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B.1 Reduced-Form Characterization Given Partial Assignment

In the partial assignment model, the set X of feasible allocation outcomes is constant to all

t 2 T and is defined to be the set of all ((xkj)2k=1)
N

j=1 2 {0, 1}2N that satisfy (25) and

8k 2 I1 :
X

j2I2

xkj  1.

That is, each bidder gets at most one object and may get none. A feasible allocation outcome

corresponds to a subset of I that satisfies (26). In other words, X is equivalent to the set MP

of the subsets M of I (= {1, 2}⇥ {1, . . . , N}) that satisfy (26). Di↵erent from the M in the

assignment model in Section 6, the cardinality of an element of MP may be less than two.

Theorem 5 In the partial assignment model such that |I1| = 2, QB ✓ Q.

Social Planner’s Solution To prove the theorem, following the road map in Section 3,

pick any ↵ 2 RZ and consider the social planner’s problem for any t := (t1, t2) 2 T :

max
x2cvX

X

i2I

xi↵(i, ti1) = max
x2X

X

i2I

xi↵(i, ti1) = max
M2MP

X

i2M

↵(i, ti1)

= max
j2I2

max
j02I2\{j}

(max{0,↵(1, j, t1)}+max{0,↵(2, j0, t2)}) ,

where the first two “=” are the same as in the previous model, and the last “=” highlights

the di↵erence, that there is no loss for a solution to assign zero quantity to any interim

state whose ↵-value is nonpositive. Thus, the social planner’s problem is solved by coupling

the first- or second-highest positive ↵(1, j, t1) among j 2 I2 with the first- or second-highest

positive ↵(2, j, t2) among j 2 I2 such that the couple have di↵erent j-coordinates. To

illustrate, consider the following table that displays the ↵-values given ex post state (t1, t2),

with rows corresponding to objects, and columns bidder-types:
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(1, t1) (2, t2)

1 2 3

2 �4 0

3 �1 1/2

The solution in the previous model would have been {(1, 1), (2, 3)} (giving good 1 to bidder 1,

and good 3 to bidder 2). That would produce a total ↵-value 2+ 1/2, while the second best

would be {(1, 3), (2, 1)}, producing a total ↵-value �1 + 3 = 2. In the partial assignment

model, by contrast, the solution is {(2, 1)} (giving good 1 to bidder 2 and none to bidder 1).

That produces a total positive ↵-value max{0,�1}+ 3 = 3, while the second best, 2 + 1/2.

To define a solution to the social planner’s problem in general, let

j
1(k, tk) :=

8
<

:
min (argmaxj2I2 ↵(k, j, tk)) if maxj2I2 ↵(k, j, tk) > 0

0 else

j
2(k, tk) :=

8
<

:
min

�
argmaxj2I2\{j1(k,tk)} ↵(k, j, tk)

�
if maxj2I2\{j1(k,tk)} ↵(k, j, tk) > 0

0 else

for any k 2 I2 and any tk 2 Tk. For any j 2 I2 (= {1, . . . , N}), let

�P(k, j, tk) := max{0,↵(k, j, tk)}� max
j02I2\{j}

max{0,↵(k, j0, tk)}.

For any t := (t1, t2) 2 T , define M⇤(t1, t2) 2 MP by:

a. if j1(1, t1) 6= j
1(2, t2), let M⇤(t1, t2) := {(1, j1(1, t1)), (2, j1(2, t2))} \ {(1, 0), (2, 0)};

b. else (j1(1, t1) = j
1(2, t2)) then:

i. if �P(1, j1(1, t1), t1) � �P(2, j1(1, t1), t2) (= �P(2, j1(2, t2), t2)), let

M⇤(t1, t2) :=
�
(1, j1(1, t1)), (2, j

2(2, t2))
 
\ {(1, 0), (2, 0)};

ii. else (�P(1, j1(1, t1), t1) < �P(2, j1(1, t1), t2)), let

M⇤(t1, t2) :=
�
(1, j2(1, t1)), (2, j

1(2, t2))
 
\ {(1, 0), (2, 0)}.

This definition of M⇤ parallels that of M⇤ in the previous model except that M⇤(t) here

excludes any bidder-object pair with nonpositive ↵-value at state t (through “\{(1, 0), (2, 0)}”).
Clearly, M⇤(t) is a solution to the social planner’s problem for every t 2 T , hence M⇤ corre-

sponds to the q
⇤ that Step 1 of our method needs.
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Partial Revealed Preferences Step 2, as in the previous model, is to construct partial

orders that rationalize M⇤ partially, one for every “column” of interim states referring to a

common bidder-type (k, tk) and every “row” of interim states referring to a common object j.

For any j 2 I2, define the “row”

Zj :=
�
(k, j, tk) | k 2 I1; tk 2 Tk; j = j

1(k, tk) 6= 0
 
.

