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Abstract

This paper investigates the conditions for full preemption of conflicts in the form of all-pay auctions. I 
define two notions of conflict preemption: to implement peace on path with commonly expected contin-
uation plays should one veto a peace proposal, or to secure that each player accepts a peace proposal no 
matter what continuation play he might expect to occur should he veto it. For each notion I prove a neces-
sary and sufficient condition in terms of the primitives. The conditions imply that peace cannot be secured 
when the infimum of a player’s type support is sufficiently low, regardless of the distribution functions of 
the players’ types. The conditions also imply that peace can be implemented even when each player fore-
casts that should he veto peace the cost he incurs in the ensuing conflict is infinitesimal. The findings are 
obtained through a distributional method on two-player all-pay auctions that unifies the methods previously 
separated by discrete versus continuous distributions.
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1. Introduction

Under what conditions can two rivals avoid conflicts through a mediated settlement? While 
the conditions must be that the outcome of conflict be sufficiently unattractive to each player, 
the question is What does such unattractiveness mean in terms of the primitives? The answer 
implied by the conflict mediation literature, such as Bester and Wärneryd (2006), Compte and 
Jehiel (2009), Fey and Ramsay (2011), Hörner et al. (2015) and Spier (1994), is that each player 
has a sufficiently bad exogenous outside option as the alternative to peace. This exogenous out-
side option is either the player’s nonparticipation payoff as his type, or his expected payoff from 
an exogenous lottery determined by the two players’ types. Thus, peace is guaranteed if each 
player’s nonparticipation-payoff type is distributed on a sufficiently low support, or if each play-
er’s lottery-winning type is so stochastically dominant that the opponent’s expected payoff from 
triggering the conflict lottery is sufficiently small.

The answer is more complicated, and different to a large extent, than the above if the outcome 
of the conflict is determined not by an exogenous payoff or lottery but rather by an endogenous 
continuation play during the conflict. That means a player’s assessment of his outside option 
depends on how he thinks his opponent would do should conflict ensue. Specifically, this paper 
considers conflict as an all-pay auction for the contested prize, with each player’s type equal to 
the reciprocal of his marginal cost of bids, interpreted as his strength level in the conflict. To 
see how our answer may differ from the above, suppose that player 1’s type is drawn from a 
distribution supported by [0, ε]. Consider his decision, given some type t ∈ (0, ε), on whether 
to veto (unilaterally reject) a peaceful split of the prize proposed by the mediator. Suppose, 
for the moment, that player 1 thinks that, should he veto peace, his opponent would believe 
that player 1’s type is zero. Driven by this belief, player 2 would bid arbitrarily close to zero; 
then player 1 would think that he can easily win the auction by bidding slightly above zero. 
Consequently, in contrast to the above literature, player 1 would reject any peace proposal that 
offers him less than the full prize, no matter how small the supremum ε of his type support is, 
and no matter how stochastically dominant his opponent’s type distribution is.

Thus, the prospect of conflict preemption depends on what each player forecasts as the con-
tinuation play should conflict ensue. With conflict off path in any equilibrium that fully preempts 
conflict, such forecasts are arbitrary, not subject to Bayes’s rule. That leads to different notions of 
conflict preemption, depending on the degree to which the mediator can coordinate the players 
into having the same forecast about continuation plays in off-path events. For a mediator with 
such coordination power is the notion implementability of peace, meaning that a peace proposal 
admits a perfect Bayesian equilibrium (PBE) on the path of which conflict occurs with zero 
probability. By contrast, for a mediator without such coordination power is the notion security of 
peace, meaning that every type of each player is willing to accept the peace proposal no matter 
what continuation play he forecasts to occur in the event where he vetoes the proposal. For each 
of the two notions, this paper delivers a necessary and sufficient condition, in terms of the prior 
distributions of the players’ types, for full preemption of conflict (Theorem 1).

The condition for peace security has an unprecedented implication: When the infimum of a 
player’s type support is sufficiently lower than its supremum, peace is not securable, regardless 
of any other aspect of the players’ type distributions (Corollaries 1 and 2.b and Theorem 3). Even 
if there is a conflict-preempting PBE, a player may forecast a different off-path continuation play 
than what the PBE prescribes, so he would find it profitable to deviate. Such disagreements in 
forecasting off-path plays have been justified by the self-confirming equilibrium literature such 
as Fudenberg and Levine (1993). In particular, the player may predict that, in the off-path event 
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where he vetoes peace, his opponent will be complacent in the conflict because of her posterior 
belief that his type is the infimum; then he would rather engage her in the conflict and take 
advantage of her complacency, however stochastically dominant is her type distribution. This 
result does not require enlarging the spread or riskiness of a player’s type distribution. In the 
previous example, the result obtains even when the support [0, ε] of player 1’s type is arbitrarily 
narrow. Here is a discontinuity of security between ε-likelihoods and zero-likelihoods: Start with 
a case where peace is secured and slightly perturb each player i’s type distribution from its 
support [ai, zi] so that the type belongs to [ai, zi] with probability 1 − ε and otherwise belongs 
to [ai/2, ai/2 + ε], then Theorem 3 implies that peace is not securable, however small is the 
positive ε.

The condition for peace implementability, however, has precedents in the conflict media-
tion literature, but there is an important difference. The similarity is in the implication that the 
prospect of satisfying the condition is improved when a player’s type distribution becomes more 
stochastically dominant than before (Theorem 2). An important difference is that to implement 
peace the literature also relies on an assumption that conflict reduces the value of the contested 
prize by a sufficiently large exogenous cost, whereas this paper assumes no exogenous cost of 
conflict. Furthermore, in the PBE that this paper constructs to implement peace, all but one type 
of each player expects to incur zero or arbitrarily small cost in the off-path event that he vetoes 
peace (Theorem 7.a.ii). Thus, from the perspective that the cost of conflicts is endogenous, peace 
is implementable even when each player expects that conflict is not costly should he trigger it. 
This finding indicates that, regarding the question Why peace is implementable, the exogenous 
cost assumption would overstate the importance of the destructiveness of conflict, though the as-
sumption may be justifiable with respect to the question Why conflict happens despite its costs, 
which concerned much of the conflict mediation literature.

To obtain a condition both necessary and sufficient for all types of each player to accept a 
peace proposal, one would need to characterize the entire set of endogenous outside options for 
all of his types, including the deviating types that are not expected in, and may (due to possi-
bility of ties) have no best response to, the continuation play in the conflict. This task becomes 
tractable because the supremum among a player’s expected payoffs in responding to a continu-
ation play—when his bid ranges in R+—is monotone and continuous in his type (Theorem 5) 
and hence it suffices to characterize the set of all outside options only for the strongest type of 
each player. This set corresponds to all the Bayesian Nash equilibria (BNE) of the all-pay auction 
in the off-path event where the player vetoes peace, with each BNE rationalized by an off-path 
posterior belief about the vetoer. Since off-path posteriors are arbitrary, we need to characterize 
the BNEs of the all-pay auction given arbitrary type distributions, allowing for gaps and atoms.

In solving the all-pay auction game with arbitrary type distributions, this paper develops a dis-
tributional method generalized from Vickrey (1961, Section II) and Milgrom and Weber (1985). 
The method, encapsulated by Eqs. (9) and (19), unifies the previously separate approaches to 
two-player all-pay auctions in the literature, one based on discrete or degenerate distributions, 
and the other, continuous, strictly increasing, and often identical distributions. The first approach 
is not conducive to a general formula for equilibria, which we need in order to compare their 
performances; the second one provides general formulas but it relies on the pure strategy of an 
equilibrium and the invertibility thereof to map one’s bid to the other’s type submitting the same 
bid, whereas we need to handle mixed and non-invertible strategies due to type distributions with 
atoms and gaps. Given such general settings, my method obtains new properties of the bid-to-type 
correspondence despite its possible discontinuities (Sections 5 and B.5) and characterizes the 
equilibrium in terms of its distributions of bids (Appendix B.6). The result generalizes the second 
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approach (e.g., Amann and Leininger, 1996 and Kirkegaard, 2008) and includes all cases han-
dled by the first one, except when types are correlated across bidders (Krishna and Morgan, 1997;
Siegel, 2014 and Lu and Parreiras, 2017).1

The all-pay auction game solved given arbitrary type distributions, this paper finds for each 
player’s strongest type the posterior belief that rationalizes the best BNE, and the posterior belief 
that rationalizes the worst BNE, among the BNEs in the off-path event where he vetoes peace 
(Theorem 7). What the best BNE provides for this type of the player is the minimum payoff that a 
peace proposal needs to offer the player in order to secure his acceptance whichever off-path BNE 
he might anticipate; what the worst BNE provides is the minimum payoff to make his acceptance 
a best response to some off-path BNE. These minimum peaceful payoffs are derived from the 
parameters explicitly (Eqs. (7) and (8)). Thus come the necessary and sufficient condition for 
peace to be securable, and that for peace to be implementable (Theorem 1).

Balzer and Schneider (2018) have independently considered conflict mediation with endoge-
nous conflict. They provide characterization of conflict-probability-minimizing mechanisms in 
terms of the on-path posterior belief system in the associated equilibria given the assumption that 
both players are drawn from an identical discrete distribution and that conflict cannot be fully 
preempted. Celik and Peters (2011) have considered endogenous outside options in an oligopoly 
environment of cartel formation. Their focus is the possible loss of generality due to the full 
participation condition on mechanisms.

After presenting the primitives, Section 2 defines the two notions of conflict preemption. The 
conditions for conflict preemption according to these notions are derived in Section 3, which 
assumes a minimum set of properties of the conflict stage so that the derivation could shed a light 
on conflicts that are not necessarily all-pay auctions. The two conditions for conflict preemption, 
implementability versus security, are contrasted in Section 4, as well as in the examples after 
Theorem 1. Then Section 5 presents a general, distributional approach to two-player all-pay 
auctions that delivers the properties of the conflict stage assumed in Section 3. All formally 
stated claims are proved in the Appendix, in their order of appearance.

2. The preliminaries

The primitives Two players, indexed by i ∈ {1, 2}, compete for a prize. First, each player i’s 
type ti is independently drawn according to a commonly known cumulative distribution function 
(c.d.f.) Fi and becomes i’s private information. Assume Fi(0) = 0, let [ai, zi] be the convex 
hull of suppFi , the support of Fi , and assume 0 ≤ ai < zi . Second, a neutral mediator proposes 
a peaceful split in the form of v ∈ [0, 1]. Third, each player independently announces whether 
to accept or reject the proposed split. If both accept it, the game ends with player 1 getting 

1 Krishna and Morgan, Siegel, and Lu and Parreiras allow for correlation between players but restrict the extent of 
correlation to retain monotonicity of the equilibrium strategy (cf. Footnote 3). Lu and Parreiras also use a technique, 
dating back to Milgrom and Weber (1985), that transforms any continuous and strictly increasing distribution into the 
uniform distribution on [0, 1]. This technique does not simplify our task of comparing the BNEs rationalized by different 
type distributions, not even among continuous and strictly increasing ones, because such transformation from different 
distributions generates different transforms of each bidder’s valuation functions, hence the task of comparing distributions 
would become comparing such valuation transforms. For references to other all-pay auction literature, see Kaplan and 
Zamir (2015).
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a payoff equal to v, and player 2 getting 1 − v.2 If at least one of them rejects the proposed 
split, the game enters its final, conflict stage, where each player i, after observing each other’s 
response to the proposed split, submits a sealed bid bi ∈ R+. The player who submits the higher 
bid wins the prize, with ties broken randomly with equal probabilities. Then player i’s payoff is 
equal to 1 − bi/ti if he wins the prize, and −bi/ti if otherwise. When ti = 0, the notation bi/ti
means ∞ if bi > 0, and zero if bi = 0. Both players are assumed risk neutral.

Implementability versus security of peace Given any proposed split, a multistage game is de-
fined. Denote G (F̃1, F̃2) for the continuation game in the conflict stage such that F̃1 is the 
posterior distribution of players 1’s type, and F̃2 that of player 2’s. Since this paper consid-
ers only equilibria where conflict is off path, let us focus on the off-path event where player i

has deviated through vetoing (or unilaterally rejecting) the peaceful split. In that event, Bayes’s 
rule implies F̃−i = F−i , as the other player −i accepts the split almost surely. Whereas, F̃i is 
off-path and hence arbitrary. In the spirit of the “no signaling what you don’t know” condition 
in Fudenberg and Tirole (1991), I impose an independence condition on F̃i : If player i makes 
a unilateral deviation in responding to a proposed split, then F̃i is independent of the realized 
type of −i. This condition rules out scenarios where the players’ types, assumed stochastically 
independent at the outset, suddenly become correlated without the two having had any commu-
nication.3 Given any such F̃i , a continuation equilibrium in the event that results from player i’s 
unilateral deviation is an element of

Ei (F̃i) := the set of BNEs of G (F̃i ,F−i ), (1)

where BNE stands for Bayesian Nash equilibrium. Thus, I restrict the notion perfect Bayesian 
equilibrium (PBE) by the condition that, for each i ∈ {1, 2}, the continuation play conditional on 
player i’s unilateral deviation is an element of

Ei :=
⋃{

Ei (F̃i) : supp F̃i ⊆ suppFi; F̃i and F−i are independent
}

. (2)

A PBE is said peaceful if and only if on its path conflict occurs with zero probability relative to 
the prior distributions. Peace is said implementable if and only if a peaceful PBE exists in the 
multistage game given some proposed split.

