (s) =
1

1− F (t)
(H(V ) (F (1))−H(V ) (F (t))) ≤ β.

Taking the limit of the inequality as t→ 1 and noting continuity of V at 1, we have V (1) ≤ β.

Meanwhile, since H̃(V ) (F (t)) < H(V ) (F (t)) for all t ∈ (x∗, 1), there exists t′ ∈ (x∗, 1) for

which the slope of H(V ) at F (t′) is greater than β. That is, V (t′) > β, which coupled with

V (1) ≤ β implies V (t′) > V (1), contradicting the hypothesis that V is maximized at 1.

Proof of (b): Note, from the proof of Lemma 4, that V (1) = V (1) unless H̃(V ) < H(V )

on (F (1− δ), 1) for some δ > 0, namely, (1 − δ, 1) is contained in an ironed interval. Thus

V 6= V on (x, 1) for some x ∈ (1− δ, 1), contradicting (a). Thus (b) holds.

Proof of (c): Suppose, to the contrary, that V (1) ≤ V (t0) for some t0 ∈ [0, 1). Then,

with V weakly increasing, V (t) = V (1) for all t ∈ [t0, 1]. By (a), there exists t1 ∈ (t0, 1) for

which V (t1) = V (t1). Since t1 ∈ (t0, 1), V (t1) = V (1). Then (b) implies V (1) = V (1) =

V (t1) = V (t1), contradicting the hypothesis that V (1) > V (t) for all t ∈ [0, 1).

D Proof of Theorem 2

Recall the definition of ironed interval from Appendix C.
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Lemma 6 For any welfare weight distribution W , the two-tier allocation (6) is optimal if

and only if F−1
(

B
B+1

)
is not interior to any ironed interval.

Proof If F−1
(

B
B+1

)
is not interior to any ironed interval, then Lemma 2 applies to the

case where a = b = F−1
(

B
B+1

)
so that the Q∗ defined in (5) specializes to (6), the two-

tier allocation implemented by the posted-price system. Thus Lemma 2 implies that (6) is

optimal, and the “if” part of the claim is true. To prove the “only if” part, suppose that

F−1
(

B
B+1

)
is interior to some ironed interval. Then Part (i) in Lemma 2 implies that no

optimal allocation has a jump point in the ironed interval and hence the allocation (6), whose

jump point is F−1
(

B
B+1

)
, is not optimal.

Lemma 7 If the function V (·)−V
(
F−1

(
B

B+1

))
is single-crossing on [0, 1], then F−1

(
B

B+1

)
is not interior to any ironed interval.

Proof Denote m := F−1
(

B
B+1

)
and suppose that V (·)− V (m) is a single-crossing function

on [0, 1]. By the definition of ironing, it suffices to prove that F (m) is a convex point of H(V )

in the sense that at no point below F (m) is H(V ) steeper than it is at F (m), and at no

point above F (m) is H(V ) less steep than it is at F (m). Since V (·)− V (m) single-crossing

on [0, 1],

s < F (m) < s′ =⇒ V
(
F−1(s)

)
≤ V

(
F−1(F (m))

)
= V (m) ≤ V

(
F−1(s′)

)
.

By (14) the definition of H(V ), the derivative of H(V ) at any s ∈ (0, 1) is D (H(V )) (s) =

V (F−1(s)). Plug this into the above-displayed formula to obtain

s < F (m) < s′ =⇒ D (H(V )) (s) ≤ D (H(V )) (F (m)) ≤ D (H(V )) (s′).

Thus, F (m) is a convex point of H(V ), as desired.

Proof of Theorem 2 Let a be the infimum, and b the supremum, of{
t ∈ [0, 1] | V (t) = V

(
F−1(B/(B + 1))

)}
. (20)

Then neither a nor b is interior to an ironed interval, and hence Lemma 2 implies that the

allocation (5) is an optimal allocation. In the case where V (·) − V
(
F−1

(
B

B+1

))
is single-

crossing on [0, 1], Lemmas 6 and 7 together imply that the two-tier allocation (6) is optimal.