The definition is the same as its counterpart in the previous model except for the nonzero

condition on the right-hand side, which excludes those “top” contenders whose ↵-values are

nonpositive. The binary relation �j on Zj is defined in the same way as that in Section 6,

where � is replaced by �P here. Correspondingly, list the elements of Zj in descending order

of �j as in (29), and define its upper contour sets Un

j
as there. By the same proof of Lemma 9

(Appendix A.6), one verifies that Un

j
is upward universally binding for any n = 1, . . . , |Zj|.

The partial order⌫k,tk
within a “column” {k}⇥I2⇥{tk} is needed only when both j

1(k, tk)

and j
2(k, tk) are nonzero; otherwise the tradeo↵ within the column is trivial. Thus, consider

any k 2 I1 and any tk 2 Tk for which j
2(k, tk) 6= 0 (which implies ↵(k, j2(k, tk), tk) > 0 and

hence j
1(k, tk) 6= 0). Define ⌫k,tk

by:

a. let j1(k, tk) ⇠k,tk
j
2(k, tk);

b. for any {j, j0} 6= {j2(k, tk), j1(k, tk)}:

i. if ↵(k, j, tk) > 0 and ↵(k, j0, tk) > 0, let j �k,tk
j
0 i↵

↵(k, j, tk) > ↵(k, j0, tk) or [↵(k, j, tk) = ↵(k, j0, tk) and j < j
0] ;

ii. if ↵(k, j, tk) > 0 � ↵(k, j0, tk), let j �k,tk
j
0.

Let there be Nk,tk
distinct elements j 2 I2 for which ↵(k, j, tk) > 0. Note Nk,tk

� 2 by the

supposition j
2(k, tk) > 0. List all these elements (whose ↵-values are positive) in descending

order of ⌫k,tk
, just like (28):

j
1(k, tk) ⇠k,tk

j
2(k, tk) �k,tk

j
3 �k,tk

j
4 �k,tk

· · · �k,tk
j
Nk,tk . (49)

Correspondingly, let (k, j, tk) �k,tk
(k, j0, tk) () j �k,tk

j
0, and likewise for ⇠k,tk

. Define

the upper contour sets (V n

k,tk
)
Nk,tk
n=2 with respect to ⌫k,tk

just as in Section 6. For any z 2 Z

such that ↵(z)  0, define (a lower contour set)

L(z) := {z}.
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Lemma 10 In the partial assignment model, for any k 2 I1 and any tk 2 Tk such that

j
2(k, tk) > 0, V n

k,tk
is upward universally binding for any n 2 {2, . . . , Nk,tk

}, and L(k, j, tk)

downward universally binding whenever ↵(k, j, tk)  0.

Proof The definition of V n

k,tk
implies ? =: V 1

k,tk
( V

2
k,tk

( V
3
k,tk

( · · · ( V
Nk,tk
k,tk

, as in

the (10) in Lemma 2. To verify (12) in that lemma, pick any t
0 := (t0

k
, t

0
�k
) 2 T . If t0

k
6= tk

then I(V n

k,tk
, t

0) = ? for all n and the proof is trivial. Suppose t
0
k
= tk. Then for any

n 2 {2, . . . , Nk,tk
}, I(V n

k,tk
, t

0) = {k} ⇥ {j1(k, tk), j2(k, tk)} [ {jm | 2  m  n}. This,

combined with (3) and (24), implies f(V n

k,tk
, t

0) = 1. Thus,

f(V 2
k,tk

, t
0)� f(V 1

k,tk
, t

0) = 1� 0 = 1

f(V n

k,tk
, t

0)� f(V n�1
k,tk

, t
0) = 1� 1 = 0 8n � 3.

Meanwhile, since both j
1(k, tk) and j

2(k, tk) are nonzero (hypothesis of the lemma), exactly

one of them gets one object according to M⇤(t1, t2), while none of the other interim states

ranked behind them get any. Thus,

X

(k,j,tk)2V 2
k,tk

\V 1
k,tk

q
⇤
k,j
(t0) = q

⇤
k,j1(k,tk)

(t0) + q
⇤
k,j2(k,tk)

(t0) = 1

X

(k,j,tk)2V n
k,tk

\V n�1
k,tk

q
⇤
k,j
(t0) = 0 8n � 3.

Thus (12) is satisfied, and hence V
n

k,tk
is upward universally binding.

Let ↵(k, j, tk)  0. Then L(k, j, tk) =: L1 ) L
0 := ?, hence the (11) in Lemma 2

holds. To verify (13), note from (4), (24) and (25) that g(S, t0) = 0 for all S ✓ Z . Thus

g(L1
, t

0) � g(L0
, t

0) = 0. Meanwhile, ↵(k, j, tk)  0 implies q
⇤
k,j
(tk, t�k) = 0 for any t�k by

the definition of M⇤. Thus (13) is true, and L(k, j, tk) downward universally binding.

Existence of the Price Function Let

S+ :=
�
U

n

j
| j 2 I2;Zj 6= ?;n = 1, . . . , |Zj|

 

[�
V

n

k,tk
| k 2 I1; tk 2 Tk; j

2(k, tk) 6= 0;n = 2, . . . , Nk,tk

 
,

S� := {L(z) | z 2 Z ;↵(z)  0} .