However, it may be unrealistic that players have the same forecast on the continuation equi-
libria in off-path events. To preempt conflict through a peaceful PBE, a mediator needs to be 
able to tell (implicitly) the players which continuation equilibrium to play in the off-path event 
of conflict; should it be off path, she would be unable to check empirically whether they abide by 
her coordination.4 Thus a stronger concept than implementability is germane. A peaceful PBE 
is said secure if and only if, for each player i ∈ {1, 2}, for almost every type of i, and for any 

2 Restriction to such fixed splits, which each player can only accept or reject, causes no loss of generality in this paper, 
which concerns the existence of equilibria that induce zero occurrence of conflict and assumes that a player’s type affects 
his payoff only when conflict occurs. See Appendix A for more explanation.

3 The independence condition ensures monotonicity of any equilibrium strategy in the continuation game (Lemma 6), 
needed for Lemma 2. Without the independence condition, if the correlation is sufficiently small, monotonicity can still 
be guaranteed (cf. Footnote 1). But if the correlation is strong then monotonicity cannot be guaranteed (Rentschler and 
Turocy, 2016).

4 For further explanations see the self-confirming equilibrium literature.
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σ ∈ Ei ,5 if σ is the continuation play conditional on his deviation of rejecting the proposed split, 
it is a best response for i to accept the peace proposal. Peace is said securable if and only if a 
secure, peaceful PBE exists in the multistage game given some proposed split.

3. The conditions for peace

For any i ∈ {1, 2}, any σ ∈ Ei and any ti ∈ suppFi , denote Ui(ti |σ) for the supremum among 
the expected payoffs during the conflict stage for the type ti of player i when his bid ranges 
in R+, expecting the other player, −i, to abide by σ . It is easy to show that Ui(·|σ) is weakly 
increasing on [ai, zi] (Lemma 3, Appendix B.1). Consequently, for each player i the type most 
tempted to veto a proposed split is zi : If σ is the continuation play that i anticipates for the event 
where i vetoes the proposal, then accepting the proposed split is a best response for all types of 
player i if and only if the split would give i at least Ui(zi |σ). Thus, among the class of peaceful 
PBEs, the lowest possible peaceful payoff that can induce acceptance from all types of player i is

ui := inf{Ui (zi |σ) : σ ∈ Ei}. (3)

For a peaceful PBE to be secure, however, acceptance needs to be a best response for almost all 
types of player i no matter which σ ∈ Ei player i expects as the continuation play. Thus, for a 
proposed split to have a securely peaceful PBE, it needs to offer player i at least

ui := sup{Ui (zi |σ) : σ ∈ Ei}. (4)

Lemma 1. (a) Peace is securable if u1 +u2 ≤ 1; (b) if ui is attained in Eq. (3) for each i ∈ {1, 2}, 
then peace is implementable if u1 + u2 ≤ 1; (c) if, for any i ∈ {1, 2} and any σ ∈ Ei , Ui (·|σ)

is continuous at zi , then peace is implementable only if u1 + u2 ≤ 1, and securable only if 
u1 + u2 ≤ 1.

Our task is mainly to turn the endogenous conditions u1 + u2 ≤ 1 and u1 + u2 ≤ 1 into 
conditions purely about the primitives through finding the formulas that map the primitives to ui

and ui . Derivation of the formulas requires careful analysis of the conflict continuation game and 
will be presented in Section 5. Here I shall state the outcome of the derivation thereby presenting 
the main results. The upshot of the derivation is that, for each player i, ui is attained by the 
unique element σ i of Ei (δzi

), and ui by the unique element σ i of Ei (δai
) (Theorem 7).6 In other 

words, to the type zi of player i, the worst off-path posterior belief about him upon his vetoing a 
peaceful split is that his type is zi , and the best off-path posterior is that his type is ai . The rough 
intuition is that the opponent would be most aggressive in fighting against the strongest possible 
player i, and most complacent in fighting against the weakest possible player i.7

5 Note that “for any σ ∈ Ei” is just a short way to say “for any posterior F̃i satisfying the independence condition with 
respect to the on-path actions of the PBE, and for any σ ∈ Ei (F̃i ).” Thus, the notion of security can be applied to general 
multistage games, with “accepting the proposed split” generalized to on-path actions with respect to the PBE.

6 For any x ∈ R, δx denotes the Dirac measure, as well as the distribution, whose support is {x}.
7 This intuition about complacency, however, would have difficulty when ai is larger than the type supremum z−i of 

the opponent. Neither can the intuition about aggressiveness explain why the opponent would not suppress her bids out of 
the fear that player i’s type is too strong for her small winning chance to be worth her sunk bidding cost (cf. Footnote 8).

Our finding of the best and worst posteriors for type zi of player i should not be confused with observations that a 
bidder would rather have his type independently drawn from the same distribution as his rival’s than have his type, say ti , 
be commonly known (e.g., Kovenock et al., 2015). Such observations are binary comparisons between the game G (F, F)
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With ui attained by σ i , and ui by σ i , calculation of σ i and σ i gives us

ui = c∗−i , (5)

ui = 1 − ai

zi

(
1 − co−i

)
, (6)

where c∗−i is the probability with which the opponent player −i bids zero in σ i , and co−i

player −i’s probability of bidding zero in σ i . And, as properties of σ i and σ i , these probabilities 
are determined by the primitives according to the next formulas for each i ∈ {1, 2}:

c∗
i := inf

⎧⎨⎩ci ∈ [0,1] : z−i

1∫
ci

1

F−1
i (s)

ds ≤ 1

⎫⎬⎭ , (7)

co
i := inf

⎧⎨⎩ci ∈ [0,1] : a−i

1∫
ci

1

F−1
i (s)

ds ≤ 1

⎫⎬⎭ , (8)

where, for any s ∈ [0, 1],
F−1

i (s) := inf {t ∈ suppFi : Fi(t) ≥ s} . (9)

The last paragraph of Section 5 will explain how we obtain Eqs. (5)–(8).
Eqs. (5) and (6), combined with Lemma 1, imply the main result, where the conditions for 

peace are purely about the prior distributions (F1, F2) according to Eqs. (7) and (8):

Theorem 1. (a) Peace is implementable if and only if

c∗
1 + c∗

2 ≤ 1. (10)

(b) Peace is securable if and only if

2∑
i=1

ai

zi

(
1 − co−i

)≥ 1. (11)

Corollary 1. If ai = 0 for some i ∈ {1, 2}, then peace is not securable.

Example 1. Suppose that player 1’s type distribution is supported by [0, ε], and player 2’s by 
[a2, z2], with a2 > ε. Then c∗

2 = 0 by Eq. (7), because z1/F
−1
2 (s) < z1/a2 < 1 for all s ∈ [0, 1]. 

Since c∗
1 ≤ 1 by definition, Ineq. (10) is satisfied. Thus, peace is implementable: The media-

tor can propose to give the entire prize to player 2; player 1 is so much stochastically weaker 
than player 2 that he expects zero surplus from vetoing the proposal as long as he expects the 
continuation play σ 1. By contrast, because a1 = 0, the left-hand side of Ineq. (11) is equal to 
a2/z2(1 − co

1) < 1, hence (11) is not satisfied, and peace is not securable: Unless the mediator 

with an identical type distribution F versus the game G (δti , F) with the distribution pair (δti , F), and the identical 
distribution F in the former, facilitating an explicit solution, is crucial to such observations. The comparisons in this 
paper, by contrast, are not binary, but rather are between a game G (δt∗

i
, F−i )—where t∗

i
need not be the player’s true 

type—and a continuum of other games G (F̃i , F−i ), with F̃i ranging among all posteriors of i. The finding does not rely 
on identical distributions.
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proposes to give the entire prize to the stochastically inferior player 1, which player 2 would 
surely reject because u2 = 1 − a2/z2 > 0 by Eqs. (6) and (8), the mediator cannot ensure that 
player 1 would not reject the proposal out of an optimistic forecast that, should he reject it, 
player 2 would believe that player 1’s type is zero and so would bid so complacently that player 1 
can win with an arbitrarily small bid.

The rest of this section focuses on symmetric players. Corollary 2.b makes an interesting 
observation that the condition for peace security depends only on the infimum–supremum ratio 
of the type support and not at all on any other aspect of the type distributions.

Corollary 2. Suppose that [a, z] = convex hull (suppFi) for all i ∈ {1, 2}.

a. If F1 = F2 = F for some c.d.f. F , then there exists a unique c∗ ∈ [0, 1) such that

z

1∫
c∗

1

F−1(s)
ds = 1, (12)

and peace is implementable if and only if c∗ ≤ 1/2.
b. Peace is securable if and only if 2a ≥ z.

Example 2. Suppose F1 = F2 = F and F is the uniform distribution on [a, z]. Then peace is 
securable if and only if 2a ≥ z. By contrast, peace is always implementable. To see that, note 
F−1(s) = a + (z − a)s for any s ∈ [0, 1]. Hence the left-hand side of Eq. (12) is equal to

z

1∫
c∗

(a + (z − a)s)−1 ds = z

z − a
ln

z

a + (z − a)c∗
.

Thus Eq. (12) implies

c∗ = e−1+a/z − a/z

1 − a/z
.

We claim that c∗ ≤ 1/2, which, by the above equation and the fact a ≤ z, is equivalent to

2e−1+r − r ≤ 1

for all r ∈ [0, 1]. Since the left-hand side of this inequality is convex in r , it attains its maximum 
at either r = 0 or r = 1. When r = 0, 2e−1+r − r = 2/e < 1; when r = 1, 2e−1+r − r = 1. Thus, 
2e−1+r − r ≤ 1 for all r ∈ [0, 1], as claimed.

Example 3. The peace implementability condition c∗ ≤ 1/2 is satisfied when F(t) = √
t for all 

t ∈ [0, 1], as c∗ = 1/2 by Eq. (12). By contrast, if F(t) = t1/3 for all t ∈ [0, 1], Eq. (12) becomes ∫ 1
c∗ s−3ds = (c−2∗ − 1

)
/2 = 1, i.e., c∗ = 1/

√
3 > 1/2, violating the implementability condition. 

The peace security condition, by Corollary 1, can never be satisfied.

Example 4. To underscore the applicability of our result to both continuous and discrete dis-
tributions, suppose that the type of each player is independently drawn from the same binary 
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distribution F , supported by {a, z} with a < z, such that F(a) = θ for some θ ∈ (0, 1). The con-
dition for security of peace is again 2a ≥ z. To calculate the condition for implementability of 
peace, note from Eq. (9) that

F−1(s) =
{

z if s ∈ (θ,1]
a if s ∈ [0, θ ].

If c > θ then z
∫ 1
c

1
F−1(s)

ds = (z/z)(1 − c) < 1; if c ∈ [0, θ ],

z

1∫
c

1

F−1(s)
ds ≤ 1 ⇐⇒ z

z
(1 − θ) + z

a
(θ − c) ≤ 1 ⇐⇒ c ≥

(
1 − a

z

)
θ.

Thus, c∗ = (1 − a/z) θ by Eq. (12), and peace is implementable if and only if (1 − a/z) θ ≤ 1/2, 
requiring that the probability θ of being the weak type be sufficiently small.

4. Insufficient security of deterrence by strength

By Theorem 1, improving the prospect of peace boils down to shrinking the left-hand side of 
Ineq. (10) for peace implementability, and enlarging the left-hand side of Ineq. (11) for peace 
security. Obviously, one of such desirable changes is to reduce c∗

i for Ineq. (10), and co
i for (11). 

To reduce c∗
i and co

i , one readily sees from their definitions that it suffices to make a prior distri-
bution Fi rank higher in stochastic dominance. For any two distributions F and F̂ , write F̂ �F if 
and only if F̂ first-order stochastically dominates F and supp F̂ = suppF . Replacing the prior Fi

of player i’s type by an F̂i with F̂i � Fi amounts to transferring some weight from low types to 
high types thereby making player i stochastically stronger ex ante. The next theorem observes 
that such operations never undermine peace implementability and, furthermore, there exists such 
an operation that improves it.

Theorem 2. Given any prior distributions (F1, F2) of the players’ types:

a. if F̂i � Fi for each i ∈ {1, 2} then peace implementability (resp. security) given (Fi)
2
i=1 im-

plies peace implementability (resp. security) given (F̂i)
2
i=1;

b. for any (Fi)
2
i=1 given which peace is not implementable, there exists (F̂i)

2
i=1 such that F̂i �Fi

for each i ∈ {1, 2} and, if (Fi)
2
i=1 is replaced by (F̂i)

2
i=1, peace is implementable.

It is worth noting that improving peace-implementability does not require making one player 
ex ante weaker than the other. Rather, implementability of peace never gets hurt when both 
players become ex ante strong including when they become equally so. One can easily prove a 
corollary of Theorem 2: For any prior distributions (F1, F2) such that suppF1 = suppF2, there 
exists F̂ such that F̂ � Fi for each i ∈ {1, 2} and, if (F1, F2) is replaced by (F̂ , F̂ ), peace is 
implementable.

