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UNEQUAL PEACE∗

By Ali Kamranzadeh and Charles Z. Zheng

Koç University, Türkiye; University of Western Ontario, Canada

A mediator proposes a settlement between two contestants to avoid a conflict where the cost each contes-
tant bears is inversely related to the contestant’s privately known strength. Their strength levels are identically
distributed, and their welfares weigh equally in the mediator’s objective. However, the optimal proposal offers
one contestant much more than it does the other so that the former accepts it always, whereas the latter only
occasionally. This unequal treatment improves the prospect of peace by making one contestant willing to settle
without fearing that the action signals his weakness that his opponent can exploit should conflict occur.

1. introduction

In conflict mediation, being fair to the conflicting parties is often regarded as a basic princi-
ple. Although the notion of fairness may be subjective as an informal lingo, and complicated
as a formal criterion, it might appear natural in situations where the conflicting parties are
ex ante equal: the mediator should treat equal parties equally.1 This article examines such an
equal treatment criterion in a stylized model. Two potential adversaries are ex ante identical,
and they weigh equally in the mediator’s objective. Yet we find that the mediator’s optimal
proposal to broker peace between them does not treat them equally.

In this model, two players contest a good. Each player’s type, either strong or weak, deter-
mines the player’s relative strength when he is engaged in a conflict to fight for the good. A
mediator proposes a split of the good and each player, privately informed of his own type,
chooses whether to accept or reject it. Unless both players accept the proposal, conflict ensues
as an all-pay auction, where the good is won by the player who bids higher, and the cost of
bidding is borne by each, inversely related to the player’s strength. The mediator’s objective
is to maximize the simple sum of the two players’ expected payoffs. And their types are drawn
independently from the same distribution. Thus, they are ex ante symmetric in our model.

Even though the two players are ex ante symmetric, we find that the mediator’s optimal
proposal does not treat them equally. The proposal splits the good between the two so un-
equally that the player who is offered the larger share accepts it whether he is weak or strong.
Thus, in accepting the proposal, he does not signal his weakness that the opponent may ex-
ploit if conflict occurs. With the favored player accepting the proposal for sure, conflict will
not occur if the unfavored player also accepts it. Consequently, while the unfavored player
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may reveal his weakness in accepting the proposal (as his share according to the proposal is
so small that he would reject it if his type is strong), the revelation is harmless because conflict
is preempted if he also accepts the proposal.

The insight conveyed by our finding is that a peace proposal biased toward one side may,
counterintuitively, achieve better social welfare than an unbiased one because the favored
side is willing to accept the peace deal without fearing being viewed to be weak and taken
advantage of later, so the prospect of a peace settlement is improved. Thus, it should not be
taken for granted that a peace proposal should offer a fair share to each contestant even from
the viewpoint of a benevolent mediator.2 This insight suggests a new light to interpret the an-
nouncement by the United States in 2018 that it was to relocate its embassy to Jerusalem.
That can be viewed as a proposal for a new status quo that recognizes Israel’s full owner-
ship of Jerusalem. Soon after the announcement, the number of Arab League countries that
agreed to establish diplomatic relations with Israel jumped from two to six. Another exam-
ple of an unequal peace proposal is the Vatican mediation of the Beagle Channel Dispute be-
tween Argentina and Chile. In the shadow of a war between the two countries, the Pope is-
sued a proposal that awarded Chile all of the disputed islands, granting Argentina only the
navigation rights in the area waters and a shared resource right in a part of the sea. Chile im-
mediately accepted the proposal whereas Argentina was initially reluctant but eventually ac-
cepted it (cf. Garrett, 1985; and Greig and Diehl, 2012).3

This article belongs to a series of papers on mediation and conflict prevention. With a sim-
ilar model that allows for the general class of type distributions and communication mecha-
nisms, Zheng (2019b) characterizes the set of all prior distributions given which there exists a
mechanism for the mediator to fully preempt conflict. In this article, we consider a polar op-
posite case of those primitives, a case in which conflict cannot ever be prevented with prob-
ability one. In our model, the prior probability of either party being weak is large enough to
make conflict appealing to a player who happens to be strong; therefore, no peace proposal
can rule out a conflict with certainty. That is, the primitives in our model preclude the exis-
tence of any peace proposal that is acceptable to both parties for sure.

This departure from the literature brings to light a different approach to find an optimal
peace proposal. In the literature, when the prior probability of either party being weak is
small, conflict is costly to each player and hence can be fully prevented. All the mediator
needs to do is proposing a split that offers each player a payoff above what the player gets
should he veto the proposal thereby triggering conflict. And what the player gets from trigger-
ing conflict is below the proposed payoff thanks to a posterior that penalizes the vetoer most.
This posterior is available because rejecting the proposal is an off-path action in the equilib-
rium where both sides accept the proposal for sure. In our model, by contrast, any peace pro-
posal is rejected in some on-path event of positive probability. Thus, the posterior conditional
on such rejections is regulated by Bayes’s rule, so the most penalizing posterior mentioned be-
fore is not necessarily available. To find an optimal proposal, the mediator needs to calculate
how every proposal determines the corresponding posterior via Bayes’s rule, and how the pos-
terior determines the players’ expected payoffs in the event of conflict, which in turn deter-
mine the likelihood that they accept the proposal.