Di↵erent from its counterpart in the previous model, S� consists of the singletons of interim

states whose ↵-values are nonpositive (and hence excluded by M⇤).
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Following Lemma 3, define the matrix [M+,M�] with respect to the S+ and S�

here. For any z 2 Z , let [z] denote the row of [M+,M�,�↵] corresponding to z. Let [0]

denote the zero vector in the space spanned by the row vectors of [M+,M�,�↵]. That is,

[0](S) = [0](�↵) = 0 for all S 2 S+ t S�.

To prove Theorem 5 by Lemma 3, it su�ces to prove that, for any nonempty subset Z

of Z and any (�z)z2Z 2 (R \ {0})Z , (30) and (31) cannot hold simultaneously. To that end,

the next lemma says that we can exclude from Z all the interim states z for which ↵(z)  0.

The reason is intuitive. By the construction of the upper and lower contour sets, if ↵(z)  0

then the only member in S+ t S� that contains z is the {z} (= L(z)) in S�. Thus the

row [z] has zero for all its entries except [z](L(z)) = �1 and [z](�↵) = �↵(z) � 0. Then

adding [z] to any Gaussian elimination violates the nonnegativity condition (30), as no other

row can cancel out [z](L(z)) = �1. Neither can subtracting [z] from the Gaussian operation

improve the prospect for (31), as �[z] adds a nonnegative increment �↵(z) to the left-hand

side of (31).

Lemma 11 If (30) implies
P

z2Z �z↵(z) � 0 for any Z ✓ Z such that ↵(z) > 0 for all

z 2 Z and (�z)z2Z 2 (R \ {0})Z, then (30) implies
P

z2Z �z↵(z) � 0 for any Z ✓ Z and

any (�z)z2Z 2 (R \ {0})Z.

Proof For Z ✓ Z and (�z)z2Z 2 (R \ {0})Z that satisfy (30), define

Z
+ := {z 2 Z | �z > 0},

Z
� := Z \ Z+ (= {z 2 Z | �z < 0}).

Observe that ↵(z)  0 ) z 62 Z
+. That is because ↵(z)  0 implies [z](L(z)) = �1. Since

L(z) = {z}, [z0](L(z)) = 0 for all z0 6= z. Thus, z 2 Z
+, combined with the fact Z+\Z

� = ?
and the hypothesis �z > 0, contradicts (30).

Thus, if z 2 Z and ↵(z)  0, then z 2 Z
�. Let

Z
0 := Z \ {z 2 Z

� | ↵(z)  0}.

Note: Z 0 satisfies (30) where the role of Z is replaced by Z
0. That is because ↵(z)  0 implies

that [z](S) = 0 for all S 2 S+ t S� \ {L(z)}, [z](L(z)) = �1, and [z](�↵) = �↵(z) � 0.

Thus, removing �z[z] from
P

z02Z �z0 [z0] has no e↵ect on
P

z02Z �z0 [z0](S) if S 6= L(z) and,
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when S = L(z), merely turns

X

z02Z

�z0 [z
0](L(z)) = �z(�1) = ��z = |�z|

into
P

z02Z\{z} �z0 [z0](L(z)) = �z(�1) = 0 because [z0](L(z) = 0 for all z0 6= z. Conse-

quently, Z 0 with all such z removed preserves (30). Then, by the hypothesis of the lemma,
P

z02Z0 �z0↵(z0) � 0. Thus the desired conclusion follows:

X

z2Z

�z↵(z) =
X

z02Z0

�z0↵(z
0) +

X

z2Z�:↵(z)0

�z↵(z) � 0. ⌅

Thus, we can assume, without loss, that ↵(z) > 0 for any z 2 Z in (30). Also assume

Z
� 6= ?, which is without loss because Z

� = ? )
P

z2Z �z↵(z) � 0, as ↵(z) > 0 for all

z 2 Z. Then follows the analogous observation to the previous Lemma 5:

Lemma 12 For any subset Z ✓ Z such that ↵(z) > 0 for all z 2 Z and Z
� 6= ?, and for

any (�z)z2Z 2 (R\{0})Z, if (30) is true then there exist a set H and a positive (�̃h)h2H 2 RH

++

for which
X

z2Z

�z[z] =
X

h2H

�̃h ([z
0
h
]� [zh]) (50)

such that for every h 2 H there exist k 2 I1 and tk 2 Tk that satisfy one of the following:

i. zh = (k, j, tk) and z
0
h
= (k, j0, tk) for some j, j

0 2 I2 such that j 6= j
0, ↵(zh) > 0,

↵(z0
h
) > 0, and j

0 ⌫k,tk
j (�k,tk

or ⇠k,tk
);

ii. or [zh] = [0] and z
0
h
= (k, j0, tk) such that j0 = j

1(k, tk) > 0 = j
2(k, tk);

iii. or [z0
h
] = [0] and zh = (k, j, tk) such that j = j

1(k, tk) > 0 = j
2(k, tk).