In contrast to implementability of peace, which can be improved simply by strengthening 
some prior distributions (Theorem 2.b), it is impossible to improve security of peace through 
strengthening distributions when each player’s infimum type is sufficiently apart from his supre-
mum type:

Theorem 3. If ai/zi < 1/2 for each i ∈ {1, 2}, then security of peace is impossible.
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Regardless of the functional forms of the prior distributions, peace security is never under-
mined by the following modification of the infimum–supremum ratios of the prior distributions. 
It enlarges the type support for one player and shrinks that for the other.

Theorem 4. For any (F̂1, F̂2) such that inf supp F̂i = â and sup supp F̂i = ẑ for each i ∈ {1, 2}, if 
â/ẑ = 1

2 (a1/z1 + a2/z2), then peace security given (Fi)
2
i=1 implies peace security given (F̂i)

2
i=1.

To understand the crucial role of the infimum–supremum ratio of each player’s type support, 
manifested in Theorems 3 and 4 as well as Corollary 2.b, recall that security requires the com-
pliance of the strongest type zi of each player i for whatever forecast that he may have regarding 
what his deviation would entail. The most optimistic forecast is that the opponent −i will bid 
based on the posterior belief that the vetoer i’s type is the infimum ai (Theorem 7.b.i) because 
such a belief would drive −i to bid merely in the order of ai no matter how stochastically strong 
she is, the auction being all-pay. Then the vetoer i’s bid would also be in the order of ai and hence 
his cost, given type zi , would merely be in the order of ai/zi . Hence when ai/zi is sufficiently 
small, the type zi of player i would rather veto peace if he has such an optimistic forecast. Ex 
ante strength of the opponent −i is insufficient to deter zi given i’s optimistic outlook of conflict.

It is interesting to note that ex ante disparity between the players’ strength levels is neither 
necessary to implement peace, as explained immediately after Theorem 2, nor sufficient to secure 
peace, as shown in Example 1, Corollary 2.b and Theorem 3.

5. Details: general analysis of two-player contests

Let us derive the formulas, Eqs. (5)–(8), that turn the peace conditions from those about the 
endogenous variables ui and ui (Lemma 1) into those about the parameters (Theorem 1). By the 
definition of ui and ui , to derive these formulas we need to evaluate all the possible continuation 
plays in the event that a player vetoes an otherwise mutually acceptable peaceful split. Such 
events off-path, the posterior belief about the vetoer is arbitrary. Thus following is the analysis 
of two-player all-pay auctions given arbitrary distributions.

Distributional strategies Consider the all-pay auction game G (F̃1, F̃2) such that each player i’s 
type is independently drawn from a distribution F̃i whose support is contained in [ai, zi]. 
A player i’s distributional strategy σ i in G (F̃1, F̃2) is a probability measure on (Borel) subsets 
of the product space of the possible types and bids of player i such that the marginal distribution 
of i’s type is F̃i . Note that σ i corresponds to the equivalence class of behavioral strategies, each 
being a mapping σi that associates to any realized type ti of player i a c.d.f. σi(·, ti ) of his bid, 
such that coupled with F̃i they generate the same probability measure σ i (Milgrom and Weber, 
1985). Thus, I shall identify a distributional strategy σ i with any behavioral strategy that belongs 
to its equivalence class and, unless more clarity is required, call both strategy and denote both 
by σi . An equilibrium (BNE) of G (F̃1, F̃2) means a Nash equilibrium where each player chooses 
a distributional strategy.

For any strategy pair σ := (σ1, σ2) of G (F̃1, F̃2) and any i ∈ {1, 2}, define the induced distri-
bution Hi,σ of player i’s bids and the supremum xσ of bids by, for any b ∈R,

Hi,σ (b) :=
∫ b∫

σi(dr, ti)dF̃i(ti ), (13)
R −∞
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xσ := max
i∈{1,2} sup suppHi,σ . (14)

In bidding b against the rival who abides by σ , player i’s probability of winning the auction, 
incorporating the possibility of ties and the uniform tie-breaking rule, is equal to

H ∗−i,σ (b) :=
{

H−i,σ (b) if b is not an atom of H−i,σ
1
2

(
H−i,σ (b) + limb′↑b H−i,σ (b′)

)
if b is an atom of H−i,σ .

(15)

Surplus from an equilibrium For any i ∈ {1, 2}, any realized type ti of player i and any strategy 
pair σ of G (F̃1, F̃2), by the definition of Ui(ti |σ) at the start of Section 3,

Ui(ti |σ) = sup
b∈R+

H ∗−i,σ (b) − b/ti . (16)

The operator in Eq. (16) is sup instead of max because a maximum need not exist when H−i,σ

has an atom, at which the equal-probability tie-breaking rule renders the objective function dis-
continuous. However, if σ is an equilibrium of G (F̃1, F̃2), the induced bid distribution H−i,σ has 
no atom except possibly at the zero bid (Lemma 6). Thus, unless b = 0, player i’s probability 
of winning by bidding b is equal to H−i,σ (b), as if the tie-breaking rule were altered to always 
pick him the winner in the (zero-probability) event that the opponent also bids b. That is also 
true when b = 0 unless zero is an atom of H−i,σ . When zero is an atom of H−i,σ , given the 
uniform tie-breaking rule, player i of any positive type would rather bid slightly above zero to 
secure an expected payoff approximately H−i,σ (0) than bid exactly zero to get only H−i,σ (0)/2; 
if, in addition, he cannot do better than H−i,σ (0), the supremum among his expected payoffs, 
when his bid ranges in R+, is equal to H−i,σ (0), again as if he were bidding exactly zero and the 
tie-breaking rule were altered to always favor him. Thus the continuity condition for Lemma 1.c 
is ensured:

Theorem 5. For any G (F̃1, F̃2), any BNE σ of G (F̃1, F̃2) and any i ∈ {1, 2}, Ui(·|σ) is continu-
ous on [ai, zi] \ {0} and, for any ti ∈ [ai, zi] \ {0},

Ui(ti |σ) = max
b∈R+

H−i,σ (b) − b/ti . (17)

Solving for equilibria By Eq. (17), the decision for player i with any type ti > 0 is equivalent 
to maximizing tiH−i,σ (b) − b over all b ∈ R+. With H−i,σ weakly increasing, this objective 
is differentiable almost everywhere in [0, xσ ], which by equilibrium condition is the support of 
both H1,σ and H2,σ . Any such differentiable point b ∈ (0, xσ ) satisfies the first-order necessary 
condition for b to be a bid prescribed by σi to ti :

d

db
H−i,σ (b) = 1

ti
. (18)

To characterize σ based on this equation, we need to map the bid b to a type ti for which b is a 
bid prescribed by σi . If F̃i has neither atom nor gap, then naturally the mapping is

γi,σ (b) = F̃−1
i

(
Hi,σ (b)

)
(19)

for all b, so that γi,σ (b) is the type whose cumulative mass is equal to the cumulative mass of 
the bid b. However, with more general F̃i , the two cumulative masses may be impossible to be 
the same. Hence we generalize γi,σ (b) to be the infimum among i’s types whose cumulative 
masses are not below that of b. More precisely, define the generalized inverse F̃−1 of F̃i by 
i
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Eq. (9), where the role of Fi is played by F̃i here. Now define γi,σ by Eq. (19) for each b ∈ R. 
Then we prove that, for almost all b ∈ [0, xσ ], Eq. (18) holds with ti = γi,σ (b) for each i ∈ {1, 2}
(Lemma 11). That gives us a differential equation system for (H1,σ , H2,σ ).

Solving (Hi,σ )2
i=1 through integrating this differential system, however, is nontrivial. The 

differential system of Hi,σ is available only for almost every bid in [0, xσ ] rather than for every 
bid there. Hence it is not immediate that Hi,σ is an antiderivative. A technique in the literature 
to obtain uniqueness of the solution for a differential system, if applicable here, would be to 
show that Hi,σ is Lipschitz on [0, xσ ] via a revealed-preference argument, which would rely on 
continuity of γ−i,σ (Griesmer et al., 1967, Lemma 3.6). But that technique does not work here, 
because γ−i,σ need not be continuous, as F̃−i may have gaps.

My approach is to decompose Hi,σ into the sum of two distributions on R, one absolutely 
continuous and the other singular with respect to Lebesuge measure. The second part, with Hi,σ

having no atom except at zero (Lemma 6), can be discontinuous only at zero. Furthermore, it 
is constantly equal to Hi,σ (0) on [0, xσ ], otherwise the distribution would be so steep at some 
point that the equilibrium condition for player −i is violated (Appendix B.6). Then integration 
of the differential equation yields the absolutely continuous part, to which we add the second 
part, which is just the mass Hi,σ (0), denoted by ci,σ , at zero. Thus, despite arbitrary type distri-
butions, we obtain the pair of equilibrium bid distributions, which in turn pins down the pair of 
equilibrium strategies uniquely (Corollary 4, Appendix B.7).

Theorem 6. For any G (F̃1, F̃2) and any BNE σ of G (F̃1, F̃2) there exists a unique triple 
(xσ , c1,σ , c2,σ ) ∈ R++ ×[0, 1]2 such that c1,σ c2,σ = 0 and, for each i ∈ {1, 2} and all b ∈ [0, xσ ], 
Hi,σ (xσ ) = 1 and

Hi,σ (b) = ci,σ +
b∫

0

1

F̃−1
−i

(
H−i,σ (y)

)dy. (20)

When one of the bidders say i has a degenerate type distribution, Eq. (20) gives us explicitly 
the probability c−i,σ with which player −i bids zero:

Corollary 3. If σ is a BNE of G (F̃1, F̃2), i ∈ {1, 2}, t∗i > 0 and supp F̃i = {t∗i }, then

c−i,σ = inf

⎧⎨⎩c ∈ [0,1] : t∗i
1∫

c

1

F̃−1
−i (s)

ds ≤ 1

⎫⎬⎭ . (21)

Comparing equilibria Given any BNE σ of G (F̃1, F̃2), since the strategy is monotone 
(Eq. (22)) and has no atom at the bid supremum xσ (Lemma 6), bidding xσ guarantees a win and 
is a best response for the type zi of each player i. Hence

Ui(zi |σ) = 1 − xσ

zi

.

Thus, the search for the best and the worst plays in the auction for the type zi of each player i

boils down to finding the lowest and the highest xσ among all σ ∈ Ei . The upshot, through a 



C.Z. Zheng / Journal of Economic Theory 180 (2019) 135–166 147
nontrivial application of Eq. (20), is that xσ is highest when player i is believed to be type zi , 
and lowest when believed to be type ai

8:

Lemma 2. For any i ∈ {1, 2} and any posterior distribution F̃i of player i’s type, if σ i ∈ Ei (δzi
), 

σ i ∈ Ei (δai
) and σ ∈ Ei (F̃i), then xσ i ≥ xσ ≥ xσ i .

The lemma results from a subtle linkage between the two players’ marginal costs of bids. 
Here is the intuition for xσi ≥ xσ , and that for the other part is analogous. Note that a player i’s 
marginal cost of bids is equal to 1/ti when ti is supposed to be his type that submits the bid. At the 
equilibrium σ i , with i’s type degenerate to the type supremum zi , his marginal cost 1/zi is less 
than his marginal cost 1/ti at any equilibrium say σ given other posteriors. Thus, his marginal 
revenue of bids at equilibrium σ i is less than that at equilibrium σ . Since player i’s marginal 
revenue of bids is the slope of his opponent −i’s bid distribution function, player −i’s bid dis-
tribution H−i,σ i at σ i is less steep than her H−i,σ at σ . Thus, unless xσ i ≥ xσ , H−i,σ first-order 
stochastically dominates H−i,σ i . Hence for any bid the type of −i that submits the bid in equi-

librium σ i is higher than the type of −i that submits it in σ . In other words, player −i’s marginal 
cost of bids, and hence her marginal revenue, are lower in σ i than in σ . Thus, her marginal rev-
enue being the slope of her opponent i’s bid distribution, player i’s bid distribution Hi,σ i rises at 
a lower rate in equilibrium σ i than the bid distribution Hi,σ does in σ . Since Hi,σ i (0) = 0 (due 
to the above derivation and the fact that the zero bid cannot be an atom for both players), Hi,σi

stochastically dominates Hi,σ , which implies that at the supremums of their supports, xσi ≥ xσ .

The best and the worst plays for type zi Lemma 2, coupled with an existence proof of equilibria 
given degenerate beliefs (Appendix B.8.2), results in the next theorem, which locates the best and 
the worst plays in the auction game for the type zi of each player i and describes what the other 
types of player i get in response to either play, especially those types of i that have empty best 
response to the play. Denote

BRi (ti , ε | σ) := {b ∈ R+ : ∀b′ ∈ R+
[
H ∗−i,σ (b) − b/ti ≥ H ∗−i,σ (b′) − b′/ti − ε

]}
for any ti ∈ [ai, zi], any ε ≥ 0 and any strategy pair σ .