Now that conflict occurs with a positive probability in any equilibrium, a contestant’s wel-
fare includes his payoffs not only in the event of peace, but also in the event of conflict. That
is why we assume that the mediator is to maximize the sum of the two players’ ex ante ex-
pected payoffs, taking both events into account. This design objective is distinct and novel rel-

2 Although the inequality in the optimal proposal could be mitigated, in theory, if the mediator randomizes which
player is offered the larger share, in practice such ex ante randomizations in large stake disputes are rare. Moreover,
randomization or not, the ensuing split remains unequal in the same degree.

3 If we view trade unions as settlements among countries to avoid trade conflict, the Maastricht Treaty for the
United Kingdom to join the European Union is another episode of unequal proposals. The treaty offered the United
Kingdom the opt-outs from the single currency mandate and the Social Chapter of employment regulations, whereas
none of the other member nations were offered such opt-outs (cf. Baun, 1995–96; and Chapter 5 in Burton, 2021).
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unequal peace 3

ative to the literature (e.g., Hörner et al., 2015; and Balzer and Schneider, 2021b), in which
the mediator’s objective is to maximize the probability of peaceful conflict resolution. The two
objectives coincide in models where full prevention of conflict is possible (e.g., Celik and Pe-
ters, 2011; Zheng, 2019b; and Balzer and Schneider 2021a), where a peace proposal always ac-
ceptable to both parties exists and maximizes both the probability of peace and the contes-
tants’ total welfare. When full prevention of conflict is impossible as in our model, by contrast,
the objective of maximizing the probability of peace would lead the mediator to enlarge the
chance of peace resolution at the expense of the contestants’ payoffs in the event of conflict.
That may hurt their overall welfare as the probability of conflict cannot be eliminated.

Most papers on conflict mediation assume that the outcome of bargaining failure is exoge-
nous in the sense that once the peace proposal is rejected, no more action is available to
the players, and their eventual payoffs are determined by an exogenous lottery that depends
on their types, as in Bester and Wärneryd (2006), Compte and Jehiel (2009), Fey and Ram-
say (2010, 2011), Hörner et al. (2015), Meirowitz et al. (2019), and Spier (1994). This article
treats what happens after bargaining failure as a continuation game thereby deriving the out-
come of bargaining failure endogenously. In the continuation game, the players choose their
actions conditional on their commonly observed responses to the peace proposal (at least one
of which is rejection). Thus, the players can signal to each other through their responses to the
peace proposal even though a proposal per se conveys no signal from either player.

A peace proposal by itself conveys no signal from either player because we assume that
the mediator does not condition her proposal on any signal from the contestants and instead
makes a single unconditional proposal for a resolution. This assumption is different from
much of the literature, which treats peace proposals as outputs of a communication mecha-
nism à la Myerson (1986). In addition to facilitating tractability, this assumption helps us to
focus on what the mediator can accomplish despite the restriction. As explained above, the
players’ responses to a peace proposal play the role of signals in our model. The mediator, by
adjusting the proposed shares between the players, can manipulate what these signals reveal.
Accepting a small share may reveal that the player is unlikely to be strong enough to expect
large payoffs in the event of conflict, whereas rejecting a large share may reveal the oppo-
site. Such revelations, in the form of posteriors, determine the outcome of bargaining failure
as such outcomes are endogenous in our model. Thus, even though she cannot receive signals
from the players before making a proposal, the mediator in proposing an appropriate split can
indirectly influence the players’ beliefs and hence their total welfare. By contrast, in the afore-
mentioned models that treat the outcome of conflict exogenously, the players’ responses to
the peace proposal merely determine whether bargaining failure occurs or not and have no ef-
fect on their welfare when bargaining failure occurs. Then the communication mechanism be-
comes the only channel for the players to send any signal.4 5

The other papers that also treat the outcome of bargaining failure endogenously are Balzer
and Schneider (2021b), Celik and Peters (2011), Lu et al. (2023), and Zheng (2019a, 2019b).
Our article differs from them except Balzer and Schneider (2021b) by considering a case
where full prevention of conflict is impossible. Balzer and Schneider (2021b) have also con-
sidered such a case. They consider communication mechanisms aimed at a different objective,
to maximize the probability of peaceful resolution, and they focus on the case where the de-
signer is an arbitrator with full commitment power. While they also consider a mediation case,

4 For example, in Hörner et al.’s (2015) model with exogenous conflict, the prediction that mediation outperforms
unmediated negotiation relies on the mediator’s capability to collect confidential information from the contestants.
Another assumption their prediction requires is that a contestant’s payoff from the conflict lottery depends on both
contestants’ types, as Fey and Ramsay (2010) show that mediation cannot outperform unmediated negotiation when
the said payoff depends only on the contestant’s own type.

5 The signal-independent proposals, albeit restrictive, have a transparency appeal that makes them relevant to situ-
ations where a mediator cannot fully control the communication mechanism, say due to the likelihood of leaks (e.g.,
Feerick, 2003) or the doubts about the mediator’s commitment to truthful conveyance of communications (cf. Kydd,
2003; Smith and Stam, 2003; and Rauchhaus, 2006).
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4 kamranzadeh and zheng

the mediator is assumed able to communicate separately and confidentially to the contestants
and able to condition such communications on the negotiation outcome. In our model, by
contrast, a mediator maximizes the total welfare of both parties, taking into account that con-
flict is unavoidable, and can only indirectly influence the posterior system through a message-
independent proposal.