Proof As in the case of Lemma 5, let us assume, without loss of generality, that Z ✓
{k}⇥ I2 ⇥ {tk} for some k 2 I1 and some tk 2 Tk.

First suppose j
2(k, tk) = 0. Then ↵(k, j, tk)  0 for all j 2 I2 \ {j1(k, tk)}. Conse-

quently, if z 2 Z then ↵(z) > 0 (by hypothesis of the lemma) and hence z = (k, j1(k, tk), tk)

and j
1(k, tk) > 0. Thus, Z = {z} (Z ✓ {k} ⇥ I2 ⇥ {tk} by the previous paragraph). Since

Z = Z
+ t Z

�, it follows that z cannot be in both Z
+ and Z

�. If z 2 Z
+ then (50) holds

trivially, with H := {1} and z
0
1 := z, which is case (ii) in the conclusion. Else, z 2 Z

�,

then (50) holds trivially, with H := {1} and z1 := z, which is case (iii) of the conclusion.
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Next suppose j
2(k, tk) 6= 0. Then the binary relation ⌫k,tk

is defined on the column

{k}⇥ I2 ⇥ {tk}, and V
n

k,tk
2 S+ for all n 2 {2, . . . , Nk,tk

}. Thus, if n is the rank of z in the

list (49) (with rank of both j
1(k, tk) and j

2(k, tk) be 2), then [z](V m

k,tk
) is equal to one for all

m � n, and equal to zero for all m < n. Consequently, the proof of Eq. (40) (Appendix A.7)

applies. Now that (40) obtains, if Z⇤ 6= ?, simply rewrite the
P

z02Z⇤
�̃z0 [z0] on its right-hand

side as
P

z02Z⇤
�̃z0([z0]� [0]) and modify the definition of H there by H := H tZ⇤. Then (50)

obtains, with the elements of Z⇤ belonging to case (ii), and all the other elements of H

belonging to case (i).

In Lemma 12, case (i) is the same as the last clause in the statement of Lemma 5

(except for the positive-↵ property thanks to Lemma 11 in the current model). Cases (ii)

and (iii) are the special (and trivial) cases that arise because the planner’s solution in the

current model assigns zero quantity to any interim state with a nonpositive ↵-value. When a

row [z] enters a Gaussian elimination, z may be the only interim state in {k}⇥I2⇥{tk} that

has a positive ↵-value. The rows corresponding to the other interim states in {k}⇥ I2⇥{tk}
have zero for all their entries, because none of them, already precluded by the planner’s

solution, belong to any upper contour set, and any interim state that belongs to any lower

contour set is already excluded from the Gaussian procedure, thanks to Lemma 11. That is

why the zero vector [0] appears in Cases (ii) and (iii).

Mimicking the proof in the previous model that derives Lemma 6 from Lemma 5, we

obtain a consequence of Lemma 12 in the current model.17 Then Theorem 5 is proved in the

same manner as the ending paragraph of Section 6.

B.2 An Example to Apply the Necessity Part of Theorem 1

Let us apply the necessity observation in Theorem 1 to an example in Che et al. [7]. Multiple

units of a homogeneous object are to be allocated to three bidders, named 1, 2 and 3. Now

17Case (i) in Lemma 12 is the same as Lemma 5. Neither cases (ii) nor (iii) cause any complication.

That is because the proof of Lemma 6 is to balance every negatively weighted di↵erence [z0h]� [zh] by some

positively weighted di↵erences, where the former means that ([z0h] � [zh])(Un
j ) = �[zh](Un

j ) = �1 for some

upper contour set Un
j among the top contenders that refer to the same object j as zh refers to. Thus case (ii)

is a nonissue because [zh] = [0] in (ii) and thus [z0h] � [zh], equal to [z0h], is not negatively weighted. In

case (iii), zh is a top contender and [z0h] = [0]; thus ([z0h] � [zh])(Un
j ) = �[zh](Un

j ) = �1 for any upper

contour set Un
j that contains zh. Thus [z0h] � [zh] behaves exactly like a negatively weighted di↵erence

described above.
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that the set I2 of objects is singleton, without loss denote I := I1 := {1, 2, 3}. Each bidder’s

type is drawn from the same set {✓, ✓}, so T = {✓, ✓}3. The set X of feasible allocation

outcomes is defined by (16) such that f{1} = f{2} = f{3} = 3, f{1, 2} = f{2, 3} =

f{3, 1} = 4, f{1, 2, 3} = 6, and f(?) = g(E) = 0 for all E ✓ I. One readily sees that

the f in this example is not submodular on 2I . Thus Theorem 2 does not apply. Che et al.

note QB 6✓ Q in this example based on unpublished computations. Here I prove QB 6✓ Q

through showing that the universal binding condition, necessary for QB ✓ Q by Theorem 1,

cannot be satisfied in this example.

In this example, the set Z of interim states is {(i, ti) |2 {1, 2, 3}, ti 2 {✓, ✓}}. For all

i 2 {1, 2, 3}, let
↵(i, ✓) := 1, ↵(i, ✓) := 3.