Theorem 7. For any i ∈ {1, 2}:

a. Ei (δzi
) = {σ i

}
and:

i. ui = c−i,σ i = Ui(ti |σ i) for all ti ∈ [ai, zi] \ {0};
ii. for any ti ∈ [ai, zi), limε↓0 sup BRi

(
ti , ε | σ i

) = 0, and if H−i,σ i (0) = 0 then

BRi

(
ti ,0 | σ i

)= {0};
b. if ai > 0, Ei (δai

) = {σ i
}

and:

i. ui = 1 − ai

zi

(
1 − c−i,σ i

)
;

ii. for any ti ∈ (ai, zi], BRi (ti , 0 | σ i) = {xσ i };
c. if ai = 0 then ui = 1.

8 This observation is not obvious even if we restricted the search within the plays rationalized by degenerate posteri-
ors δt∗

i
about i. By Eq. (21), higher t∗

i
means larger c−i,σ : the stronger is the type that the opponent −i believes player i

to be, the more likely is −i to bid zero, hence the larger is i’s payoff from submitting an infinitesimal bid.
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Part (c) of the theorem handles the special case ai = 0, where the belief δai
, that i’s type 

is zero, renders player −i’s best response empty due to the uniform tie-breaking rule. Part (a.ii) 
describes behaviors of the non-zi types of i in the play σ i : Expecting none but type zi of player i, 
the opponent −i bids according to σ i , which may have an atom at zero; hence player i with any 
type but zi would respond by bidding just slightly above the atom zero (Lemma 14.c). Part (a.ii) 
is interesting because it implies that almost all types of each player i expect to bear only an 
infinitesimal sunk cost in the auction, which in the context of Section 2 is the off-path conflict that 
keeps him from vetoing the peace proposal despite the infinitesimal cost of vetoing it. Part (b.ii) 
describes player i’s best response, which is more straightforward, to the play σ i .

Finally we obtain the equations that deliver Theorem 1. Apply Eq. (21), with the roles of i

and −i switched, to the cases where the role of t∗i is played by z−i or a−i , and F̃−i played by Fi . 
That shows c∗

i and co
i , defined in Eqs. (7) and (8), are equal to the masses ci,σ−i and ci,σ−i in the 

plays σ−i and σ−i . Thus, Part (a.i) of Theorem 7 gives Eq. (5) and implies that ui is attained; 
and Parts (b.i) and (c) together give Eq. (6).

6. Conclusion

Fundamental to humanity is the question whether conflicts can be preempted by peace set-
tlements. The received literature on conflict mediation is based on an assumption that should 
conflict ensue the outcome is exogenously determined. Replacing this exogenous outside option 
by endogenous continuation plays, this paper enriches both the question and the answer. Because 
such continuation plays are off-path were the conflict fully preempted, endogenization leads to 
new questions: Can the mediator be sure, when she proposes a peace settlement, that both players 
forecast the off-path outside option in the same way as she desires, and if not how can she secure 
that the peace settlement is accepted by both? This paper handles the new questions by propos-
ing two notions of conflict preemption. One, for the mediator with full coordination power, is 
implementability of peace. The other, for the mediator with no coordination power, is security 
of peace. For each notion this paper delivers a necessary and sufficient condition purely in terms 
of the primitives. Moreover, these conditions have implications unprecedented in the literature: 
On one hand, peace cannot be secured when one of the players has a sufficiently low infimum of 
his type support, no matter how stochastically disparate the two players are ex ante. On the other 
hand, peace can be implemented even when all but one type of each player forecast that should 
he veto the peace proposal the cost he has to incur in the ensuing conflict is infinitesimal.

Motivated by the all-pay aspect of conflicts, this paper focuses on all-pay auctions. But the 
distributional method it develops can handle cases where the all-pay auction is replaced by other 
formats of auctions, hence applicable to the study of bidding collusion. Extension is trivial for 
second-price auctions, but nontrivial for first-price auctions (cf. Zheng, 2018). In a similar spirit, 
though relevant to different contexts, is to investigate how various contest mechanisms in the 
conflict phase may affect the prospect of conflict preemption. This problem is germane, and 
anticipated by Spier (1994), when the conflict is litigation, where the fraction of the winner’s fees 
that the loser needs to pay varies with the litigation system. While Klemperer (2003) argues that 
such fee-shifting rules are irrelevant when the revenue equivalence theorem applies, the theorem 
is inapplicable to our continuation game because the posteriors, being endogenous, need not be 
identical between contestants.

A related question is how the peace condition may be affected by refinement conditions. For 
instance, consider the condition for peace implementation. One can prove that it remains true 
when the off-path posteriors are restricted by the intuitive and divinity criteria. If the mediator can 
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propose peaceful allocations that do not exhaust the value of the prize, one can show that when 
Condition (10) is satisfied the peaceful allocation 

(
u1, u2

)
is ratifiable in the sense of Cramton 

and Palfrey (1995), albeit causing a deadweight loss 1 − u1 − u2 from the players’ viewpoint. 
Without such flexibility, however, ratifiability of peaceful allocations other than 

(
u1, u2

)
is an 

open question.
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Appendix A. General mechanisms for mediation

Instead of proposing a type-independent split which the players can only accept or reject, the 
mechanism in the mediation stage can be any communication mechanism à la Myerson (1986), 
which solicits a confidential message from each player and then computes a recommendation, 
which is either conflict or a peaceful split, and finally delivers to each player a confidential 
message that contains this recommendation, possibly accompanied with some truthful informa-
tion about the message submitted by the other player. Once such a mechanism is announced, 
each player, already privately informed of his own type, announces independently and publicly 
whether to participate. If both participate, the mechanism is operated; if the recommendation 
thereof is to settle via a split, each player independently announces, publicly, whether to accept 
or reject it; if it is accepted by both then the game ends with the peaceful split. In any other case, 
conflict ensues.

Correspondingly, we generalize the independence condition for a PBE: If player i’s unilateral 
deviation from the PBE is made before receiving any message from −i (via the mechanism), 
then the posterior belief about i is independent of the realized type of −i.9 Then the notion of 
peaceful PBE, as well as that of securely peaceful PBE, can be trivially extended to this general 
setup, with “Accept a proposed split” extended to “Participate in the mechanism and accept its 
recommendation.”

By assumption, a player’s type affects his payoff only in case of conflict. Thus, in any peaceful 
PBE, expecting zero probability of conflict, he would send to the mechanism whatever message 
that maximizes his peaceful share. Consequently, one can easily prove that, given any mechanism 
coupled with a peaceful PBE that it admits, for any i ∈ {1, 2} there exists a unique ki ∈ R+ such 
that player i’s on-path expected payoff is equal to ki for almost all types of i and k1 + k2 = 1. 

9 This is less restrictive than Fudenberg and Tirole’s (1991) “no signaling what you don’t know” condition because it 
regulates the off-path posteriors only in the events where the deviating player has had no communication with the other 
player and hence can signal nothing new about the latter.
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Then the original mechanism can be replaced by the type-independent split (k1, k2) without first 
soliciting messages from the players, whose participation means to accept, and nonparticipation 
means to reject, the proposal. The peaceful PBE given (k1, k2) is essentially the same as the 
original one, with the event where player i vetoes (k1, k2) identified with the event where player i

does not participate in the original mechanism while the other player does.
Thus, there is no loss of generality to restrict mechanisms to the kind of splits assumed in 

the main text. Given such proposed splits, the players have no chance to communicate before 
they independently choose their responses; hence the independence condition applies, requiring 
that the off-path posterior F̃i in Eq. (1) be independent of the realized type of −i. Thus, Eq. (2)
applies to this general setup, and so does the rest.

Appendix B. Proofs

Definition A distributional strategy σ i of G (F̃1, F̃2) is said monotone if and only if its corre-
sponding equivalence class contains a behavioral strategy σi such that

t ′′i > t ′i =⇒ inf suppσi(·, t ′′i ) ≥ sup suppσi(·, t ′i ). (22)

Since elements of the equivalence class of σ i differ only by a subset of zero measure with respect 
to F̃i , I shall identify a monotone distributional strategy σ i with the element σi of its equivalence 
class that satisfies (22) for all elements t ′i and t ′′i of R+.

Definition Given any c.d.f. F̃i of player i’s type, a strategy σi is said to generate a c.d.f. Hi of 
i’s bid if and only if Hi(b) = ∫

R

∫ b

−∞ σi(dr, ti )dF̃i(ti ) for all b ∈R.

B.1. Lemma 1

Lemma 3. For any i ∈ {1, 2} and any strategy pair σ , Ui(·|σ) is weakly increasing on [ai, zi].

Proof. Let t ′i > ti . If ti = 0 then bidding zero is the best response for player i, as the cost of any 
positive bid is infinite to the zero type (Section 2), hence Ui(ti |σ) = 0 and so Ui(t

′
i |σ) ≥ Ui(ti |σ)

because type t ′i can alway ensure zero payoff by bidding zero. Hence assume that ti > 0. Then 
H ∗−i,σ (b) − b/t ′i ≥ H ∗−i,σ (b) − b/ti for any b ∈ R+. Consequently,

Ui(t
′
i |σ) = sup

b∈R+
H ∗−i,σ (b) − b/t ′i ≥ sup

b∈R+
H ∗−i,σ (b) − b/ti = Ui(ti |σ). �

Proof of Lemma 1. Part (a): Suppose u1 +u2 ≤ 1. Then there exists a split k1 +k2 = 1 such that 
ki ≥ ui for each i ∈ {1, 2}. For each i, by definition of ui and Lemma 3, ki ≥ Ui(zi |σ) ≥ Ui(ti |σ)

for any σ ∈ Ei and any ti ∈ [ai, zi]. Thus, if (k1, k2) is the proposed split, accepting the proposal 
is a best response for all types of player i to whichever continuation play σ that −i will abide by 
in the event where i vetoes the split, hence mutual acceptance of the split is a secure, peaceful 
PBE.

Part (b): Suppose for each player i that ui is attained, hence ui = Ui(zi |σ i) for some 
σ i ∈ Ei (F̃i) and some posterior F̃i independent of the prior F−i about −i. Suppose, in addi-
tion, that u1 + u2 ≤ 1. Then there exists a split k1 + k2 = 1 such that ki ≥ ui for each i ∈ {1, 2}. 
Given (k1, k2) as the proposed split, mutual acceptance of the split, coupled with the provision 
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that, for each i, if player i vetoes the split then σ i is the continuation play rationalized by the pos-
teriors (F̃i , F−i ), constitutes a peaceful PBE: for all ti ∈ [ai, zi], Ui(ti |σ i) ≤ Ui(zi |σ i) = ui ≤ ki

by Lemma 3.
Part (c): First, we claim that, for any k ∈ R, if k < Ui(zi |σ) then k < Ui(ti |σ) for all ti in 

a set whose measure relative to Fi is positive: either zi is an atom of Fi or, by continuity of 
Ui(·|σ) at zi and zi being the supremum of suppFi , a neighborhood of zi satisfies this strict 
inequality and is of positive Fi-measure. Second, if peace is implementable, then some split 
(k1, k2) admits a peaceful PBE, supported by the provision that if i vetoes the split then some 
σi ∈ Ei is the continuation play; by the previously established claim, ki ≥ Ui(zi |σ) ≥ ui for both 
i ∈ {1, 2}, with the last inequality due to the definition of ui ; thus 1 = k1 + k2 ≥ u1 + u2. Third, 
if peace is securable, then some split (k1, k2) admits a secure, peaceful PBE; thus, by definition 
of security, for each player i, any σ ∈ Ei and almost all types ti of i, accepting the split to get 
payoff ki is no worse than vetoing it to get Ui(ti |σ), hence the claim established in the first step 
implies ki ≥ Ui(zi |σ). This true for all σ ∈ Ei , we have ki ≥ ui by definition of ui . Sum the last 
inequalities across i to obtain 1 = k1 + k2 ≥ u1 + u2. �
B.2. Theorem 1 and Corollaries 1 and 2

Theorem 1 First, Lemma 1 is applicable because its conditions are satisfied: Ui(·|σ) is continu-
ous by Theorem 5; ui is attained by Theorem 7.a.i. Second, by Theorem 7, Eqs. (5)–(8) are valid 
(proved in the last paragraph of Section 5). Therefore, Part (a) of the theorem follows directly 
from plugging Eq. (5) into Lemma 1. To prove part (b), plug Eq. (6) into Lemma 1 to obtain that 
peace is securable if and only if

1 − a1

z1

(
1 − co

2

)+ 1 − a2

z2

(
1 − co

1

)≤ 1,

which is simplified to Ineq. (11). �
Corollary 1 This follows from Theorem 1.b. �
Corollary 2 Claim (a): With F1 = F2 = F , Eq. (7) becomes c∗

i := inf{ci ∈ [0, 1] : φ(ci) ≤ 1}
such that φ(c) = z

∫ 1
c

1
F−1(s)

ds. Thus, c∗
1 = c∗

2 . Note that φ is continuous and strictly decreasing 

on [0, 1], φ(1) = 0 and φ(0) ≥ 1, as φ(0) = z/F−1(ξ) for some ξ ∈ [0, 1], with F−1(ξ) ≤ z. 
Thus, Eq. (12), φ(c∗) = 1, admits a unique solution c∗ in [0, 1]. By continuity of φ, c∗ = c∗

1 = c∗
2 . 