The payment rules that the theorem asserts implement (5) and (6) respectively can be derived

from the allocations according to the envelope formula, as explained in the comments around

the theorem and the proof of Corollary 2. �
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E Proofs of Corollaries 2 and 3

Corollary 2 First, consider the case x ≥ 0. By a < F−1
(

B
B+1

)
and (7), x < B and

hence the allocation (5) is weakly increasing. Thus, the allocation can be implemented

by a payment rule. Consider the one that maximizes the planner’s profit among all that

implement the allocation. By the envelope formula, one can show that this payment rule

is the same as the one described in Part (i) of the corollary. For instance, an individual of

type t ≥ b gets the surplus (b− a)x + (t− b)B by the envelope theorm and hence needs to

deliver a total payment equal to bB − (b− a)x for the quantity B of the good. That implies

the per-unit price b− (b− a)x/B. Note b− (b− a)x/B > a (because a < F−1
(

B
B+1

)
). Thus,

the profit generated by this payment rule is greater than

−aF (a) + a (F (b)− F (a))x+ a (1− F (b))B = 0,

with the equality due to the market clearing condition. By the envelope formula, the payment

rules that implement the allocation differ from one another only by a constant. Thus, since

the planer would rebate all her profit to the individuals to achieve the optimality of (1), the

optimal payment rule that implements (5) is the profit-maximizing one among those that

implement (5), augmented with a lump sum transfer to the individuals. Since the allocation

restricted to (a, b) is equal to the constant x and 0 ≤ x < B, the mechanism entails rationing

on (a, b). Thus the corollary is true in the case x ≥ 0.

The case x ≤ 0 is symmetric. By F−1
(

B
B+1

)
< b and (7), we have −1 < x and hence (5)

is weakly increasing and entails rationing on (a, b). The profit-maximizing payment rule

follows similarly from the envelope formula. Since −1 < x, the per-unit price a − (b − a)x

for the seller-types in [0, a) is strictly less than b. This coupled with the market clearing

condition implies that the profit generated by the payment rule is positive and hence the

optimal payment rule makes a positive lump sum transfer to the individuals. �

Corollary 3 By Lemmas 3 and 4 (Appendix C), the ironed virtual surplus function V is

continuous at both points 0 and 1, and V (0) < V (1). This fact implies that the conditions (ii)

and (iii) in Lemma 2 are true when the egalitarian allocation Q is compared to the optimal

allocation Q∗, and hence Q is strictly outperformed by Q∗. �
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F Proof of Theorem 3

Theorem 3 follows directly from the next lemma, as the non-constancy assumption of V in

the theorem implies the condition (21) in the lemma. Recall the definition of ironed interval

in Appendix C.

Lemma 8 There exists at most one (modulo measure zero) optimal allocation if

V = V
(
F−1

(
B

B+1

))
on (a, b) 6= ∅ =⇒ (a, b) is a subset of an ironed interval. (21)

Proof Since V is weakly increasing, the set (20) defined in Apendix D is an interval.

By (21), the interior of (20) is either empty or an ironed interval. The V -value on the

set (20) is higher than those of the types below the infimum of the set, and lower than those

of the types above the supremum thereof. This, coupled with the fact that the interior of

the set is either empty or an ironed interval, implies that the conditions (i), (ii) and (iii) in

Lemma 2 hold for any weakly increasing and market clearing allocation Q that differs from

the Q∗ defined in (5) by a positive measure. Any such Q is therefore strictly outperformed

by Q∗. Thus the optimal allocation is unique.

G Proof of Theorem 4

Lemma 9 In any optimal mechanism where the allocation is the three-tier (5) that rations

a quantity x—defined by (7)—on some (a, b) for which 0 < a < F−1
(

B
B+1

)
< b < 1:

a. the surplus for type zero is equal to a+ (b− a)(B − x) (1− F (b));

b. the surplus for type one is equal to (1− b)B + (b− a)(1 + x)F (a).