For any t 2 T (= {✓, ✓}3), let

q
⇤(t) 2 arg max

x2cvX

X

i2I

xi↵(i, ti).

One readily sees that q
⇤(t) = (2, 2, 2) if t = (✓, ✓, ✓) or t = (✓, ✓, ✓), and for any other t,

q
⇤(t) 2 {(3, 1, 1), (1, 3, 1), (1, 1, 3)} such that one of the bidders whose types are ✓ is assigned 3

units, and one of the bidders whose types are ✓ is assigned 1 unit.

By the necessity assertion in Theorem 1, it su�ces QB 6✓ Q to prove that that there

exists no (p+, p�) : 2Z ! R2
+ that satisfies both (7) and (9) given any q

⇤ with the above-

stated property. Suppose, to the contrary, that there is such a (p+, p�).

Claim: For any S ✓ Z , (i, ✓) 2 S implies p+(S) = 0. To prove the claim, without

loss, let (1, ✓) 2 S. First, suppose that (i0, ✓) 2 S for some i
0 6= 1. Without loss, let i0 := 2.

Let t := (✓, ✓, ✓). Then q
⇤(t) = (1, 1, 3). Meanwhile, I(S, t) ◆ {1, 2} and hence f(S, t) is

equal to either 4 (when I(S, t) = {1, 2}) or 6 (when I(S, t) = {1, 2, 3}). In either case,

f(S, t) >
P

i2I(S,t) q
⇤
i
(t), because

P
i2I(S,t) q

⇤
i
(t) = q

⇤
1(t) + q

⇤
2(t) = 2 when I(S, t) = {1, 2},

and
P

i2I(S,t) q
⇤
i
(t) =

P3
i=1 q

⇤
i
(t) = 5 when I(S, t) = {1, 2, 3}. Thus (9) is violated unless

p+(S) = 0.

Thus, if p+(S) > 0 then (i0, ✓) 62 S for any i
0 6= 1. Let t

0 := (✓, ✓, ✓). Then q
⇤(t0) =

(2, 2, 2) and I(S, t0) = {1}. Thus f(S, t0) = 3 whereas
P

i2I(S,t0) q
⇤
i
(t0) = q

⇤
1(t

0) = 2. But then

p+(S) > 0 violates (9): contradiction. Thus p+(S) = 0, and the claim is proved.
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By the claim just proved, Eq. (7) for any i 2 {1, 2, 3} implies

↵(i, ✓) = �
X

S✓Z

p�(S)�S(i, ✓)  0,

which contradicts the fact that ↵(i, ✓) = 1. Thus, there exists no (p+, p�) : 2Z ! R2
+ that

satisfies both (7) and (9) given any social planner’s solution q
⇤, as asserted. ⌅

B.3 Paramodularity Implies Decomposability

In contrast to Lang and Yang’s [20] total unimodularity assumption, for which they do

not o↵er any example where a player may have more than two types, the assumptions of

Theorem 3 allow for arbitrary numbers of types per player. That is because paramodularity

implies decomposability as well as the other assumptions in the theorem, as observed next.

Remark 2 If |T | < 1 and if the set X of feasible allocation outcomes is paramodular, then h

(defined in (23)) is linear, and X satisfies (18) for some (F ,G , f̂ , ĝ) that is decomposable

and satisfies (22).

Proof Let X be paramodular and defined by (f, g) : 2I ! R2
+ via (16). To prove linearity

of h, pick any F,G ✓ I with F \G = ?. By (23) the definition of h,

h(F,G) = max
x2cvX

X

i2I

(�F (i)� �G(i)) xi.

This problem is solved by the greedy-generous algorithm (due to paramodularity). Thus,

h(F,G) = f(F )� g(G) = max
x2X

X

i2F

xi �min
x2X

X

i2G

xi = h(F,?) + h(?, G),

with the second equality due to (14) and (15). Thus h is linear.

To prove the other parts of the remark, define (F ,G , f̂ , ĝ) by F := G := 2I , f̂ :=

f , and ĝ := g. Then (18) holds, and (F ,G , f̂ , ĝ) is a constraint structure considered in

Section 5. To prove that (22) is satisfied, note that cvX is equal to the Q in the special case

where everyone’s type is common knowledge, i.e., Ti1 is singleton for all i1 2 I1. Thus, by

paramodularity, Theorem 2 implies

cvX =

(
(xi)i2I 2 RI

����� 8E ✓ I

"
g(E) 

X

i2E

xi  f(E)

#)
,
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which becomes (22) because F = G = 2I , f̂ = f and ĝ = g.