Baliga and Sjöström (2004, 2020) model conflict as a sequential game and focus on the dy-
namic interactions between the two adversaries during the conflict. Our article complements
their perspective by focusing on the negotiation before the occurrence of conflict. Consid-
ering mediated negotiation and a mediator’s optimal decision, the article also complements
the work by Lu et al. (2023), who consider unmediated negotiation between the two players
within the aforementioned framework where full prevention of conflict is possible.

The next section defines the model. Section 3 derives the players’ interim and ex ante ex-
pected payoffs and describes how equilibria vary with the peace proposal. Section 5 presents
the result. Section 6 concludes and suggests a couple of possible extensions. The Appendix
contains all omitted details.

2. the model

Two players, named 1 and 2, contest a prize of size one. Each player’s type is independently
drawn from the same binary distribution, and the realization is either w (“weak”) with proba-
bility θ , or s (“strong”) with probability 1 − θ , such that 0 < θ < 1 and s > w > 0.6 Let

α := 1 − w/s.

Thus, 0 < α < 1. The players’ types determine their relative strength in a conflict for the prize.
A neutral mediator, uninformed of the players’ types, makes a peace proposal, which proposes
a split of the prize:

(x1, x2) ∈ [0, 1]2 such that x1 + x2 = 1.

Then each player, privately informed of his own type, independently and publicly announces
whether to accept (A) or reject (R) the proposal. If both choose A, the game ends with
player i getting a payoff equal to xi (∀i = 1, 2). If at least one player chooses R, then conflict
ensues in the form of an all-pay auction: Each player i, after observing each other’s actions
(A or R), submits a sealed bid bi ∈ R+; the higher bidder wins the prize, and ties are broken
randomly with equal probabilities; the payoff for player i of type ti is equal to 1

α
(1 − bi/ti)

if i wins, and equal to 1
α

(−bi/ti) otherwise. Then the game ends. A player’s bid represents the
player’s total amount of warring efforts in the conflict, and 1/ti represents a type-ti player’s
marginal cost of warring efforts in the conflict.7

Any peace proposal (x1, x2) determines a two-stage game of asymmetric information. The
solution concept we use for this game is perfect Bayesian equilibrium (PBE). Any pair of a
peace proposal and the corresponding PBE is called proposal-PBE pair, or solution for short.

We measure the social welfare achieved by a proposal-PBE pair by the total welfare gen-
erated on path of the PBE. By total welfare, we mean the sum of the two players’ ex ante
expected payoffs (before realization of types). A peace proposal of particular interest is the
equal split (1/2, 1/2), treating the two ex ante identical players equally. Another proposal of

6 Our assumption of binary types is in line with much of the conflict resolution literature such as Balzer and Schnei-
der (2021a, 2021b), Hörner et al. (2015), and Meirowitz et al. (2019).

7 We scale the payoff from the conflict by the parameter 1/α purely for notational convenience. That is because α

emerges as a multiple of each player’s expected payoff from any equilibrium of the conflict continuation game (Sub-
section 3.1), and our scalar 1/α cancels out the multiple. Without the scalar 1/α to cancel out α, α would appear in
most expressions in the article thereby complicating them, though all our results remain true.
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unequal peace 5

interest is (θ, 1 − θ ), splitting the prize according to the prior probabilities assigned to the
weak and strong types.

Throughout the article, we maintain the following assumption, which constitutes our major
point of departure from the previous conflict mediation literature:

θ > 1/2.(1)

This inequality is the necessary and sufficient condition for nonexistence of any communica-
tion mechanism à la Myerson (1986) (containing peace proposals as special cases) given which
there is a PBE where conflict occurs with zero probability.8 That is, due to (1), full preemption
of conflict is impossible, and conflict is necessarily an on-path event. Thus, it is appropriate for
a mediator to adopt an objective—such as the total welfare considered in this article—that in-
corporates the players’ welfare in both peace and conflict.

3. interim payoffs and posterior beliefs

3.1. The Post-Mediation Payoff in the Conflict. Let us start by considering the continu-
ation game where conflict ensues (due to at least one player having chosen R at the pro-
posal stage). The belief about a rival is updated conditional on the rival’s response to the pro-
posal. For each player i ∈ {1, 2}, let pi denote the posterior probability of player i being type s
(strong). This, together with the players’ private information of their own types ti, defines a
Bayesian game.

Given any pair (p1, p2) ∈ [0, 1]2 of posterior probabilities, one can show that there is a
unique Bayesian Nash equilibrium (BNE) of the continuation game. Both players randomly

select their bids from an interval
[
0, b

]
for some b endogenous to the equilibrium. The strong

type of a player selects his bid from an upper subinterval of
[
0, b

]
, and the weak type of the

player, from the complement of the upper subinterval. The player with the smaller pi bids
zero with a positive probability when his type is weak, whereas the other player bids zero with
zero probability and hence enjoys a positive probability of winning even by bidding zero. For
each player i ∈ {1, 2} and each type t ∈ {s,w}, let Ut

i (pi, p−i) denote the expected payoff for
player i of type t in this BNE. One can show (Appendix A.1):

U s
i (pi, p−i) = 1 − min{pi, p−i},(2)

Uw
i (pi, p−i) = pi − min{pi, p−i}.(3)

The functions U s
i (pi, ·) and Uw

i (pi, ·) are graphed in Figure 1. These conflict payoffs play a
similar role as the ex post payoff that a designer would like to concavify in the information de-
sign framework, except that in our game concavification need not bring about larger total wel-
fare, as U s

i and Uw
i represent only the payoffs in the event of conflict.