Thus Claim (a) follows from Theorem 1.a.
Claim (b): With (ai, zi) = (a, z), Eq. (8) becomes co

i := inf{c ∈ [0, 1] : ϕ(c) ≤ 1} such that 

ϕ(c) = a
∫ 1
c

1
F−1

i (s)
ds. Since the integrand 1/F−1

i (s) ≤ 1/a for all s ∈ [0, 1], ϕ(c) ≤ 1 for all 

c ∈ [0, 1], hence co
i = 0 for each i ∈ {1, 2}. Plug this into Ineq. (11) to obtain 2a/z ≥ 1. Thus 

Claim (b) follows from Theorem 1.b. �
B.3. Theorems 2, 3 and 4

Lemma 4. If F̂ and F are each a c.d.f. and F̂ (t) ≤ F(t) for all t ∈ R, then F̂−1(s) ≥ F−1(s) for 
all s ∈ [0, 1].
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Proof. For any s ∈ [0, 1], the hypothesis F ≥ F̂ implies F
(
F̂−1(s)

) ≥ F̂
(
F̂−1(s)

) ≥ s, with 
the second inequality due to the definition of F̂−1(s)—Eq. (9)—and upper semicontinuity of 
any c.d.f. Now that F

(
F̂−1(s)

)≥ s, Eq. (9) applied to F implies F̂−1(s) ≥ F−1(s). �
Lemma 5. For each i ∈ {1, 2}, if Fi becomes more stochastically dominant while a−i and z−i

are either unchanged or lowered, then c∗
i and co

i become weakly smaller than before.

Proof. Let the prior Fi be replaced by another F̂i that dominates Fi , and the supremum z−i

replaced by a ẑ−i ≤ z−i . By definition of dominance and Lemma 4, F̂−1
i (s) ≥ F−1

i (s) for all 
s ∈ [0, 1]. Thus, for any ci ∈ [0, 1],

1∫
ci

1

F̂−1
i (s)

ds ≤
1∫

ci

1

F−1
i (s)

ds

and hence, since ẑ−i ≤ z−i ,

ẑ−i

1∫
ci

1

F̂−1
i (s)

ds ≤ z−i

1∫
ci

1

F−1
i (s)

ds.

Thus, by Eq. (7), the c∗
i given 

(
F̂i , ẑ−i

)
is weakly smaller than the c∗

i given (Fi, z−i ). Similarly, 
if â−i ≤ a−i , the co

i given 
(
F̂i , â−i

)
is weakly smaller than the co

i given (Fi, a−i ). �
Theorem 2 Claim (a): By Theorem 1, the necessary and sufficient condition for peace imple-
mentation is c∗

1 + c∗
2 ≤ 1, and that for peace security is 

∑2
i=1(ai/zi)(1 − co−i ) ≥ 1. Thus, the 

claim follows from Lemma 5, which implies that, when F̂i � Fi for both i ∈ {1, 2}, c∗
i and co

i

decrease weakly for each i when (Fi)
2
i=1 is replaced by (F̂i)

2
i=1.

Claim (b): Pick the i ∈ {1, 2} for whom zi ≥ z−i . Note from Eq. (7) that c∗−i < 1. To satisfy 
c∗

1 + c∗
2 ≤ 1, given the definition of c∗

i , it suffices to replace Fi by some F̂i such that

z−i

1∫
1−c∗−i

1

F̂−1
i (s)

ds ≤ 1 (23)

and F̂i � Fi . To satisfy Ineq. (23), note from c∗−i < 1 that there exists ε > 0 for which

z−i

z−i − ε
c∗−i < 1.

Pick any c.d.f. F ∗
i with suppF ∗

i = suppFi such that 1 − F ∗
i (z−i − ε) > 1 − c∗−i , which is com-

patible with suppF ∗
i = suppFi because zi ≥ z−i by the choice of i. Let F̂i := min

{
Fi,F

∗
i

}
pointwise. Then F̂i � Fi and, by the definition of the generalized inverse F̂−1

i , the left-hand side 
of (23) is less than or equal to

z−i (1 − 1 + c∗−i ) · 1

z−i − ε
< 1.

Hence (23) is satisfied. Thus, with ĉ∗
i defined by Eq. (7) where Fi is replaced by F̂i here, ĉ∗

i <

1 − c∗ . Since F−i � F−i , the pair (F̂i, F̂−i ), with F̂−i := F−i , is what Claim (b) needs. �
−i
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Theorem 3 By Eq. (8) the definition of co
i , co

i ∈ [0, 1] for each i ∈ {1, 2}. Thus, if ai/zi < 1/2

for each i, then 
∑2

i=1(ai/zi)(1 − co−i ) ≤
∑2

i=1(ai/zi) < 1, and hence Ineq. (11), the condition 
for security of peace, can never be satisfied. �
Theorem 4 Let ĉo

i be the counterpart of co
i in the case where the priors are (F̂i)

2
i=1 instead of 

(Fi)
2
i=1. Since â1 = â2 = â, F̂−1

i (s) ≥ âi = â−i for all s ∈ [0, 1]. Thus â−i

∫ 1
c
(1/F̂−1

i (s))ds ≤ 1
for all c ∈ [0, 1] and hence Eq. (8) implies ĉo

i = 0 for each i ∈ {1, 2}. Then

2∑
i=1

âi

ẑi

(
1 − ĉo−i

)= 2∑
i=1

âi

ẑi

=
2∑

i=1

ai

zi

≥
2∑

i=1

ai

zi

(
1 − co−i

)
,

with the second equality due to the hypothesis of the theorem, and the inequality due to the fact 
that co−i ∈ [0, 1] for each −i. Thus, the conclusion follows from Theorem 1.b. �
B.4. Theorem 5

Lemma 6. For any G (F̃1, F̃2), any BNE σ := (σ1, σ2) of G (F̃1, F̃2) and any i ∈ {1, 2}:

a. the support of Hi,σ is [0, xσ ] and Hi,σ has neither gap nor atom in (0, xσ ];
b. σi is monotone.

Proof. Claim (a): The supremum of the support of Hi,σ exists by individual rationality, with zi

finite. By the payment rule of an all-pay auction and the equilibrium condition, this supremum is 
the same between the two players, and Hi,σ has no gap in [0, xσ ]. To prove the no-atom claim, 
pick any b ∈ (0, xσ ]. We have noted that H−i,σ has no gap, hence for any ε > 0 there exists a 
strictly positive mass of player −i’s equilibrium bids belonging to (b − ε, b). Thus, if b is an 
atom of Hi,σ , those types t−i of −i that submit such bids would deviate from such bids to a bid 
slightly above b when ε is sufficiently small, as the incremental revenue Hi,σ (b+ε) −Hi,σ (b−ε)

outweighs the incremental cost 2ε/t−i . This contradiction to the equilibrium condition implies 
that b is not an atom of Hi,σ .

Claim (b): Consider any behavioral strategy σi in the equivalence class of the equilibrium dis-
tributional strategy. There is an S ⊆ supp F̃i , with R+ \S of zero measure with respect to F̃i , such 
that σi(·, ti ) best replies H−i,σ for any ti ∈ S. Pick any t ′i , t ′′i ∈ S. There are B ′ ⊆ suppσi(·, t ′i )
and B ′′ ⊆ suppσi(·, t ′′i ), with B ′ of full measure with respect to σi(·, t ′i ) and B ′′ of full measure 
with respect to σi(·, t ′′i ), such that any element of B ′ best replies H−i,σ for type t ′i of player i, 
and any element of B ′′ best replies for type t ′′i . Let b′ ∈ B ′ and b′′ ∈ B ′′. By revealed preference 
and Eq. (16),

H ∗−i,σ (b′) − b′/t ′i ≥ H ∗−i,σ (b′′) − b′′/t ′i ,
H ∗−i,σ (b′′) − b′′/t ′′i ≥ H ∗−i,σ (b′) − b′/t ′′i .

Sum the two inequalities to obtain 
(
b′′ − b′)/t ′i ≥ (b′′ − b′)/t ′′i . Thus, t ′i < t ′′i ⇒ b′ ≤ b′′. With b′

and b′′ being any elements of B ′ and B ′′ respectively, (22) is satisfied on S. Since R+ \ S is of 
zero measure with respect to F̃i , modify σi so that (22) is satisfied throughout R+ and thus obtain 
another element in the same equivalence class of the distributional strategy. Since this element 
satisfies (22) on R+, the distributional strategy is monotone. �
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Theorem 5 With σ an equilibrium of the all-pay auction, Lemma 6.a says that the bid distribu-
tion H−i,σ has no atom except possibly at the zero bid. Thus, by Eq. (15), H ∗−i,σ (b) = H−i,σ (b)

for all b ∈ R+ \ {0}, and by the uniform tie-breaking rule H ∗−i,σ (0) = H−i,σ (0)/2. Thus, for any 
ti ∈ [ai, zi] \ {0},

Ui(ti |σ)
(16)= sup

b∈{0}∪R++
H ∗−i,σ (b) − b/ti

= max

{
H−i,σ (0)/2, lim

b↓0
H−i,σ (b) − b/ti , sup

b∈R++
H−i,σ (b) − b/ti

}

= max

{
H−i,σ (0), sup

b∈R++
H−i,σ (b) − b/ti

}
= sup

b∈R+
H−i,σ (b) − b/ti . (24)

Since H−i,σ , a c.d.f., is upper semicontinuous and its only possible discontinuous point is zero 
(Lemma 6.a), H−i,σ restricted to R+ is continuous. This, combined with the fact that the do-
main for b in the problem (24) can be bounded without loss by [0, zi], implies that the maximum 
in (24) is attained. Thus Ui(ti |σ) = maxb∈R+ H−i,σ (b) − b/ti for all ti ∈ [ai, zi] \ {0}. Since 
maxb∈R+ H−i,σ (b) − b/ti is continuous in ti for all ti ∈ R++ by the theorem of maximum, 
Ui(ti |σ) is continuous in ti for all ti ∈ [ai, zi] \ {0}. �
B.5. Properties of γi,σ

Lemma 7. Suppose that H is a c.d.f. that has neither gap nor atom in (0, x], with [0, x] being 
its support. For any c.d.f. F let γ (b) := F−1 (H(b)) for all b ∈R. Then—

a. for any b ∈ [0, x], F (γ (b)) ≥ H(b);
b. γ is weakly increasing on [0, x];
c.
[
γ (b) = t = γ (b′) and b �= b′] ⇐⇒ [

t is an atom of F
]
;

d. if there is a unique b ∈ [0, x] such that γ (b) = t , then F(t) = H(b);
e. if t ∈ suppF \ rangeγ then either (i) F(t) < H(0) and t < γ (0), or (ii) there exists a unique 

b ∈ [0, x] such that F(t) = H(b) and F (γ (b)) = F(t).

Proof. Claim (a): By Eq. (9) and the definition of γ (b),

γ (b) = inf {τ ∈ suppF : F(τ) ≥ H(b)} (25)

for all b. Thus Claim (a) follows from upper semicontinuity of any distribution.
Claim (b): Let b′ > b. By Claim (a), F(γ (b′)) ≥ H(b′); hence F(γ (b′)) ≥ H(b) as H is 

increasing. Then Eq. (25) implies γ (b′) ≥ γ (b).
Claim (c): Let b′ ≥ b and γ (b) = t = γ (b′). By Claim (a), F(t) ≥ H(b′). For any t ′ < t such 

that t ′ ∈ suppF , Eq. (25) implies F(t ′) < H(b). Hence limt ′↑t F (t ′) ≤ H(b). Thus,

F(t) − lim
t ′↑t

F (t ′) ≥ H(b′) − H(b).

Since H has no gap, H(b′) − H(b) > 0 ⇐⇒ b′ > b. Thus, b′ > b ⇐⇒ F(t) − limt ′↑t F (t ′) >
0 ⇐⇒ t is an atom of F .
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Claim (d): Since γ (b) = t , F(t) ≥ H(b) by Claim (a). Suppose F(t) > H(b). Then there 
exists b′ > b for which F(t) ≥ H(b′), as H has no gap. Thus, for any t ′ ∈ suppF such that 
t ′ < t , F(t ′) < H(b′), otherwise F(t ′) ≥ H(b′) ≥ H(b) and hence by Eq. (25) γ (b) �= t , contra-
diction. Now that F(t ′) < H(b′) for all such t ′, by F(t) ≥ H(b′) and (25) we have γ (b′) = t , 
contradicting the uniqueness of b. Hence F(t) ≤ H(b), as desired.

Claim (e): Let t ∈ suppF \ rangeγ . By hypothesis of this lemma, H is a continuous bijection 
from [0, x] to [H(0),1]; thus either (i) F(t) < H(0) or (ii) F(t) = H(b) for a unique b ∈ [0, x]. 
In Case (i), t < γ (0) because F(γ (0)) ≥ H(0) by Claim (a). In Case (ii), the fact t �= γ (b)

implies, by Eq. (25), that t > γ (b). Then F (γ (b)) ≤ F(t) = H(b) ≤ F (γ (b)), with the last 
inequality due to Claim (a). Hence F (γ (b)) = F(t). �
Lemma 8. Given any c.d.f. F and any strategy σ , let H be the distribution generated by σ

given F , and γ (b) := F−1 (H(b)) for all b ∈ R. If H has neither gap nor atom in (0, x], with 
[0, x] being its support, and if σ is monotone, then for any b ∈ [0, x] and any t, t ′ ∈ suppF such 
that t < γ (b) < t ′:

a. sup suppσ(·, t) ≤ b ≤ inf suppσ(·, t ′);
b. if b ∈ suppσ(·, t ′), then 

(
γ (b), t ′

)
is a gap of F ;

c. b ∈ suppσ (·, γ (b)).