To prove that (F ,G , f̂ , ĝ) is decomposable, pick any ↵ 2 RZ . Since X is assumed

nonempty and compact, so is cvX. Thus the problem on the right-hand side of (6) has a

finite optimum, and hence so does its dual. Since F = G = 2I , f̂ = f and ĝ = g, this dual

is problem (20). Then, by Frank et al. [10, Prop. 2] due to the paramodular assumption,

there exists a solution ('⇤
, �

⇤) to problem (20) such that, for any t 2 T , the supports

supp'⇤(·, t) := {F ✓ I | '⇤(F, t) > 0} and

supp �⇤(·, t) := {G ✓ I | �⇤(G, t) > 0}

are both laminar families on disjoint ground sets. Denote

↵
+ := (max{0,↵(i, ti1)})(i,ti1 )2Z ,

↵
� := (min{0,↵(i, ti1)})(i,ti1 )2Z .

Apply Lang and Yang [20, Lemmas 6 & 7] to see that (↵+
,'

⇤
,0) belongs to

P1 := {(↵,', �) 2 P | ↵ = 0, � = 0, [F 62 supp'⇤(·, t) ) '(F, t) = 0]} ,

(↵�
,0, �⇤) belongs to

P2 := {(↵,', �) 2 P | ↵ 5 0,' = 0, [G 62 supp �⇤(·, t) ) �(G, t) = 0]} ,

and P1 [ P2 is contained in the cone generated by some finite subset {(↵k,'k, �k) | k 2
K} ⇢ P that satisfies (21). Thus, there exist finite sets K1 and K2, (�1

k
)k2K1 2 RK1

++,

(�2
k
)k2K2 2 RK2

++, (↵
1
k
,'

1
k
, �

1
k
)k2K1 2 PK1 , and (↵2

k
,'

2
k
, �

2
k
)k2K2 2 PK2 , such that every ↵

j

k

satisfies (21), and

�
↵
+
,'

⇤
,0
�

=
X

k2K1

�
1
k

�
↵
1
k
,'

1
k
, �

1
k

�
,

�
↵
�
,0, �⇤� =

X

k2K2

�
2
k

�
↵
2
k
,'

2
k
, �

2
k

�
.

Sum the two equations and note ↵ = ↵
+ + ↵

� to obtain

(↵,'⇤
, �

⇤) =
X

k2K1

�
1
k

�
↵
1
k
,'

1
k
, �

1
k

�
+
X

k2K2

�
2
k

�
↵
2
k
,'

2
k
, �

2
k

�
.

That is, (↵,'⇤
, �

⇤) is a conic combination of
S2

j=1{(↵
j

k
,'

j

k
, �

j

k
) | k 2 Kj}, and each ↵

j

k
is

{0, 1,�1}-valued. Thus the constraint structure is decomposable.
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Di↵erent from decomposability, the total unimodularity assumption has not been ob-

served to include paramdoularity as a special case. The reason is that total unimodularity re-

quires that the entire set P be generated by extreme rays whose ↵-components are {0, 1,�1}-
valued, and '- and �-components are {0, 1}-valued, whereas decomposability requires only

a subset of P be generated by extreme rays whose ↵-components are {0, 1,�1}-valued, and
hence decomposability is broad enough to include paramodularity. Total unimodularity may

be an unnecessary condition for reduced-form characterization.18

B.4 Non-Paramodularity of the Assignment Models

In both assignment models, the set X of feasible allocation outcomes satisfies (16) such that

8i2 2 I2 : f(I1 ⇥ {i2}) = 1, (51)

8i1 2 I1 8E ( I2 : g({i1}⇥ E) = 0, (52)

8i 2 I : f{i} = 1, (53)

8M ✓ I : [(i1, i2), (i01, i
0
2) 2 M, i1 6= i

0
1, i2 6= i

0
2] ) f(M) = 2, (54)

and either

8i1 2 I1 : g({i1}⇥ I2) = 1 (55)

in the assignment model (Section 6), or

8i1 2 I1 : f({i1}⇥ I2) = 1 and 8E ✓ I : g(E) = 0 (56)

in the partial assignment model (Online Supplement B.1).

The assignment model in Section 6 violates the compliance condition:

f{(1, 1), (2, 1)}� f({(1, 1), (2, 1)} \ ({1}⇥ I2)) = 1� f{(2, 1)} = 1� 1 = 0,

with the first equality due to (51) and the second due to (53). Whereas, by (55),

g({1}⇥ I2)� g(({1}⇥ I2) \ {(1, 1), (2, 1)}) = 1� g({1}⇥ (I2 \ {1})) = 1� 0 = 1,

with the second last “=” due to (52). Thus (f, g) violates compliance.

18Lang and Yang [20] cite an example from Che et al. [7] for which neither the reduced-form characterization

nor the total unimodularity assumption are valid. Needless to say, existence of such an example does not

imply that total unimodularity is a necessary condition for the reduced-form characterization to be valid.
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The partial assignment model (Online Supplement B.1) violates the submodular con-

dition for f : f{(1, 1), (2, 1)}+ f{(2, 1), (2, 2)} = 1 + 1 = 2 by (51) and (56), whereas

f({(1, 1), (2, 1)} [ {(2, 1), (2, 2)}) + f({(1, 1), (2, 1)} \ {(2, 1), (2, 2)})

= f{(1, 1), (2, 1), (2, 2)}+ f{(2, 1)} = 2 + 1 = 3,

where f{(1, 1), (2, 1), (2, 2)} = 2 by (54). Thus f is not submodular. ⌅

B.5 Infinite Type Spaces

This section removes the assumption |T | < 1 in the main text.