Much of the trade-off faced by the mediator grows out of the following observation.

Remark 1. An increase in pi hurts the strong type of player i and benefits the weak type
of i. In other words, a strong type would like to reduce, and a weak type would like to enlarge,
the posterior probability that his rival assigns to the event that his type is strong.

8 To see that, apply Example 4 in Zheng (2019b). Since we have scaled up the payoff in the conflict to 1/α times the
quantity assumed in Zheng (2019b), the peace-implementability threshold c∗ = αθ there becomes (1/α)c∗ = θ . Thus,
the necessary and sufficient condition for peace implementability becomes 2θ ≤ 1. If 2θ ≤ 1, one can split the prize
such that each player gets a share at least as large as θ , and it is an equilibrium for both to accept any such splits, the
equal split (1/2, 1/2) being one of them.
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6 kamranzadeh and zheng

Figure 1

payoff in the conflict as a function of the opponent’s posterior

Remark 1 can be observed from Figure 1, as an increase in pi corresponds to a downward
shift of the graph of U s

i (pi, ·) and an upward shift of the graph of Uw
i (pi, ·). Intuitively speak-

ing, to the strong type of, say, player 1, the issue is not whether he can win the prize but rather
how much he has to pay to win. When the rival player 2 is complacent, believing that player 1
is unlikely to be strong, player 2’s bid (which is costly, win or lose) becomes low stochastically,
and so the strong type of player 1 can win at a low cost in expectation. To the weak type of
player 1, by contrast, the issue is whether he can win at all, and he gets a positive expected
payoff only when player 2 bids zero. The more often is player 1 believed to be weak, the less
often would player 2 bid zero (as he sees little need to concede to a weak player 1), and the
less expected payoff the weak type of player 1 gets.

3.2. Interim Payoffs in Mediation. Given any proposal-PBE pair, for each player i ∈ {1, 2}
and each type t ∈ {w, s}, let σi(t) denote the probability with which player i of type t chooses R
at the proposal stage, let qi denote player i’s ex ante probability (before realization of i’s type)
of choosing R, namely,

qi := θσi(w) + (1 − θ )σi(s),(4)

and let pA
i (respectively, pR

i ) denote the posterior probability of player i being type s condi-
tional on i having chosen A (respectively, R) in response to the peace proposal. Given type
t ∈ {w, s} and anticipating the continuation payoff Ut

i in the event of conflict, player i’s ex-
pected payoff from choosing A is equal to

V A
i (t) := q−iUt

i

(
pA

i , pR
−i

)+ (1 − q−i)xi,(5)

and that from choosing R is equal to

V R
i (t) := q−iUt

i

(
pR

i , pR
−i

)+ (1 − q−i)Ut
i

(
pR

i , pA
−i

)
.(6)

One can derive from Bayes’s rule the next condition, called Bayesian plausibility in the infor-
mation design literature:

qi pR
i + (1 − qi)pA

i = 1 − θ.(7)

Thus, the point (1 − θ,V R
i (t)) is the convex combination between the two points on the graph

of Ut
i (pR

i , ·) whose horizontal coordinates are pR
−i and pA

−i.

 14682354, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12725, W

iley O
nline L

ibrary on [19/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



unequal peace 7

Figure 2

interim expected payoffs as convex combinations

This is illustrated by Figure 2, where pA
−i, 1 − θ , and pR

−i are positioned according to an intu-
itive Lemma A.2 (Appendix A.2):

∀i ∈ {1, 2} : pA
i ≤ 1 − θ ≤ pR

i .(8)

That is, R (rejecting the peace proposal) signals one’s strength more than A does.

Remark 2. Figure 2 reveals the following: (a) The interim payoff for type w (weak) in the
conflict is bounded from above by θ and attains this upper bound when pR

i = 1. (b) The in-
terim payoff for type s (strong) in the conflict is bounded from below by θ and attains this
lower bound when pR

i ≥ pR
−i. (c) It follows from (b) that, in any proposal-PBE pair, the strong

type of each player can always secure an interim payoff no less than θ through choosing R.

4. equilibrium and total welfare

4.1. The Equilibria. There is always a trivial PBE where conflict occurs for sure regard-
less of the peace proposal: each player always chooses R because he expects the same from
the opponent. The other PBEs are determined by the peace proposal. For each i ∈ {1, 2}
and each t ∈ {w, s}, as defined earlier, σi(t) denotes the probability with which player i of
type t chooses R at the proposal stage, and pA

i (respectively, pR
i ) denotes the posterior prob-

ability of player i being type s conditional on having chosen A (respectively, R). The poste-
riors (pA

i , pR
i )2

i=1 determine the players’ post-mediation payoffs (Ut
i (pi, p−i)2

i=1)s
t=w (Subsec-

tion 3.1), where pi is either pA
i if player i has chosen A, or pR

i if i has chosen R, and likewise
for p−i. The post-mediation payoffs in turn determine the interim expected payoffs at the pro-
posal stage (Subsection 3.2). Then (σ1, σ2) is determined by the mutual best response condi-
tion based on the interim expected payoffs.