Proof. Claim (a): By Eq. (25) and t < γ (b), F(t) < H(b). If sup suppσ(·, t) > b, then by mono-
tonicity of σ no type above t would bid b, hence H(b) ≤ F(t), contradiction. To prove the second 
inequality of Claim (a), suppose, to the contrary, that b > inf suppσ(·, t ′) =: b′. By monotonicity 
of σ , no type below t ′ bids above b′, hence H(b′) ≥ limτ↑t ′ F(τ). Thus

H(b) > H(b′) ≥ lim
τ↑t ′

F(τ) ≥ F (γ (b)) ≥ H(b),

with the strict inequality due to H having no gap, the second last inequality due to γ (b) < t ′, and 
the last, Lemma 7.a. The contradiction displayed above implies Claim (a).

Claim (b): Pick any τ ∈ (γ (b), t ′). Applying the second inequality in Claim (a) to the case 
where τ plays the role of t ′, we have b ≤ inf suppσ(·, τ). Hence

b ≤ inf suppσ(·, τ ) ≤ sup suppσ(·, τ ) ≤ inf suppσ(·, t ′) ≤ b,

with the second last inequality due to monotonicity of σ , and the last due to the hypothesis 
b ∈ suppσ(·, t ′). Thus suppσ(·, τ) = {b} and hence F(τ) ≤ H(b). Consequently,

lim
τ↑t ′

F(τ) ≤ H(b)
(25)≤ F (γ (b)) ≤ lim

τ↑t ′
F(τ).

Thus limτ↑t ′ F(τ) = F (γ (b)) for all τ ∈ (γ (b), t ′
)
. I.e., 

(
γ (b), t ′

)
is a gap of F .

Claim (c): Since σ is monotone and the H that it generates has no gap,

sup∪τ<γ (b)suppσ(·, τ ) = inf suppσ(·, γ (b)).

Thus, by the fact sup∪τ<γ (b)suppσ(·, τ) = supτ<γ (b) sup suppσ(·, τ), we have

sup
τ<γ (b)

sup suppσ(·, τ ) = inf suppσ(·, γ (b)).

Analogously, infτ ′>γ (b) inf suppσ(·, τ ′) = sup suppσ(·, γ (b)). Then Claim (a), applied to all τ <

γ (b) and τ ′ > γ (b), implies
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inf suppσ (·, γ (b)) = sup
τ<γ (b)

sup suppσ(·, τ ) ≤ b ≤ inf
τ ′>γ (b)

inf suppσ(·, τ ′)

= sup suppσ (·, γ (b)) .

Thus, suppσ (·, γ (b)), convex because H has no gap and σ is monotone, contains b. �
B.6. Theorem 6: the equilibrium bid distributions

Consider any G (F̃1, F̃2) and any BNE σ of G (F̃1, F̃2). The associated (Hi,σ )2
i=1, xσ and 

(γi,σ )2
i=1 are each uniquely defined by Eqs. (13), (14), and (19). Since each player’s distributional 

strategy in the equilibrium is monotone (Lemma 6.b), I shall identify it with the corresponding 
behavioral strategy that satisfies the monotonicity condition (22) throughout R+. All the claims 

in this subsection refer to the same tuple 
(
G (F̃1, F̃2), σ, xσ , (Hi,σ , γi,σ )2

i=1

)
specified above.

Lemma 9. For any i ∈ {1, 2}, if b > 0 then b /∈ suppσi(·, 0).

Proof. Suppose, to the contrary, that b ∈ suppσi(·, 0). With σi monotone, no type above zero 
bids in [0, b). Thus, since Hi,σ has no gap (Lemma 6.a), suppσi(·, 0) contains (0, b] and 0 is 
an atom of F̃i . Hence {0} × (0, b] is a set of positive measure with respect to the distributional 
strategy corresponding to σi , whose marginal distribution of player i’s type is F̃i . But no element 
of {0} × (0, b] satisfies the best response condition, because to the zero type the cost of any 
positive bid is infinity (Section 2). That contradicts σi being a best response. �
Lemma 10. For any i ∈ {1, 2}, if b > 0, ti ∈ supp F̃i and b ∈ suppσi(·, ti ), then b is a best 
response to H−i,σ for the type ti of player i.

Proof. Let b > 0 and b ∈ suppσi(·, ti ). By Lemma 9, ti �= 0 and hence ti > 0. With b > 0, b
is not an atom of H−i,σ (Lemma 6.a), hence it yields an expected payoff H−i,σ (b) − b/ti for 
player i of type ti . Suppose, to the contrary of the lemma, that b is not a best response for type ti . 
Then there exists b′ ∈R+ \ {b} for which

H−i,σ (b) − b/ti < H−i,σ (b′) − b′/ti ,

where the right-hand side is equal to the expected payoff that b′ yields because H−i,σ (b′) is i’s 
winning probability with b′ unless b′ = 0 and H−i,σ (0) > 0, in which case we can choose b′ to 
be a bid slightly above zero instead of zero. The above-displayed strict inequality, combined with 
H−i,σ being continuous on R+ (as it is right-continuous and, by Lemma 6.a, can be discontinuous 
only at zero), b > 0 and ti > 0, implies that there exists δ > 0 such that

H−i,σ (y) − y/τ < H−i,σ (b′) − b′/τ (26)

for any y ∈ (b − δ, b + δ) and any τ ∈ (ti − δ, ti + δ). We claim that

ti+δ∫
ti−δ

b+δ∫
b−δ

σi(dy, τ )dF̃i(τ ) > 0. (27)

This is true if ti is an atom of F̃i , as in that case suppσi(·, ti ) is a nondegenerate interval contain-
ing b, since b cannot be an atom of Hi,σ . Thus, suppose ti is not an atom of F̃i . Then suppσi(·, ti )
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is singleton since Hi,σ has no gap (Lemma 6.a) and σi is monotone. Hence {b} = suppσi(·, ti ). 
Now suppose that (27) does not hold. Then, with Hi,σ gapless and σi monotone,

sup
⋃

τ≤ti−δ

suppσi(·, τ ) = b = inf
⋃

τ ′≥ti+δ

suppσi(·, τ ′).

Consequently, if ti − δ < τ < ti + δ then monotonicity of σi requires {b} = suppσi(·, τ). Then, 
as b is not an atom of Hi,σ , the measure of (ti − δ, ti + δ) with respect to F̃i is zero, which 
contradicts the hypothesis ti ∈ supp F̃i . That proves (27), which coupled with (26) contradicts 
the fact that the strategy σi is a best response to H−i,σ . �
Lemma 11. For any i ∈ {1, 2} and almost every b ∈ [0, xσ ], Hi,σ is differentiable at b and

d

db
Hi,σ (b) = 1

γ−i,σ (b)
. (28)

Proof. Denote �i,σ (b) := {ti ∈ supp F̃i : b ∈ suppσi(·, ti )}. By Lemma 9, b > 0 ⇒ 0 /∈ �i,σ (b). 
A monotone function, H−i,σ is differentiable at almost every b in [0, xσ ]. For any such b with 
b > 0, let ti ∈ �i,σ (b), hence ti > 0. By Lemma 10, b is a best reply for the type ti of player i; 
thus, with ti > 0, the derivative of his expected payoff at b is H ′−i,σ (b) − 1/ti ≥ 0, which in turn 
implies, for any t ′i > ti , that H ′−i,σ (b) −1/t ′i > 0 and hence b cannot be a best reply for the type t ′i . 
Thus �i,σ (b) is singleton. Note γi,σ (b) ∈ �i,σ (b) because Lemma 8.c says b ∈ suppσi(·, γi,σ (b))

and Eq. (25) implies γi,σ (b) ∈ supp F̃i . Thus, {γi,σ (b)} = �i,σ (b). Switch the roles between i

and −i to obtain {γ−i,σ (b)} = �−i,σ (b) for almost all such b at which Hi,σ is differentiable. Thus, 
any such b satisfies the first-order necessary condition to best reply Hi,σ for the type γ−i,σ (b) of 
player −i, and hence satisfies (28). �
Lemma 12. For any i ∈ {1, 2}, there exist functions H ac

i,σ , H ∗
i,σ : R → [0, 1] such that: (i) for all 

b ∈ R,

Hi,σ (b) = H ∗
i,σ (b) + H ac

i,σ (b); (29)

(ii) for all b ∈ [0, xσ ],

H ac
i,σ (b) =

b∫
0

1

γ−i,σ (y)
dy; (30)

(iii) H ∗
i,σ is constant almost everywhere, and weakly increasing and right-continuous on R; and 

(iv) if H ∗
i,σ is discontinuous at b then b = 0.

Proof. By the Lebesuge decomposition theorem, the distribution Hi,σ can be uniquely decom-
posed into the sum of two functions H ac

i,σ , H ∗
i,σ : R → [0, 1] such that each is weakly increasing 

and right-continuous, H ac
i,σ (b) = H ∗

i,σ (b) = 0 for all b < 0, H ac
i,σ is absolutely continuous on R, 

H ∗
i,σ is constant almost everywhere (with respect to Lebesuge measure) and (29) holds for all 

b ∈ R. Hence (i) and (iii) are immediate. For (iv), note that H ∗
i,σ is discontinuous at b if and only 

if Hi,σ is discontinuous at b, since H ac
i,σ is absolutely continuous. To Hi,σ , a weakly increasing 

function, any discontinuity is a jump discontinuity. Thus, if H ∗
i,σ is discontinuous at b, then b is 

an atom of Hi,σ and hence, since the only possible atom of Hi,σ is {0} (Lemma 6.a), b = 0. That 
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proves (iv). To show (ii), note from the monotonicity of Hi,σ , H ac
i,σ and H ∗

i,σ that, at almost every 
b ∈ R, all three functions are differentiable and

d

db
Hi,σ (b)

(29)= d

db
H ac

i,σ (b) + d

db
H ∗

i,σ (b) = d

db
H ac

i,σ (b),

with the second equality due to H ∗
i,σ being constant almost everywhere. The above equation, 

coupled with (28) for almost all b in [0, xσ ] (Lemma 11), implies d
db

H ac
i,σ = 1/γ−i,σ almost 

everywhere in [0, xσ ]. Thus, since H ac
i,σ is absolutely continuous, for all b ∈ [0, xσ ] we have

H ac
i,σ (b) = H ac

i,σ (0) +
b∫

0

1

γ−i,σ (y)
dy =

b∫
0

1

γ−i,σ (y)
dy,

with the last equality due to H ac
i,σ being continuous at zero and H ac

i,σ (b′) = 0 for all b′ < 0. Thus 
we obtain (30), hence (ii) follows. �
Proof of Theorem 6. Given any equilibrium σ of G (F̃1, F̃2), the associated (H1,σ , H2,σ ), xσ

and (γ1,σ , γ2,σ ) are each uniquely defined by Eqs. (13), (14) and (19). If Eq. (20) holds then, 
for each player i, Hi,σ (0) = ci,σ and then c1,σ c2,σ = 0 because {0} cannot be an atom of both 
players’ equilibrium bid distributions, otherwise such nonzero measure of either player’s zero-
bidding types would deviate to a bid slightly above zero.

To prove (20), given (19), (29) and (30), it suffices to show H ∗
i,σ (b) = H ∗

i,σ (0) for all 
b ∈ (0, xσ ]. Suppose, to the contrary, that H ∗

i,σ (b) �= H ∗
i,σ (0) for some b ∈ (0, xσ ]. Then, since 

d
db

H ∗
i,σ = 0 almost everywhere (Lemma 12), H ∗

i,σ is not absolutely continuous on [0, xσ ]. Note 
that H ∗

i,σ is continuous on [0, xσ ] because it is right-continuous and can be discontinuous only 
at zero (Lemma 12). This, combined with the fact that H ∗

i,σ is weakly increasing (Lemma 12) 
and is not absolutely continuous on [0, xσ ], implies that there exists ε > 0 for which H ∗

i,σ is not 
absolutely continuous on [ε, xσ ] (Royden and Fitzpatrick, 2010, Problem 37.ii, p123).

By Lemma 9, ε /∈ suppσ−i,σ (·, 0). That implies γ−i,σ (ε) �= 0 (Lemma 8.c) and hence 
γ−i,σ (ε) > 0. Thus, there exists K ∈R such that

K >
1

γ−i,σ (ε)
− 1

z−i

.

Since H ∗
i,σ is not absolutely continuous on [ε, xσ ], it is not Lipschitz on [ε, xσ ], hence there exist 

b and b′ such that ε ≤ b < b′ ≤ xσ and

H ∗
i,σ (b′) − H ∗

i,σ (b)

b′ − b
> K.