Theorem 6 For any (f, g) : 2I ! R2
+, if there exists ✏ > 0 such that for any integer

m > 1/✏, QB = Q holds given any |T | < 1 and any constraint structure defined by (16)

where (ft, gt) = (f, gm) for all t and, for any m 2 {1, 2, . . .} and any E ✓ I,

g
m(E) = max{0, g(E)� 1/m}, (57)

then QB = Q given the constraint structure defined by (16) where (ft, gt) = (f, g) for all t,

whether |T | is finite or not.

Proof It is easy to adapt Lemma 7 to obtain QB ◆ Q for infinite type spaces.19 The

proof of QB ✓ Q is a passing-to-limit argument: Given any type space T and any constraint

structure X defined by (f, g), pick any Q 2 QB. Construct a sequence (Qm)1
m=1 of finite-type

interim allocations converging to Q so that, for all su�ciently large m, Qm 2 QB given any

constraint structure defined by (f, gm). Then the hypothesis of the theorem implies Qm 2 Q

with respect to constraint structure (f, gm). Consequently, the convergence of Qm ! Q and

g
m ! g implies Q 2 Q with respect to constraint structure (f, g). Since Q can be any

element of QB given constraint structure (f, g), we have QB ✓ Q given T and (f, g). Next

are the details of this argument.

19Since Xt is assumed compact for all t 2 T , every element of Q is µ-essentially bounded due to (1).

Thus, following Border [2], treat both Q and QB as subsets of the L1(µ)-space of functions Z ! R.
For any L1-function Q := (Qi)i2I 2 RZ and any L1(µ)-function ↵ 2 RZ , define the inner product

hQ,↵i :=
R
T

P
i2I Qi(ti1)↵(i, ti1)dµ(t). Then h·,↵i is a continuous linear functional on the L1-space of

interim allocations. The rest is the same as the proof of Lemma 7.
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LetQ := (Qi1,i2)(i1,i2)2I1⇥I2 2 QB given any type space T and constraint structure (f, g).

Write Q as (Qi1)i12I1 such that Qi1 := (Qi1,i2)i22I2 for each i1 2 I1. For any m = 1, 2, 3, . . .,

partition RI2 into a collection Cm of cells each of which has diameter at most 1/m.20 For

each bidder i1 2 I1 and each cell C 2 Cm that has nonempty intersection with the range

of Qi1 , denote ([minC]i2)i22I2 for the coordinate-wise minimum among all elements of C,

with [minC]i2 being its coordinate in the i2th dimension, and define

Q
m

i1,i2
(ti1) := max {0, [minC]i2}

for all i2 2 I2 and all ti1 in the inverse image Q
�1
i1
(C) of C. Thus,

max {0, Qi1,i2(ti1)� 1/m}  Q
m

i1,i2
(ti1)  Qi1,i2(ti1)

for eachm, each (i1, i2) 2 I (= I1⇥I2) and each ti1 2 Ti1 . (The second inequality follows from

the definition of Qm

i1,i2
(ti1) and the fact that there is no loss to restrict the range of Qi1 to RI2

+ ,

as f and g are both nonnegative-valued.) Since Q 2 QB with respect to (f, g), Q satisfies (5)

with respect to (f, g). Thus, by the above-displayed inequalities, Q
m := (Qm

i1,i2
)(i1,i2)2I

satisfies the (5) with respect to (f, gm), where g
m is defined by (57).

Since there is no loss to restrict the range of Qi1 to a bounded set (as f and g are each

finite-valued), for each m there are only finitely many cells in Cm that intersect with the

range of Qi1 . Thus, Q
m

i1
is equivalent to a function defined on the finite type space

T
m

i1
:=

�
Q

�1
i1
(C) | Q�1

i1
(C) 6= ?;C 2 Cm

 
.

It follows that for any m, Q
m 2 QB given type space T

m :=
Q

i12I1 T
m

i1
and constraint

structure (f, gm). Thus, by the hypothesis in the theorem, for all su�ciently large m,

Q
m belongs to the Q given T

m and (f, gm). For any such m, by the definition of Q,

there exists an ex post allocation q
m given T

m and (f, gm). Consequently, one can extract

a subsequence (qmk)1
k=1 converging to some ex post allocation q given the original type

space T and original constraint structure (f, g). Furthermore, following the reasoning (and

topologies) in Border [2], limk!1 Q
mk is the reduced form of q, and Q = limk!1 Q

mk . That

is, Q 2 Q given T and (f, g), as desired.