Without loss of generality, suppose that the larger share in the proposed split (x1, x2) is of-
fered to player 1, namely, x1 ≥ x2. When x1 varies in [1/2, 1) (which is the entire range of x1

except x1 = 1, where the trivial PBE prevails), the nontrivial PBEs change in the manner
listed below. We assume 2/3 ≤ θ ≤ 3/4.

1. x1 ∈ [θ, 1) is the necessary and sufficient condition for any PBE of the following form to
exist: σ1(s) = σ1(w) = 0, σ2(s) = 1, and σ2(w) ∈ (0, 1). In any such a PBE, the share x1 ∈
[θ, 1) offered to player 1 is so large that both types of player 1 choose A for sure, and the
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8 kamranzadeh and zheng

strong type of player 2 chooses R for sure, leaving only his weak type to mix between A
and R. We call any PBE in this format lopsided equilibrium.

2. x1 ∈ [2(1 − θ ), θ ) is a necessary condition for any PBE of the following form to exist:
σ1(s), σ1(w), σ2(w) ∈ (0, 1), σ2(s) = 1, and pR

1 ≥ pR
2 . Now that the share x1 offered to

player 1 falls below the threshold θ , he no longer chooses A for sure. Player 2’s strategy
remains similar to that in the previous case.

3. There exists a unique ξ ∈ [1/2, 2(1 − θ )] such that:
(a) ξ < x1 < 2(1 − θ ) is a necessary condition for any PBE of the following form to ex-

ist: σ1(s), σ1(w), σ2(w) ∈ (0, 1), σ2(s) = 1, and pR
1 < pR

2 . With the share x1 offered to
him lower than before, player 1 is willing to reject the offer more often than he does
in the previous case even if his type is weak, and hence the posterior pR

1 of his type
being strong signaled by R drops below pR

2 .
(b) Given any x1 ∈ [1/2, ξ ], a PBE of the following form may exist: σi(t) ∈ (0, 1) for all

i ∈ {1, 2} and all t ∈ {w, s}. The proposal is so near to the equal split that the two
players behave similarly, each type mixing between A and R.

4. If θ = 3/4 and x1 = 1/2 (= 2(1 − θ )), there is also a PBE for which σ1(w), σ2(w) ∈ (0, 1),
and σ1(s) = σ2(s) = 1. Under the equal-split proposal, the strong type of both players
chooses R for sure, and the weak type of each player mixes between A and R.

The above list covers all the possible nontrivial PBEs (Lemma A.1). Among them and the
trivial (always conflict) equilibria, the lopsided equilibrium associated with the proposal x1 =
θ will be shown to be optimal (Section 5). The rest of this section will prove the existence of
lopsided equilibria and the necessity of x1 ≥ θ for their existence.9

Construction of Lopsided Equilibria For any x1 ∈ [θ, 1) as in Case 1, define pR
2 := 2 − θ −

x1. We will see at the end of the construction that this pR
2 rationalizes player 2’s strategy. De-

fine the off-path posterior pR
1 := pR

2 for player 1.10

Being offered the share x1 ≥ θ , player 1 chooses A for sure whether his type is strong or
weak. The strong type chooses A because deviation leads to the off-path posterior pR

1 that is
greater than or equal to its counterpart p2 for the rival player 2, whether p2 = pA

2 when the
rival chooses A (pR

1 ≥ 1 − θ ≥ pA
2 by (8)), or p2 = pR

2 when the rival chooses R (pR
1 = pR

2 by
the previous definition of pR

1 ). That reduces the strong player 1’s expected payoff U s
1 (pR

1 , p2)
in the event of conflict to its minimum θ (Remark 2.b). By contrast, his expected payoff is
at least θ from choosing A: If the rival chooses A, player 1 gets the share x1 ≥ θ ; if the rival
chooses R, player 1 gets U s

1 (pA
1 , pR

2 ), which is equal to θ because pA
1 = 1 − θ at any lopsided

equilibrium and 1 − θ ≤ pR
2 by (8).

To see that the weak type of player 1 chooses A for sure, note that his expected payoff is
zero conditional on the rival choosing R. This follows from the fact p1 ≤ p2 ⇒ Uw

1 (p1, p2) = 0
(Equation (3)). With the rival choosing R, p2 = pR

2 ≥ 1 − θ by (8). If player 1 chooses A as ex-
pected on path, p1 = pA

1 = 1 − θ ; if he deviates to R, the off-path posterior is pR
1 = pR

2 . Thus,
p1 ≤ p2 either way and so Uw

1 (p1, p2) = 0. It follows that the choice between A and R for the
weak type of player 1 is conditional on the rival choosing A. In that event, player 1 gets the of-
fered share x1 ≥ θ from choosing A. That is better than R, which gets him into the conflict and
yields at most θ (Remark 2.a). Thus, the weak player 1 chooses A.