Proof To prove Claim (a), consider first the case where x ≥ 0. Recall from Corollary 2 for

the payment rule in this case. The surplus for type zero is equal to a (the revenue the type

receives from selling his one unit endowment) plus the lump sum rebate from the planner.

The lump sum rebate is equal to the planner’s profit from implementing (5) through the

profit-maximizing payment rule. Note that the planner cannot profit from selling the good

to the types in (a, b), as the per-unit revenue extracted from them is equal to a, which is

equal to the per-unit cost from procuring the good (from the seller-types in [0, a)). Thus,
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the planner can profit only from the sales to the buyer-types in (b, 1]. The per-unit profit is

the price difference b− (b− a)x/B− a between the price b− (b− a)x/B offered to (b, 1] and

the price a to the seller-types. Since the amount of sales to (b, 1] is (1− F (b))B, the profit

is equal to

(b− (b− a)x/B − a) (1− F (b))B = (b− a)(B − x) (1− F (b)) . (22)

Thus the surplus for type zero is equal to a plus the above expression, as in Claim (a).

Next consider the other case, x < 0. Again recall from Corollary 2 for the payment

rule in this case. The planner can profit only from the quantity she procures from the seller-

types in [0, a). The per-unit profit from this quantity is the price difference b−(a− (b− a)x)

between the sales price b and the procurement price a− (b− a)x. The quantity is equal to

the mass F (a) of [0, a). Thus the profit is equal to

(b− (a− (b− a)x))F (a). (23)

Note that the revenue a type zero receives from selling his one unit of the good is equal to

a− (b− a)x. Therefore, the surplus for type zero is equal to

a− (b− a)x+ (b− (a− (b− a)x))F (a) = a− (b− a)x+ (b− a)(1 + x)F (a)

= a+ (b− a)(B − x) (1− F (b)) ,

where the second line is equivalent to (7), the definition of x. Thus the surplus for type zero

in the case x < 0 is also equal to the expression in Claim (a). Hence Claim (a) is true.

To prove Claim (b), consider first the case x < 0. Given the payment rule characterized

in Corollary 2 for the mechanism of (5), type one buys the quantity B of the good at the

price b per unit and receives a lump sum rebate, which has been shown to be equal to (23)

in the proof of Claim (a). Thus, the surplus for type one given (5) is equal to

(1− b)B + (b− (a− (b− a)x))F (a)

when x < 0, as asserted by Claim (b).

Next consider the other case, x ≥ 0. Given the payment rule characterized in Corol-

lary 2 for the mechanism of (5), type one buys the quantity B of the good at the price

b− (b− a)x/B per unit and receives a lump sum rebate, which has been shown to be equal
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to (22) in the proof of Claim (a). Thus, the surplus for type one given (5) is equal to

(1− (b− (b− a)x/B))B + (b− a)(B − x) (1− F (b))

= (1− b)B + (b− a)x+ (b− a)(B − x) (1− F (b))

= (1− b)B + (b− a)(1 + x)F (a),

with the last line equivalent to (7), the definition of x. Thus, the surplus for type one in the

case x ≥ 0 is also equal to the expression asserted by Claim (b). Hence Claim (b) is true.