By Lemma 8.c, b ∈ suppσ−i (·, γ−i,σ (b)). Also note that γ−i,σ (b) > 0 because b ≥ ε implies 
γ−i,σ (b) ≥ γ−i,σ (ε) (Lemma 7.b), and that γ−i,σ (b) ∈ supp F̃−i because of Eq. (25). Thus, 
Lemma 10 implies that b is a best response to Hi,σ for player −i of type γ−i,σ (b). However, 
the gain for player −i of type γ−i,σ (b) to deviate to the bid b′ instead of b is equal to(

Hi,σ (b′) − b′

γ−i,σ (b)

)
−
(

Hi,σ (b) − b

γ−i,σ (b)

)
(29)= (b′ − b)

(
H ac

i,σ (b′) − H ac
i,σ (b)

b′ − b
− 1

γ−i,σ (b)
+ H ∗

i,σ (b′) − H ∗
i,σ (b)

b′ − b

)
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(30)= (b′ − b)

⎛⎜⎝ 1

b′ − b

b′∫
b

1

γ−i,σ (y)
dy − 1

γ−i,σ (b)
+ H ∗

i,σ (b′) − H ∗
i,σ (b)

b′ − b

⎞⎟⎠
≥ (b′ − b)

(
1

z−i

− 1

γ−i,σ (ε)
+ H ∗

i,σ (b′) − H ∗
i,σ (b)

b′ − b

)
(31)

> (b′ − b)

(
−K + H ∗

i,σ (b′) − H ∗
i,σ (b)

b′ − b

)
,

which is positive by the choice of b and b′. Here the line (31) uses the aforementioned fact 
γ−i,σ (b) ≥ γ−i,σ (ε). The desired contradiction established, we have H ∗

i,σ (b) = H ∗
i,σ (0) for all 

b ∈ (0, xσ ], as asserted. �
B.7. Recovering equilibrium strategies from bid distributions

Corollary 4. If H is a c.d.f. that has neither gap nor atom in (0, x], with [0, x] being its support, 
then given any c.d.f. F there is at most one monotone distributional strategy that generates H .

Proof. Define γ (b) := F−1 (H(b)) for all b ∈ R. By (9), Eq. (25) holds. Let σ generate H , 
i.e., H(b) = ∫

R

∫ b

−∞ σ(dr, t)dF (t) for all b. Suppose that σ is monotone. Then H(b) =∫
R

∫ b

−∞ σ(dr, t)dF (t) is equivalent to

H(b) =
∫
R

(
1t<γ (b) + 1t=γ (b)σ (b, t)

)
dF(t)

= lim
t↑γ (b)

F (t) + σ(b, γ (b))

(
F (γ (b)) − lim

t↑γ (b)
F (t)

)
. (32)

By monotonicity of σ , limt↑γ (b) F (t) = H (β∗(b)) where β∗(b) := inf suppσ (·, γ (b)), hence

H(b) = H (β∗ (b)) + σ(b, γ (b)) (F (γ (b)) − H ((β∗ (b))) .

If γ (b) is an atom of F , its mass is equal to F (γ (b)) − H (β∗(b)) and σ (b, γ (b)) is uniquely 
determined by Eq. (32); else Eq. (32) is reduced to H(b) = H (β∗ (b)), which by strict mono-
tonicity of H means β∗(b) = b and suppσ(·, γ (b)) = {β∗(b)} = {b}.

To pin down σ completely, consider any t ∈ suppF \ rangeγ . By Lemma 7.e, either (i) F(t) <
H(0) and t < γ (0) or (ii) t > γ (b) and F(t) = F(γ (b)) for a unique b. In Case (i), with t < γ (0), 
monotonicity of σ implies that σ(·, t) is the Dirac measure at zero. In Case (ii), the facts t �= γ (b)

and F(t) = F(γ (b)) together imply that t is not an atom of F . Thus, with H gapless, suppσ(·, t)
is singleton. Consequently, σ cannot prescribe to t a bid b′ < b; otherwise, a positive measure 
of types above t would be prescribed to bid in (b′, b) since H has no gap and σ is monotone, 
but then H(b) > F(t), contradiction. By the same token, σ cannot prescribe to t a bid above b. 
Thus, σ(·, t) is the Dirac measure at b. All t in suppF considered, the behavioral strategy σ is 
thus uniquely determined up to a set of zero measure with respect to F . Thus the corresponding 
distributional strategy is unique. �
Corollary 5. Given the same hypothesis and notations of Lemma 7, we have:
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a. there exists a monotone strategy σ that generates H given F ;
b. if H is generated by a monotone strategy σ given F , then—

i.
[
suppσ(·, t) is not singleton

]⇐⇒ t is an atom of F ;
ii. for any t ∈ suppF , if t ≥ γ (0) then either suppσ(·, t) ⊆ {b : γ (b) = t} or suppσ(·, t) =

{b} for which F(t) = H(b) (and (γ (b), t) is a gap of F ); if t < γ (0) then suppσ(·, t) =
{0};

Proof. Claim (a): First, construct a strategy σ : For any t ∈ suppF such that t = γ (b) for some 
b ∈ R+, if t is an atom of F then define a c.d.f. σ(·, t) according to Eq. (32); else define σ(·, t)
to be the Dirac measure at b. For any t ∈ suppF that does not belong to the range of γ , if 
t < γ (0) then let σ(·, t) be the Dirac measure at 0; else there exists a unique b ∈ [0, x] for which 
F(t) = H(b), and we let σ(·, t) be the Dirac measure at b.

We show that the σ constructed above is monotone. For any t ∈ rangeγ , suppσ(·, t) by con-
struction is contained in the γ -inverse image of {t}. Thus, σ restricted to the range of γ is 
monotone, because γ is weakly increasing (Lemma 7.b). To show that monotonicity is preserved 
when types t ∈ suppF \ rangeγ are also included, pick any such t . By Lemma 7.e, either (i) 
F(t) < H(0) and t < γ (0), in which case our σ prescribes to t the zero bid, or (ii) t > γ (b) and 
F(t) = F(γ (b)) for a unique b, in which case σ prescribes the bid b. In Case (i), as zero is the 
lowest possible bid and t < γ (0), σ(·, t) does not violate monotonicity. In Case (ii), σ prescribes 
to t the same bid b as it does to γ (b) and, since (γ (b), t) is a gap of F , we can simply set σ

to prescribe the same b to those in the gap; any type below γ (b) that belongs to rangeγ is pre-
scribed by σ a bid no higher than b, by monotonicity of σ restricted to rangeγ ; likewise, any type 
above t belonging to rangeγ is prescribed by σ a bid higher than or equal to sup suppσ(·, γ (b)), 
which is at least as high as b. Thus, monotonicity of σ is preserved when such t is included. This 
being true for all t ∈ suppF \ rangeγ , we have extended monotonicity of σ to the entire suppF .

By its construction, σ satisfies Eq. (32) for all b. And Eq. (32), according to the proof of 
Corollary 4, which applies since σ is monotone, is equivalent to H(b) = ∫

R

∫ b

−∞ σ(dr, t)dF (t), 
i.e., the σ constructed above generates H . Thus Claim (a) follows.

Claim (b): By Corollary 4, any monotone strategy that generates H is the same as the σ

constructed above. Thus, parts (i)–(ii) in the claim follow by construction of σ . �
B.8. The equilibrium given a degenerate type distribution

For any i ∈ {1, 2} and any t∗i ∈ [ai, zi], recall that Ei (δt∗i ) denotes the set of all BNEs of the 
all-pay auction where the distribution of i’s type is the Dirac measure δt∗i at t∗i , and that of −i’s 
type is the prior F−i .

Lemma 13. For any i ∈ {1, 2} and any t∗i ∈ [ai, zi] \ {0}, Ei (δt∗i ) = {σ ∗} such that

∀b ∈ [0, xσ ∗ ] : Hi,σ ∗(b) = ci,σ ∗ +
b∫

0

(
F−1

−i

(
s

t∗i
+ c−i,σ ∗

))−1

ds, (33)

∀b ∈ [0, xσ ∗ ] : H−i,σ ∗(b) = b

t∗i
+ c−i,σ ∗ , (34)

ci,σ ∗c−i,σ ∗ = 0, (35)

xσ ∗/t∗ = 1 − c−i,σ ∗, (36)
i
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1 − ci,σ ∗ = t∗i

1∫
c−i,σ∗

1

F−1
−i (s)

ds. (37)

The lemma is proved in two steps. Section B.8.1 proves the uniqueness of the equilibrium 
in Ei (δt∗i ), and Section B.8.2, its existence.

B.8.1. The uniqueness proof for Lemma 13
Pick any σ ∈ Ei (δt∗i ) and denote (Hi,σ , H−i,σ , ci,σ , c−i,σ , xσ ) for the associated tuple of bid 

distributions, masses of {0} and bid supremum. We shall show that σ is unique. By definition 
of δt∗i , supp F̃i = {t∗i } if F̃i denotes the c.d.f. corresponding to δt∗i . Hence γi,σ = t∗i on [0, xσ ] by 
Eq. (19). Thus, Eq. (20), where the role of i is played by −i here, implies that

H−i,σ (b) = b

t∗i
+ c−i,σ

for all b ∈ [0, xσ ], i.e., Eq. (34) is satisfied. By definition of γ−i,σ , for all b ∈ [0, xσ ],

γ−i,σ (b) = F−1
−i

(
H−i,σ (b)

)= F−1
−i

(
b

t∗i
+ c−i,σ

)
.

Then again Eq. (20) implies that, for all b ∈ [0, xσ ],

Hi,σ (b) = ci,σ +
b∫

0

(
F−1

−i

(
s

t∗i
+ c−i,σ

))−1

ds.

Hence Eq. (33) follows. Eq. (35) is also satisfied due to Lemma 12. Apply Eq. (34) to the supre-
mum xσ of the bid distribution H−i,σ to obtain 1 = xσ /(t∗i ) + c−i,σ , i.e., Eq. (36). And apply 
Eq. (33) to the supremum xσ to get

1 − ci,σ =
xσ∫

0

(
F−1

−i

(
y

t∗i
+ c−i,σ

))−1

dy = t∗i

xσ /t∗i +c−i,σ∫
c−i,σ

(
F−1

−i (s)
)−1

ds,

with the second equality due to the change of variables s := y/t∗i + c−i,σ . This equation coupled 
with Eq. (36) gives Eq. (37), which for any ci,σ admits at most one solution for c−i,σ , with the 
right-hand side strictly decreasing in c−i,σ . Consequently, Eqs. (35) and (37) together determine 
uniquely (ci,σ , c−i,σ ), hence Eq. (36) determines xσ uniquely, and so Hi,σ and H−i,σ are each 
uniquely determined by Eqs. (33) and (34). Note from Eqs. (33)–(35) that both bid distribu-
tions Hi,σ and H−i,σ are gapless and atomless on (0, xσ ]. This coupled with the monotonicity 
of any BNE of the auction game (Lemma 6.b) implies that Corollary 4 is applicable. Hence σ is 
unique as (Hi,σ , H−i,σ ) is unique. �
B.8.2. The existence proof for Lemma 13
Step 1: construction and preparation Clearly, Eqs. (35)–(37) together admit a unique solu-
tion for (ci,σ ∗, c−i,σ ∗, xσ ∗) ∈ [0, 1]2 × R+. Plug this solution into Eq. (33)–(34) to obtain a 
pair (Hi,σ ∗, H−i,σ ∗), each a c.d.f. with support [0, xσ ∗] due to Eqs. (36) and (37). Suppress the 
symbol σ ∗ in the subscripts and write the tuple as (Hi,H−i , ci , c−i , x), which we shall prove 
constitutes an equilibrium in Ei (δt∗i ). We shall refer to σ ∗ and (Hi, H−i ) interchangeably. Let 

γ−i (b) := F−1 (H−i (b)) for all b, hence Eq. (25) applies.
−i
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Lemma 14. Given the above-constructed H−i based on t∗i , the following is true for any type 
ti ∈ [ai, zi] \ {0} of player i:

a. if ti = t∗i , then any bid in (0, x] is a best reply to H−i ;
b. if c−i = 0 and ti ≤ t∗i , then bidding zero is a best reply to H−i ;
c. if c−i > 0 and ti < t∗i , then the best reply to H−i is null, and

lim
ε↓0

sup BRi

(
ti , ε | σ ∗)= 0;

d. if t > t∗i then the best reply to H−i is uniquely x;
e. if ti ≥ t∗i , Ui(ti |σ ∗) = 1 − x/ti = 1 − (t∗i /ti) (1 − c−i );
f. if ti ≤ t∗i , Ui(ti |σ ∗) = c−i .

Proof. We need only to consider bids in the support [0, x] of H−i , as player i has no incentive 
to bid outside it. Given type ti ∈ [ai, zi] \ {0}, player i’s expected payoff from submitting any bid 
b ∈ (0, x] is equal to, by Eq. (34),

b

t∗i
+ c−i − b

ti
= c−i + b

(
1

t∗i
− 1

ti

)
;

and his expected payoff from bidding zero is equal to c−i/2 due to the equal-probability tie-
breaking rule. Thus, Claims (a), (b), (c) and (d) follow. (The equation in (c) is due to the fact 
that BRi (ti , ε|σ ∗) = (0, ε/

(
1/ti − 1/t∗i

)]
for any ti < t∗i and any ε > 0.) Claims (a) and (d), 

combined with the fact that x is not an atom of H−i and hence bidding x wins for sure, imply the 
first equality in Claim (e); then the second equality of (e) follows from Eq. (36). Taking the limit 
of the above-displayed expected payoff when b ↓ 0, coupled with the definition of Ui(ti |σ ∗) in 
Eq. (16), we obtain Claim (f). �
Lemma 15. For any t−i ∈ suppF−i , define for any b ∈ [0, x]

u−i (b, t−i ) :=
{

t−iHi(b) − b if b > 0
t−iHi(0)/2 if b = 0.