Meanwhile, the strong type of player 2 chooses R for sure because the share x2 = 1 − x1

offered to him is no more than 1 − θ , which is less than θ by (1), whereas he can secure an
expected payoff at least θ in conflict (Remark 2.b). To see why the weak type of player 2

9 The necessity of x1 ∈ [2(1 − θ ), θ ) for the existence of the PBE in Case 2 is deferred to Lemma A.6, and that of
x1 ∈ (ξ, 2(1 − θ )) for Case 3a, deferred to Lemma A.9, where x̂2 is equal to 1 − ξ for the cutoff ξ . For Case 3b (de-
tailed in Appendix A.9) and Case 4 (detailed in Appendix A.10), we do not bother to show the existence of the cor-
responding PBEs or the set of x1 necessary for their existence, because we will show that any PBE in either case is
suboptimal (Claims 3 and 4, Section 5).

10 Any other pR
1 ≥ pR

2 works as well, with slightly longer calculations.
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unequal peace 9

mixes between A and R, note that he gets x2 from choosing A, and Uw
2 (pR

2 , pA
1 ) from choos-

ing R, as player 1 chooses A for sure. Since the on-path action of player 1 signals no news,
pA

1 = 1 − θ . Since the strong type of player 2 chooses R for sure, pR
2 ≥ 1 − θ by Bayes’s rule.

Thus, Uw
2 (pR

2 , pA
1 ) = pR

2 − (1 − θ ) by (3). Consequently, the weak type of player 2 is willing to
mix between A and R because pR

2 − (1 − θ ) = x2 due to the definition of pR
2 at the start of this

construction (σ2 is then derived from pR
2 via Bayes’s rule).

Necessity of x1 ≥ θ for any Lopsided Equilibrium Suppose, to the contrary, that a lop-
sided equilibrium exists despite x1 < θ . Conditional on such an equilibrium, the strong type
of player 1 would deviate to R, which secures for him an expected payoff at least θ (Re-
mark 2.b), while choosing A gives him less than θ : he would get x1 < θ if the opponent
chooses A, and θ if the opponent chooses R (shown in the construction of lopsided equilibria).
Consequently, the strong type of player 1 deviates to R, contradiction.

The Incentive for a Weak Type to Mix Let us illustrate the incentive for a weak type
to mix between A and R with the player 2 in Case 2. Within that case, observe that the
weak player 2’s expected payoff conditional on the opponent choosing R is zero regardless of
player 2’s choice: If player 2 chooses A, the posterior system is (pR

1 , pA
2 ) and we have pR

1 ≥ 1 −
θ ≥ pA

2 by (8); if player 2 chooses R, the posterior system (pR
1 , pR

2 ) is such that pR
1 ≥ pR

2 as de-
fined in Case 2. Thus, whichever he chooses, p1 ≥ p2 holds and hence Uw

2 (p2, p1) = 0 by (3).
Thus, the decision of the weak type of player 2 is purely based on the event where the op-
ponent chooses A. The weak player 2 therefore mixes between A and R if x2 = Uw

2 (pR
2 , pA

1 ),
which by (3) and (8) is equivalent to x2 = pR

2 − pA
1 . This indifference is valid because one can

show that a solution of (pA
1 , pR

2 ) for this equation exists.

4.2. The Total Welfare. As defined before, the total welfare is the sum of the ex ante ex-
pected payoffs (before realization of types) across the two players. The total welfare of the
lopsided equilibrium is easy to calculate (Lemma A.4). For the equilibrium in the other cases
in Subsection 4.1, R is chosen with positive probabilities by both types of each player, and
hence the total welfare is equal to

∑2
i=1

(
θV R

i (w) + (1 − θ )V R
i (s)

)
. The next lemma provides

a formula for this sum.

Lemma 1. Let (σi, pA
i , pR

i )2
i=1 represent any PBE that is not lopsided and define qi by (4)

for each i = 1, 2. Relabel the players if necessary so that pR
1 ≥ pR

2 . Then the total welfare at this
PBE is equal to 2θ pR

1 + (q1 − θ )
(
pR

1 − pR
2

)
.

Proof. This lemma is based on (6) and (7), or the convex combination observation about
a player’s interim expected payoff in Figure 2. The upper solid graph in that figure represents
a strong type’s expected payoff from choosing R’ as a function of the rival’s posterior proba-
bility of being strong, and the lower solid graph represents the counterpart for the weak type.
The two graphs are reproduced separately for player 1 in Figure 3 (for the strong type) and
Figure 4 (for the weak type).

Since the lemma labels the players so that pR
1 ≥ pR

2 , player 1’s expected payoff Ut
1(pR

1 , pR
2 )

from choosing R in the event where the rival also chooses R corresponds to the point J in
Figure 3 if player 1’s type is strong, or the point G in Figure 4 if player 1’s type is weak. It then
follows from (6) and (7) that player 1’s interim expected payoff from choosing R corresponds
to the point L′ in Figure 3 if his type is strong, and the point B′ in Figure 4 if his type is weak.
That is,

V R
1 (s) = θ,(9)

V R
1 (w) = pR

1 − 1 + θ.(10)
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10 kamranzadeh and zheng

Figure 3

strong player 1’s payoff: L′ as a convex combination between N and J

Figure 4

weak player 1’s payoff: B′ as a convex combination between B and G

Taking the weighted sum of (9) and (10) according to the prior distribution (Pr{s} = 1 − θ),
we see that the ex ante expected payoff for player 1 is equal to θ pR

1 .
Comparing Figure 3 with its counterpart for the strong type of player 2, and comparing

Figure 4 with its counterpart for the weak type of player 2, one can show (Appendix A.3):

V R
2 (s) − V R

1 (s) = q1
(
pR

1 − pR
2

)
,(11)

V R
2 (w) − V R

1 (w) = −(1 − q1)
(
pR

1 − pR
2

)
.(12)

The weighted sum of (11) and (12) according to the prior Pr{s} = 1 − θ yields the difference in
the ex ante expected payoffs between players 2 and 1: (q1 − θ )(pR

1 − pR
2 ).