Proof of Theorem 4 Claim (a) is intuitive. By Corollary 2, the mechanism of alloca-

tion (5) transfers a (strictly) positive lump sum rebate to all types, and hence the surplus

for the type F−1
(

B
B+1

)
given allocation (5) is positive. By contrast, the surplus for the type

F−1
(

B
B+1

)
is equal to zero in the mechanism of the allocation (6): By the envelope theorem,

one readily sees that the surplus function given allocation (6) attains its minimum at the

type equal to F−1
(

B
B+1

)
. Meanwhile, it is easy to show that any payment rule that imple-

ments a market clearing two-tier allocation such as (6) generates zero profit for the planner

and hence zero lump sum rebate to the individuals. Thus type F−1
(

B
B+1

)
gets zero surplus

under the allocation (6). It follows that the surplus for type F−1
(

B
B+1

)
given allocation (5)

is greater than that given (6). By continuity of surplus as a function of types, this strict

inequality extends to types sufficiently near to F−1
(

B
B+1

)
, and hence Claim (a) is true.

To prove Claims (b) and (c), note from (7), the definition of x, that

−F (a) +B(1− F (b)) + x(F (b)− F (a)) = 0,

or equivalently,
B

B + 1
=

1 + x

B + 1
F (a) +

B − x
B + 1

F (b). (24)

Since (1 + x)/(B + 1) and (B − x)/(B + 1) are between zero and one and sum up to one,

B/(B+1) is a convex combination between F (a) and F (b). When F is convex on (a, b), F−1

is concave on (F (a), F (b)) because F is strictly increasing by assumption. Thus, Jensen’s

inequality implies

F−1
(

B

B + 1

)
≥ 1 + x

B + 1
a+

B − x
B + 1

b = a+
B − x
B + 1

(b− a) . (25)
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By Lemma 9.a, the surplus for type zero under the optimal mechanism of the rationing

allocation (5) is equal to

a+ (b− a) (B − x) (1− F (b)) < a+ (b− a)
B − x
B + 1

≤ F−1
(

B

B + 1

)
,

where the first inequality follows from F (b) > B/(B+1), and the second inequality, from (25).

Thus, since the surplus for type zero given the optimal mechanism of allocation (6) is equal

to the market clearing price F−1
(

B
B+1

)
, type zero is worse-off in the rationing mechanism of

allocation (5) than in the mechanism of the allocation (6). Since the allocations (5) and (6)

are identically equal to −1 for all types in [0, a), the envelope theorem implies that in both

allocations, the surplus decreases at the same rate −1 when the type increases from zero

to a. Consequently, Claim (b) of the theorem follows.

Similarly, when F is concave on (a, b), F−1 is convex on (F (a), F (b)). Thus

F−1
(

B

B + 1

)
≤ 1 + x

B + 1
a+

B − x
B + 1

b = b− 1 + x

B + 1
(b− a) . (26)

By Lemma 9.b, the surplus for type one under the optimal mechanism of the rationing

allocation (5) is equal to

(1− b)B + (b− a)(1 + x)F (a) = B −B
(
b− (1 + x)(b− a)

F (a)

B

)
< B −B

(
b− 1 + x

B + 1
(b− a)

)
≤ B

(
1− F−1

(
B

B + 1

))
,

where the first inequality follows from F (a) < B/(B+1), and the second inequality from (26).

Thus, since the surplus for type one given allocation (6) is equal to B
(
1− F−1

(
B

B+1

))
, type

one is worse-off in the allocation (5) than in the allocation (6). Since the allocations (5)

and (6) are identically equal to B for all types in (b, 1], the envelope theorem implies that

in both allocations, the surplus increases at the same rate B when the type increases from b

to 1. Consequently, Claim (c) of the theorem follows. �

H Proof of Theorem 5

Denote V for the virtual surplus function when the welfare weight distribution is W , and V∗

the virtual surplus function when the said distribution is W∗. Let m := F−1
(

B
B+1

)
.
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Part (a) By the definition of ironing (Appendix C), m is interior to an ironed interval

given W if and only if H̃(V ) (F (m)) < H(V ) (F (m)), which in turn holds if and only if there

exist a, b ∈ [0, 1] for which a < m < b and

H(V )(F (m)) > H(V )(F (a)) +
F (m)− F (a)

F (b)− F (a)
(H(V )(F (b))−H(V )(F (a))) ,

=
F (b)− F (m)

F (b)− F (a)
H(V )(F (a)) +

F (m)− F (a)

F (b)− F (a)
H(V )(F (b)).