(38)

Then u−i (·, t−i ) is concave on (0, x] and, if Hi(0) = 0, also on [0, x]; furthermore, if u−i (·, t−i )

is differentiable at b, then ∂
∂b

u−i (b, t−i ), denoted by D1u−i (b, t−i ), satisfies

D1u−i (b, t−i ) = t−i

γ−i (b)
− 1. (39)

Proof. By the definition of u−i , to prove concavity of u−i(·, t−i ) on (0, x] it suffices to show 
that Hi is concave on [0, x]. By Eq. (33), Hi restricted to [0, x] is absolutely continuous; thus, we 
need only to show that the left-derivative of Hi is never smaller than the right-derivative and that, 
whenever the two coincide, the derivative is weakly decreasing. To that end, pick any b ∈ [0, x). 
By Eq. (33), the right-derivative of Hi at b is

D+Hi(b) = lim
b′′↓b

1

b′′ − b

b′′∫
b

(
F−1

−i

(
s

t∗i
+ c−i

))−1

ds

= lim
b′′↓b

(
F−1

−i

(
ξ(b, b′′)

t∗i
+ c−i

))−1

,
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with b ≤ ξ(b, b′′) ≤ b′′ by the intermediate-value theorem. Thus, with F−1
−i weakly increasing,

D+Hi(b) ≤
(

F−1
−i

(
b

t∗i
+ c−i

))−1

.

Analogously, the left-derivative at any b ∈ (0, x] is

D−Hi(b) = lim
b′′↑b

1

b − b′′

b∫
b′′

(
F−1

−i

(
s

t∗i
+ c−i

))−1

ds ≥
(

F−1
−i

(
b

t∗i
+ c−i

))−1

.

Thus, for any b ∈ (0, x), D−Hi(b) ≥ D+Hi(b) and, when they coincide,

d

db
Hi(b) = D+Hi(b) = D−Hi(b) =

(
F−1

−i

(
b

t∗i
+ c−i

))−1

= 1

γ−i (b)
,

with the last equality due to the definition of γ−i and Eq. (34). Thus, by Lemma 7.b, d
db

Hi(b) is 
weakly decreasing. Hence u−i(·, t−i ) is concave on (0, x], and Eq. (39) holds. If Hi(0) = 0 then 
u−i (·, t−i ) by Eq. (38) is continuous at zero, hence also concave on [0, x]. �
Step 2: verification To verify the equilibrium condition from player i’s standpoint, since 
{t∗i } = supp δt∗i , it suffices to show that Hi best responds to H−i for the type t∗i of player i. 
By Lemma 14.a, every nonzero element of the support [0, x] of Hi is a best response for t∗i . We 
need to verify that the zero bid is also a best response only when Hi(0) > 0; in that case, c−i = 0
by Eq. (35), hence Lemma 14.b implies that the zero bid is a best response for t∗i .

Thus the rest of the proof concerns player −i. By Corollaries 4 and 5.a, there is a unique 
monotone strategy σ−i that generates H−i given F−i . We shall show that σ−i is player −i’s best 
response to Hi for all types but a set of zero F−i -measure. Since F−i (0) = 0 by assumption, we 
may assume without loss that t−i > 0. Thus, player −i’s decision in the auction is equivalent to 
maximizing u−i (·, t−i ), defined in Eq. (38).

Pick any (b, t−i ) such that t−i ∈ suppF−i , t−i > 0 and b ∈ suppσ−i (·, t−i ). To verify the best 
response condition for player −i, there is no loss of generality to assume that either b > 0 or 
“b = 0 and Hi(0) = 0” holds. That is because if Hi(0) > 0 then by the construction in Step 1 we 
have H−i (0) = 0 (Eq. (35)), which means that either the type t−i belongs to the zero-measure set 
of types that bid zero according to σ−i and hence can be omitted, or the bid zero is assigned zero 
weight according to σ−i(·, t−i ) and hence can be omitted.

First, consider the case where b > 0. With b ∈ suppσ−i (·, t−i ) and σ−i monotone, F−i (t−i ) ≥
H−i (b) > H−i (0). Thus by Eq. (25) t−i ≥ γ−i (0). By Corollary 5.b.ii, either (A) γ−i (b) = t−i or 
(B) F−i (t−i ) = H−i (b) and (γ−i (b), t−i ) is a gap of F−i . Pick any b′′ > b. In (A), monotonicity 
of γ−i (Lemma 7.b) implies γ−i (b

′′) ≥ γ−i (b) = t−i . In (B), by Lemma 7.a and H−i having no 
gap,

F−i (γ−i (b
′′)) ≥ H−i (b

′′) > H−i (b) = F−i (t−i ),

hence γ−i (b
′′) ≥ t−i . Thus γ−i (b

′′) ≥ t−i ≥ γ−i (b) in each case. This, again coupled with the 
monotonicity of γ−i , implies that in each case

b′ < b < b′′ =⇒ γ−i (b
′) ≤ t−i ≤ γ−i (b

′′).

Thus, for any b′ < b < b′′ such that u−i (·, t−i ) is differentiable at b′ and b′′, Eq. (39) implies
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D1u−i (b
′, t−i ) = t−i

γ−i (b′)
− 1 ≥ 0 ≥ t−i

γ−i (b′′)
− 1 = D1u−i (b

′′, t−i ).

Since u−i (·, t−i ) is concave on (0, x] by Lemma 15, and u−i (0, t−i ) ≤ limb′↓0 u−i (b
′, t−i ) by 

Eq. (38), we have shown that b is a global maximum of u−i(·, t−i ).
Second, consider the case b = 0, hence 0 ∈ suppσ−i (·, t−i ). As explained above, Hi(0) =

0. Hence u−i (·, t−i ) is concave on [0, x] by Lemma 15. For any b′′ > 0 at which u−i (·, t−i )

is differentiable, we have b′′ ∈ suppσ−i (·, γ−i (b
′′)) (Lemma 8.c) and hence, by monotonicity 

of σ−i (Eq. (22)), t−i ≤ γ−i (b
′′); thus Eq. (39) implies

D1u−i

(
b′′, t−i

)= t−i

γ−i (b′′)
− 1 ≤ 0.

This, combined with the fact that zero is the left corner of the domain of bids, and u−i(·, t−i )

concave on [0, x], implies that zero (= b) is a best response for type t−i . All cases considered, 
σ−i best responds Hi for player −i. �
B.9. Corollary 3, Lemma 2 and Theorem 7

B.9.1. Proof of Corollary 3
Let t∗i ∈ [ai, zi] \{0}. The σ and F̃−i referred to in this corollary corresponds to the σ ∗ and F−i

in Lemma 13. Consider first the case c−i,σ ∗ = 0. Eq. (37) in Lemma 13 implies

1 ≥ 1 − ci,σ ∗ = t∗i

1∫
c−i,σ∗

(
1/F−1

−i (s)
)

ds = t∗i

1∫
0

(
1/F−1

−i (s)
)

ds.

Hence the right-hand side of Eq. (21) is equal to zero, so Eq. (21) holds. Next consider the other 
case, c−i,σ ∗ > 0. Then ci,σ ∗ = 0 by Eq. (35) in Lemma 13. Hence Eq. (37) implies

1 = t∗i

1∫
c−i,σ∗

(
1/F−1

−i (s)
)

ds.

Thus, this equation admits one solution for c−i,σ ∗ , and it is the only one as t∗i
∫ 1
c

(
1/F−1

−i (s)
)

ds

is strictly decreasing in c. Since t∗i
∫ 1
c

(
1/F−1

−i (s)
)

ds is continuous in c, when the equation 
admits a solution for c−i,σ ∗ , it must also admit the right-hand side of Eq. (21) as its solution. 
Thus, the right-hand side of Eq. (21) is again equal to c−i,σ ∗ . �
B.9.2. Proof of Lemma 2: linkage between the players’ marginal costs of bids

Given any c.d.f. F̃i with support contained in [ai, zi], pick any σ ∈ E (F̃i). First, we prove that 
xσ i ≥ xσ . Suppose, to the contrary, that xσ > xσi . Define γi,σ by Eq. (19), and likewise for γi,σ i , 
γ−i,σ and γ−i,σ i . Since i’s type in the equilibrium σ i is degenerate to zi , γi,σ i = zi . Eq. (20), 
with the roles of i and −i switched, implies

d

db
H−i,σ (b) = 1

γi,σ (b)
≥ 1

zi

= 1

γi,σ i (b)
= d

db
H−i,σ i (b) (40)

for almost every b ∈ [0, xσ i ]. This, combined with the fact 1 = H−i,σ (xσ ) > H−i,σ (xσ i ) (be-
cause xσ > xσi by supposition and H−i,σ has no gap) and the continuity of H−i on R+, implies 
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H−i,σ i > H−i,σ on [0, xσ i ]. Thus, H−i,σ i (0) > H−i,σ (0) ≥ 0. Then Hi,σ i (0) = ci,σ i = 0 by 

Eq. (35). Thus, H−i,σ i ≥ H−i,σ throughout [0, xσ ]. Consequently, since F−1
−i is weakly increas-

ing according to its definition Eq. (9),

γ−i,σ i (b) = F−1
−i

(
H−i,σ i (b)

)
≥ F−1

−i

(
H−i,σ (b)

)= γ−i,σ (b)

for all b ∈ [0, xσ ]. Thus, Eq. (20) implies that, for almost every b ∈ [0, xσ ],
d

db
Hi,σ (b) = 1

γ−i,σ (b)
≥ 1

γ−i,σ i (b)
= d

db
Hi,σ i (b).

This, coupled with the fact Hi,σ (0) ≥ Hi,σ i (0) (due to Hi,σ i (0) = 0) and the supposition xσ >

xσi , implies Hi,σ (xσ i ) ≥ Hi,σ i (xσ i ) = 1. Thus, xσ i ≥ xσ , contradicting the supposition xσ > xσi . 
Thus we have proved xσi ≥ xσ .

Second, we prove xσ ≥ xσ i . By hypothesis of the lemma, σ i exists as a BNE of the 
game G (δai

, F−i ); thus ai > 0, otherwise G (δai
, F−i ) admits no BNE (because bidder i, of type 

ai = 0, would bid zero for sure, rendering bidder −i’s best response empty). Now suppose that 
xσ i > xσ . Repeat the previous reasoning with σ there replaced by σ i here, σ i there replaced 
by σ here, and (40) there replaced by

d

db
H−i,σ i (b) = 1

γi,σ i (b)
= 1

ai

≥ 1

γi,σ (b)
= d

db
H−i,σ (b),

with 1/ai meaningful because ai > 0. Thus, following the reasoning in the previous paragraph, 
we have H−i,σ > H−i,σ i on [0, xσ ]. Then Hi,σ (0) = 0 and d

db
Hi,σ i ≥ d

db
Hi,σ . Consequently, 

xσ ≥ xσ i , contradicting the supposition xσi > xσ . �
B.9.3. Proof of Theorem 7

Lemma 13, applied to the cases of t∗i = zi and t∗i = ai > 0, implies existence of σ i ∈ Ei (δzi
)

and σ i ∈ Ei (δai
) asserted by Parts (a) and (b) of the theorem. Pick any σ ∈ Ei . By Lemma 2, 

xσ i ≤ xσ ≤ xσ i . Note, to any BNE σ ′ ∈ Ei , bidding its bid supremum xσ ′ is a best response 
for the type zi of player i (Lemma 6.b); thus, since H−i,σ ′ is atomless at xσ ′ (Lemma 6.a), 
Ui(zi |σ ′) = 1 − xσ ′/zi for any σ ′ ∈ Ei . Thus,

Ui(zi |σ i) = 1 − xσ i /zi ≥ 1 − xσ /zi = Ui(zi |σ) ≥ 1 − xσ i /zi = Ui(zi |σ i).

Thus, ui = Ui(zi |σ i) and ui = Ui(zi |σ i). This, combined with Parts (e) and (f) of Lemma 14, 
implies Claims (a.i) and (b.i) of the theorem. Claim (a.ii) of the theorem follows from (b) and (c) 
of Lemma 14. Claim (b.ii) of the theorem follows from (d) of the same lemma. To prove Claim (c) 
of the theorem, let ai = 0 and pick any t∗i ∈ (0, zi). By Lemma 13, a BNE σ ∗ ∈ Ei (δt∗i ) exists; by 
Lemma 14.e,

Ui(zi |σ ∗) = 1 − (t∗i /zi)(1 − H−i,σ ∗(0)),

which converges to one as t∗i goes to zero. Thus, by definition of ui , ui ≥ 1; because one is the 
highest possible payoff a player can get in this environment, ui = 1, as asserted. �
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