Consequently, the total welfare
∑2

i=1

(
θV R

i (w) + (1 − θ )V R
i (s)

)
is equal to

θ pR
1 + θ pR

1 + (q1 − θ )(pR
1 − pR

2 ) = 2θ pR
1 + (q1 − θ )(pR

1 − pR
2 ).

�
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unequal peace 11

Remark 3. The proof of Lemma 1 reveals which player gets the larger share of the total
welfare in a nonlopsided equilibrium: It is the player with the larger posterior pR

i , provided
that his ex ante probability qi of choosing R is less than θ . Since the lemma labels the play-
ers so that pR

1 ≥ pR
2 , it is player 1 who gets the larger share of the total welfare provided that

q1 − θ < 0, for then (q1 − θ )(pR
1 − pR

2 ), the amount by which the rival’s ex ante expected pay-
off exceeds player 1’s, is nonpositive. In other words, when rejecting a peace proposal is an on-
path action for both players, the player who is perceived to become stronger conditional on
having rejected the proposal gets the larger share of the total welfare, provided that he does
not reject the proposal too often from the ex ante viewpoint. Roughly speaking, showing off
strength through aggression pays off provided that one is rarely aggressive.

5. the optimality of a lopsided proposal

A lopsided equilibrium (Case 1, Subsection 4.1) has the advantage that one of the play-
ers chooses A independently of his own type. That is, the player accepts the peace proposal
without fearing that his acceptance may betray some information that the opponent may use
against him later. Among the peace proposals whose associated equilibria are lopsided, the
mediator prefers those that offer more shares to the unfavored player thereby having a larger
probability for him to accept the proposal as well, as long as acceptance from the favored
player is still guaranteed. Since the strong type of a player can always secure an expected pay-
off no less than θ by choosing R (Remark 2), the share offered to the favored player cannot
fall below θ and still guarantee his acceptance. The threshold θ constitutes the optimal split to
offer:

Proposition 1. If 2/3 ≤ θ ≤ 3/4, the proposal that maximizes total welfare among all peace
proposals is to offer θ to one player and 1 − θ to the other player.

To appreciate Proposition 1, recall that a received insight in the literature (e.g.,
Zheng 2019b) is to adopt a posterior belief that whoever vetoes a peace proposal has the
strongest possible type. As proved in Zheng (2019b), this posterior penalizes the vetoer
most and represents the boundary for guaranteeing acceptance of any peace proposal. In
our model, the posterior means maximizing pR

i to one. Then any player i who chooses R
gets an interim payoff equal to θ for each type (Figure 2). That would have constituted a
peace-guaranteeing solution (and hence optimal) should each player be offered a share at
least as large as θ for each to be willing to accept the proposal. Given our assumption θ > 1/2,
however, such proposals do not exist, as any split of the prize (of size one) renders the share
for some player below θ . Thus, any PBE of any proposal sees some player reject the proposal
sometimes. Consequently, a player’s interim payoff from choosing R is part of the total wel-
fare. This, coupled with the fact that an increase in pR

i benefits the weak and hurts the strong
(Remark 1), means that the calculus of pR

i is more involved than that in the existing literature.
Nonetheless, there are two intuitive reasons why the previous insight of achieving optimal-

ity through maximizing pR
i might still work. First, since a strong type incurs less marginal cost

in conflict than a weak type does, one would expect that a strong type is more inclined than
a weak type to reject a peace proposal. Thus, if we are to pick a type to deter it from choos-
ing R, it would be the strong type, and so we would reduce its interim payoff from R through
enlarging pR

i . Second, from the ex ante viewpoint, any quantity of payoff for a weak type con-
tributes more to the total welfare than the same quantity of payoff for a strong type does, due
to the assumption θ > 1/2. Thus, one would expect that an increase in pR

i , benefiting the weak
at the expense of the strong, enlarges the total welfare.

It is therefore conceivable that the less constrained is pR
i , the more can pR

i be maxed out
and hence the larger the total welfare. That is where lopsided equilibria have an advantage
over nonlopsided ones. In a nonlopsided equilibrium, both A and R being on path for each
player, each component of the posterior system (pA

i , pR
i )2

i=1 is constrained by Bayes’s rule. In a
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12 kamranzadeh and zheng

Figure 5

the lopsided proposal (θ, 1 − θ ) as the global optimum

lopsided equilibrium, by contrast, R is off path for the favored player, say player 1; hence the
posterior probability pR

1 is unconstrained by Bayes’s rule.

Proof of Proposition 1. Relabel the players if necessary so that player 1 is offered the
larger share in the peace proposal, namely, x1 ≥ x2. A peace proposal is then represented
by x1, whose entire range is [1/2, 1]. We shall prove that x1 = θ maximizes the total welfare
among all x1 ∈ [1/2, 1]. We do that by establishing four claims, illustrated by Figure 5. �

Claim 1. x1 = θ maximizes the total welfare among all lopsided equilibria associated with
any x1 ∈ [θ, 1).