The above condition is equivalent to that, for some a < m < b (m = F−1
(

B
B+1

)
),

F (b)− F (m)

F (b)− F (a)

∫ m

a

V (s)dF (s)− F (m)− F (a)

F (b)− F (a)

∫ b

m

V (s)dF (s) > 0,

which one can simplify, by dividing (F (b)− F (m))(F (m)− F (a))/(F (b)− F (a)), to

1

F (m)− F (a)

∫ m

a

V (s)dF (s)− 1

F (b)− F (m)

∫ b

m

V (s)dF (s) > 0.

It follows that m is not interior to any ironed interval given V if and only if, for any a ∈ [0,m)

and any b ∈ (m, 1],

1

F (m)− F (a)

∫ m

a

V (s)dF (s)− 1

F (b)− F (m)

∫ b

m

V (s)dF (s) ≤ 0. (27)

By the hypothesis in the theorem that the posted-price system is optimal given W , Lemma 6

implies that m is not interior to any ironed interval given V , and hence (27) holds for any

a ∈ [0,m) and any b ∈ (m, 1]. Now let W∗ be any spread of W away from m, namely,

W∗ ≥ W on [0,m) and W∗ ≤ W on (m, 1]. Then, by (4) the definition of virtual surplus,

V∗(t)− V (t) =
W (t)−W∗(t)

f(t)

 ≤ 0 if t ∈ [0,m)

≥ 0 if t ∈ (m, 1].

Thus, when the V in (27) is replaced by V∗, the inequality (27) remains to be true for any

a ∈ [0,m) and any b ∈ (m, 1]. In other words, m is not interior to any ironed interval

given W∗. Then Lemma 6, applied to the case of W∗, implies that the posted-price system

is optimal given W∗.

Part (b) Let ε > 0. Let

a := inf{t ∈ [0,m) | W (t) > W (m)− ε/2},

b := sup{t ∈ (m, 1] | W (t) < W (m) + ε/2}.
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Since welfare weight distributions are assumed continuous on R, W (a) < W (m) and there

is a positive-measure subset of (a,m) on which W > W (a). For any t ∈ R define

W∗(t) :=


W (t) if t < a

W (a) if a ≤ t < m

W (b) if m ≤ t < b

W (t) if t ≥ b.

By the construction of W∗ and the monotonicity of W , W∗ is a cdf, W∗ ≤ W on [0,m),

W∗ ≥ W on (m, 1], and ‖W∗ − W‖max ≤ W (b) − W (a) ≤ ε. Since W∗ has a jump at

t = m, the virtual surplus function V∗ given W∗, by (4), has a drop at t = m. Thus one can

modify W∗ into a continuous function (just to satisfy our assumption that welfare weight

distributions are continuous) by replacing the jump at t = m with a sufficiently steep affine

segment, so that V∗ after modification remains to be decreasing strictly at t = m. It follows

from the definition of ironing that m is interior to an ironed interval given W∗ (with or

without the continuity modification of the jump). Then Lemma 6 implies that no optimal

allocation given W∗ can be implemented by the posted-price system.

I Proof of Corollary 4

In the modified model, denote e for each person’s endowed share of the public resource (e.g.,

the probability of vaccination that each individual is entitled to). Given any mechanism

(q̃, p) : [0, 1] → [e, 1] × R in the modified model, denote Q(t) := q̃(t) − e for all types t, so

that if an individual of type t acts as type t′, his expected payoff is equal to

tQ(t′)− p(t′) + t+ ψ(t)

∫ 1

0

(Q(s) + e)dF (s).