The proof of Theorem 6 is an extension of Che et al.’s [7, Online Appendix B.2] passing-

to-limit argument. The main assumption around (57) is to ensure that, when any given

20A cell in RI2 is any set
Q

i22I2
[yi2 , y

0
i2) for some real numbers yi2 < y0i2 (8i2 2 I2).
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interim allocation is being approximated from below by the nearest nonnegative grid points,

the floor constraints in the Border condition within the discretized model is satisfied. This

assumption is true given paramodularity or partial assignment. Thus follow the next two

corollaries. By contrast, the assumption is not satisfied in the full assignment model, because

its floor constraint involves positive integers and hence cannot be perturbed downward. By

the same token, neither is the assumption satisfied by Lang and Yang’s total unimodular

model, which allows for positive integer floor constraints.

Corollary 1 If (f, g) is constant across ex post states t 2 T and is paramodular on 2I , and

if R = R, then QB = Q.

Proof We shall prove that, for any su�ciently large integer m, �g
m is submodular and

(f, gm) is compliant. (Since R = R by the assumption of the corollary, the gm defined in (57)

is a legitimate constraint function.) Submodularity of �g
m means

g
m(E) + g

m(E 0)  g
m(E [ E

0) + g
m(E \ E

0) (58)

for all E,E
0 ✓ I. Since 2I is finite, it su�ces to show, given any E,E

0 ✓ I, that (58) holds

for all su�ciently large m. If g(E) > 0 and g(E 0) > 0, then (57) implies that, for any large

enough m, gm(E) = g(E)� 1/m and g
m(E 0) = g(E 0)� 1/m; meanwhile, the right-hand side

of (58) is never less than g(E [ E
0) + g(E \ E

0) � 2/m (by (57)). Thus (58) follows from

g(E) + g(E 0)  g(E [ E
0) + g(E \ E

0) (submodularity of �g) for all large m. If g(E) = 0

and g(E 0) = 0, then g
m(E) = g

m(E 0) = 0 by the definition of gm, and (58) follows trivially

because its right-hand side is always nonnegative (by the definition of gm). Else, one of g(E)

and g(E 0) is zero, and the other positive. Then g(E[E 0) > 0 and g(E\E 0) = 0 (monotonicity

of g, due to submodularity of �g). Without loss of generality, say g(E) > 0 = g(E 0). Then

for any m su�ciently large, (58) becomes g(E)� 1/m  g(E [E
0)� 1/m, which is true by

g(E 0)  g(E [ E
0) (submodularity of �g). Thus, (58) is true for any su�ciently large m.

Compliance of (f, gm) means

f(E 0)� f(E 0 \ E) � g
m(E)� g

m(E \ E 0) (59)

for all E,E
0 ✓ I. Suppose that (59) does not hold no matter how large m is. Then, it

follows from the fact f(E 0) � f(E 0 \ E) � g(E) � g(E \ E
0) (compliance of (f, g)) that

g
m(E \ E 0) = g(E \ E 0) � 1/m and g

m(E) = 0 for any m. Then by the definition of gm we

58



have g(E) = 0 < g(E \E 0), contradicting the monotonicity of g noted previously. Thus, (59)

holds for all su�ciently large m. Since there are only finitely many subsets of I, (59) holds

for all subsets of I when m is su�ciently large. Thus, for any su�ciently large m, (f, gm) is

paramodular. Then the conclusion follows from Theorems 2 and 6.

Corollary 2 In the partial assignment model, QB = Q.

Proof In the partial assignment model, the constraint structure X satisfies (16) wherein

f(E) is equal to the
P

i2E xi in Example 2 (Section 2), and g(E) = 0 for all E ✓ I. Then

g
m = 0 = g for all m. The conclusion therefore follows from Theorems 5 and 6.

Corollary 1 also gives the characterization in the two-player bargaining model, a special

case of paramodularity.

Corollary 3 In the two-player bargaining model defined in Section 4, QB = Q.

Proof In the two-player bargaining model, I1 = {1, 2} and I2 is singleton. Thus we can let

I := {1, 2}. The constraint structure is defined by (16) where f{1, 2} = f{1} = f{2} = 1,

g{1} = g{2} = 0 and g{1, 2} = 1, as well as the standard f(?) = g(?) = 0. By Corollary 1,

it su�ces to prove that (f, g) is paramodular on 2I . Submodularity of f follows directly

from f{1, 2} = f{1} = f{2} = 1, and submodularity of �g directly from g{1} = g{2} = 0

and g{1, 2} = 1. To prove compliance, pick any E,E
0 ✓ {1, 2} to prove

f(E 0)� f(E 0 \ E) � g(E)� g(E \ E 0). (60)

By the g defined above, g(E) � g(E \ E
0) 2 {0, 1} and f(E 0) � f(E 0 \ E) � 0. Thus, if

g(E)� g(E \ E 0) = 0 then (60) follows trivially. Suppose that g(E)� g(E \ E 0) = 1. Then

by the definition of g, E \ E
0 is either singleton or empty, and E = {1, 2}. Thus, E 0 6= ?

and E
0 \E = ?. Consequently, f(E 0)� f(E 0 \E) = f(E 0)� f(?) = 1, so (60) holds. Thus,

(f, g) is compliant, as desired.
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