Thus, a mechanism (q̃, p) in the modified model corresponds to a mechanism (Q, p) in the

main model, and the objective for any type-t individual is equal to a constant plus tQ(t′)−
p(t′), which is the same as that in our main model. It follows that the IC, IR and BB

constraints are the same in the modified model as in the main model. Thus we need only

to show that the objectives to the social planner in the two models are equivalent. In the

modified model, the social planner’s objective is equal to∫ 1

0

(
tQ(t)− p(t) +

∫ 1

0

ψ(t)Q(s)dF (s)

)
dW (t) (28)
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plus a constant that remains invariant when the mechanism varies. Note that (28) is equal

to (1) plus ∫ 1

0

∫ 1

0

ψ(t)Q(s)dF (s)dW (t).

Switch the order of integration to rewrite this double integral as∫ 1

0

Q(s)

∫ 1

0

ψ(t)dW (t)dF (s).

Thus, following the same routine of envelope theorem and integration by parts that results

in Corollary 1, one can prove that an allocation is optimal if and only if it solves Problem (3)

such that the objective
∫ 1

0
QV dF therein is replaced by

∫ 1

0
QṼ dF where

Ṽ (t) := V (t) +

∫ 1

0

ψ(s)dW (s)

for all t ∈ [0, 1]. Since the additional integral is a constant, the two optimization problems

are equivalent.

J Unbounded Acquisition

The main model assumes that the upper bound B for acquisition quantity per type is fi-

nite. Here we consider an extension where B = ∞. This case reflects a world with severe

inequalities and insatiable demands for the good. For example, it could be an exchange

economy where the endowment is an individual’s initially acquired tract of land when a

group of colonists arrive at a new, unoccupied place, or one’s own private information in

digital format that can be traded off for convenience, or a citizen’s initial voting power in a

fledging republic say the early Roman Republic. The following extension sheds light on the

tendency that such resources are concentrated to a tiny few of the society.

Now that there is no upper bound on the quantity that a type is allowed to acquire,

the buyer-types in this case should only be those types that maximize the ironed virtual

surplus V—selling the good to any type with lower V -value would be a waste—and all other

types should be sellers. The outcome in this case is therefore intuitive. Either the ironed

virtual surplus V attains its maximum at a unique point (the highest type, as V is weakly

increasing by construction), or V is maximized by multiple points, which constitute an upper

interval in the type space. In the former case, all members of the society supply the good
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to the single, highest type. In the latter case, the optimal allocation entails two tiers, the

“haves” consisting of the V -maximizers, and the “have-nots” consisting of all the other types.

The former case, the utmost form of inequalities, needs to be formalized because the

corresponding optimal allocation is not a real function. We say that the optimal allocation

is singular iff there exists a sequence (Qn)∞n=1 of functions Qn : [0, 1]→ [−1,∞), each weakly

increasing and market clearing (and hence budget balancing by Theorem 1, which remains

intact when B = ∞), such that Qn converges pointwise to the extended-real function Q∞

defined by

Q∞(t) :=

 −1 if t ∈ [0, 1)

∞ if t = 1
(29)

and, for any function Q : [0, 1] → [−1,∞) that is weakly increasing and market clearing

(and hence budget-balancing), there exists N for which Qn outperforms Q in terms of the

design objective in Section 2 for all n ≥ N . Then one can prove (Appendix K) the following

characterization of the optimal allocation.18

Theorem 6 When B =∞:

a. if V (1) > V (t) for all t ∈ [0, 1), then the optimal allocation is singular;

b. else then there exists an optimal allocation and it is a two-tier allocation defined by

Q∗(t) :=

 −1 if 0 ≤ t < c∗

F (c∗)
1−F (c∗)

if c∗ < t ≤ 1,
(30)

where

c∗ := inf

(
arg max

[0,1]
V

)
.

Clearly, rationing is needed to implement the optimal allocation (30) in case (b). Such

necessity of rationing among the “haves” makes sense realistically: unchecked concentration

begets social upheavals. Nonetheless, case (a) in a sense corresponds to the optimality of

the posted-price system: Since V (1) > V (t) for all t ∈ [0, 1), one can construct a sequence

(Bn, Q
n)∞n=1 such that Qn → Q∞ pointwise, Bn →n ∞, and for each n, Qn is the optimal

allocation in the basic model given upper bound Bn, implemented by posting the market

clearing price F−1
(

Bn

Bn+1

)
. Since Qn in the sequence attains the optimality given Bn, Q∞

18With a condition similar to (21), one can also establish a uniqueness claim of the optimal allocation.
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can be viewed as the limit of the optimum-implementing posted-price system when the

acquisition cap rises without bound.

A sufficient condition to rule out the singularity case in Theorem 6 is that V be strictly

decreasing at 1, which means 2 < w(1) if w is the Radon-Nikodym derivative of the welfare

weight distribution W with respect to F . Intuitively speaking, had the optimal allocation

been singular, the surplus for a type-1 player, whose type is the highest, would be infinitesi-

mal, since the price for the good converges to one. But if the designer rations the quantity to

an interval (c, 1], the trading price is c < 1, and so the type-1 player gets a strictly positive

surplus. Thus if the welfare weight density on type one is sufficiently large, the optimal

allocation is to ration the good to some interval (c∗, 1].

K Proof of Theorem 6

First, note that Theorem 1 applies to the B =∞ case. Second, adopt the proof of Lemma 2

to obtain the following fact analogous to the lemma: For any a, b ∈ [0, 1] such that V is

constant on (a, b) (unless (a, b) = ∅) and neither a nor b is an interior point of any ironed

interval, for any −1 ≤ x ≤ y such that the allocation

Q∗(t) :=


−1 if 0 ≤ t < a

x if a < t < b

y if b < t ≤ 1

(31)

satisfies market clearing, and for any Q : [0, 1] → [−1, y] that is weakly increasing and

satisfies market clearing, we have
∫ 1

0
Q∗V dF ≥

∫ 1

0
QV dF , and the inequality is strict if at

least one of the conditions (i), (ii) and (iii) listed in Lemma 2 holds.

Claim (a) Assume the premise of this claim, that V (1) > V (a) for all a ∈ [0, 1). To

satisfy the condition for singularity, we start by constructing a sequence of allocations that

converges to Q∞. Since V is monotone, for any x ∈ R the inverse image V
−1

(x) is a

nondegenerate interval if it contains more than one point. There are at most countably

many such nondegenerate intervals. Thus, either V = V and is strictly increasing on [0, 1],

or [0, 1] is partitioned by a sequence (τk, θk)Kk=1, for some K ∈ {1, 2, 3, . . .} ∪ {∞}, such that

0 ≤ τ1 < θ1 ≤ τ2 < θ2 ≤ τ3 < θ3 ≤ · · · ≤ 1,
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for each k there is vk ∈ R for which V = vk on (τk, θk), and k < j ⇒ vk < vj. Note that any

ironed interval is contained in [τk, θk] for some k. For any n = 2, 3, 4, . . ., define

Qn(t) :=

 −1 if 0 ≤ F (t) < 1− 1/n

n− 1 if 1− 1/n < F (t) ≤ 1.

For each n, Qn is weakly increasing and market clearing by construction and hence is also

budget balancing by Theorem 1. Clearly (Qn)∞n=2 converges to Q∞ pointwise. We shall

extract an infinite subsequence of (Qn)∞n=2 whose jump points do not belong to the interior

of any ironed interval, which is contained by [τk, θk] for some k. Start with the smallest n

for which F−1(1− 1/n) ∈ (τk, θk) for some k. Replace the jump point F−1(1− 1/n) for Qn

by θk, and raise the level of Qn on (θk, 1] to F (θk)/(1− F (θk)) to preserve market clearing.

Remove all the Qm in the original sequence such that

F−1(1− 1/(n− 1)) < F−1(1− 1/m) < θk.

Since V (1) > V (a) for all a ∈ [0, 1) by hypothesis, θk < 1 (Lemma 5.a), thus there exists an

integer M that is the largest among such m. Then, starting from QM+1, modify the sequence

(Qn)∞n=M+1 as we do (Qn)∞n=2. By recursion, we obtain an infinite subsequence (Qnj)∞j=1 of

(Qn)∞n=2 such that for any j and any k the jump point of Qnj does not belong to (τk, θk).

To show that the optimal allocation is singular, pick any weakly increasing and market

clearing allocation Q, and we shall prove that Q is outperformed by the Qnj in (Qnj)∞j=1 for all

sufficiently large j. Since the elements in the sequence are both market clearing and budget

balancing, and their jump points are not interior to any ironed interval, the observation

at the start of this section applies and we need only to prove that condition (iii) listed in

Lemma 2 holds, where the role of Q∗ is played by Qnj for some sufficiently large j. To that

end, recall from Lemmas 4 and 5 that V is continuous at t = 1 and

∀t < 1 : V (t) < V (1) = V (1). (32)

This coupled with V (1) = 1 > 0, implies

∃δ > 0 : ∀t ∈ (1− δ, 1] : V (t) > 0. (33)

Since the range of Q is contained in [−1,∞), the market clearing condition implies that

Q > −1 on a positive-measure subset of [0, 1]. Consequently, with Q weakly increasing,

θ := inf {t ∈ [0, 1] | Q(t) > −1} < 1.
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Since the range of Q is [−1,∞) and Q is weakly increasing, max[0,1]Q = Q(1) < ∞. Thus

there exists J such that for any j ≥ J we have

max{θ, 1− δ} < F−1
(

1− 1

nj

)
and nj − 1 > Q(1).

For any j ≥ J , denote the jump point of Qnj by xj. Then either xj = F−1(1− 1/nj),

or xj = θk such that θk is the right endpoint of the interval (τk, θk) to which F−1(1− 1/nj)

belongs. Let v := V (xj). Thus, 1 > xk ≥ F−1(1− 1/nj) and v ≥ V (F−1(1− 1/nj)). Since

1 − δ < F−1 (1− 1/nj), (33) implies v > 0. With V weakly increasing, V (t) ≥ v for all

t ∈ [xj, 1]. Furthermore, (32) implies V (1) > v; since V is continuous at t = 1, there exists a

positive-measure subset E of [xj, 1] such that V (t) > v for all t ∈ E. This, coupled with the

fact Qnj ≥ nj − 1 > Q on (xj, 1] (by the construction of Qnj and the choice of J), implies

that condition (iii) listed in Lemma 2 holds when Q∗ = Qnj , with xj here playing the role

of a and b there and, by construction of Qnj , not interior to any ironed interval. Thus, by

the observation at the start of this section,
∫ 1

0
QnjV dF >

∫ 1

0
QV dF , as desired.

Claim (b) Since V is weakly increasing, arg max[0,1] V is equal to either [c∗, 1] or (c∗, 1]

for some c∗ ≤ 1. Since V (1) ≤ V (a) for some a < 1, c∗ < 1. Thus, the allocation Q∗ is

well-defined by (30). It is a a two-tier allocation because c∗ > 0 due to the fact V (0) < V (1)

(Lemma 3). By (30), Q∗ is market clearing. It is also budget balancing by Theorem 1.

Thus, it suffices to show that Q∗ maximizes
∫ 1

0
QV dF among all weakly increasing Q :

[0, 1] → [−1,∞) subject to the market clearing condition. Pick any such Q. Note that Q∗

corresponds to the special case of the Q∗ defined in (31) where a = c∗ and b = 1. By the

definition of c∗, c∗ is not interior to any ironed interval. Thus the observation at the start of

this section applies, and hence
∫ 1

0
Q∗V dF ≥

∫ 1

0
QV dF , as desired.
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