Let us observe that the total welfare based on the lopsided equilibrium given any x1 ∈ [θ, 1)
(Case 1, Subsection 4.1) is a strictly increasing function of pR

2 . This follows from the construc-
tion of any such equilibrium (Subsection 4.1): The ex ante expected payoff for player 2 is
strictly increasing in pR

2 because her on-path interim expected payoff is equal to pR
2 − 1 + θ

when her type is weak, and θ when her type is strong. To see the same monotonicity prop-
erty for player 1, first note that player 1 prefers smaller q2 (ex ante probability of player 2
choosing R) to larger q2: If player 2 chooses A, player 1 (who chooses A for sure) gets x1 ≥ θ ;
else player 1 gets θ if his type is strong, and zero if his type is weak. Thus, smaller q2 makes
player 1’s ex ante expected payoff strictly larger. Then apply Bayes’s rule to see that q2 pR

2 =
1 − θ : smaller q2 means bigger pR

2 . Thus, both players considered, the total welfare is maxi-
mized among all lopsided equilibria when the pR

2 in the equilibrium is maximized among all
such equilibria. Since x1 ∈ [θ, 1) is necessary and sufficient for any lopsided equilibrium to ex-
ist (Subsection 4.1), and since pR

2 = 2 − θ − x1 by the construction of such equilibria (Subsec-
tion 4.1), maximizing pR

2 is equivalent to minimizing x1. Thus, x1 = θ maximizes the total wel-
fare among all such equilibria.

Claim 2. When x1 increases in [2(1 − θ ), θ ), the total welfare of the PBE in the form of
Case 2 in Subsection 4.1 increases; as x1 converges to θ from below, the total welfare of the PBE
converges to the total welfare of the lopsided equilibrium associated with x1 = θ .

Any PBE in the form of Case 2 is characterized by

σ1(s), σ1(w), σ2(w) ∈ (0, 1), σ2(s) = 1, and pR
1 ≥ pR

2 .(13)

Accordingly, one can calculate the PBE (Lemma A.6, Appendix A.8.1) and obtain

pR
1 = 3 − 2θ − x2

2
,
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unequal peace 13

pR
2 = 2 − 2θ,

q1 = 2(θ − 1 + x2)
2θ + x2 − 1

.

Since the equilibrium is nonlopsided, Lemma 1 implies that the total welfare is equal to

S(x2) = 2θ pR
1 + (q1 − θ )

(
pR

1 − pR
2

) = θ pR
1 + q1(pR

1 − pR
2 ) + θ pR

2 ,

where the total welfare is denoted as a function of x2 (= 1 − x1) because the variables on the
right-hand side are each a function of x2 according to the equations displayed above.

As stated in Case 2, a PBE of this form exists only when x1 ∈ [2(1 − θ ), θ ), namely,
x2 ∈ (1 − θ, 1 − 2(1 − θ )]. To prove the monotonicity claim, note from the above formula
that S(x2) is determined by the values of pR

1 , pR
2 , and q1 when the PBE varies with x2. As dis-

played above, pR
2 is constant. Thus, the total welfare of the PBE is determined solely by the

values of pR
1 and q1. By the above-displayed formulas of pR

1 and q1, an increase of x2 has two
opposite effects. First, it increases q1 (player 1 choosing R more often as the share x1 offered
to him shrinks). Second, it decreases pR

1 (with the weak type of player 1 more willing to re-
ject the shrinking x1, R signals less about the strength of player 1). The above formula of S(x2)
says that the total welfare is enlarged by the first effect, and reduced by the second effect.
One can show (Lemma A.8, with the assumption θ ≤ 3/4) that the second effect outweighs
the first,11 and hence S(x2) is strictly decreasing when x2 increases.

To prove the convergence part of the claim, simply use the four equations displayed above
to show that limx2↓1−θ S(x2) is equal to the total welfare of the lopsided equilibrium associated
with x1 = θ (Lemma A.7, Appendix A.8.1).

Claim 3. Any PBE in the form of Case 3a or 3b in Subsection 4.1 generates less total welfare
than the lopsided equilibrium associated with x1 = θ does.

According to Subsection 4.1, Cases 3a and 3b correspond to

either σ1(s), σ1(w), σ2(w) ∈ (0, 1), σ2(s) = 1, and pR
1 < pR

2 ;(14)

or ∀i ∈ {1, 2} : σi(w), σi(s) ∈ (0, 1).(15)

To prove the claim, we first establish that in any such a PBE, pR
2 ≥ pR

1 and q2 < θ . If the PBE
is in the form of (14), pR

2 ≥ pR
1 is part of the definition, and q2 < θ is derived (Lemma A.10,

Appendix A.8.2) from the assumption 2/3 ≤ θ ≤ 3/4 and the fact x1 ≥ ξ > 1/2 (a necessary
condition for the form (14), stated in Case 3a, Subsection 4.1). Else, the PBE is in the form
of (15), which satisfies pR

2 ≥ pR
1 and q2 < θ due to (A.32) and Lemma A.15. Second, apply

Lemma 1 to the nonlopsided equilibrium, switching the roles between players 1 and 2 in the
lemma because pR

2 ≥ pR
1 here. It then follows that the total welfare of the equilibrium is less

than 2θ pR
2 . This quantity is less than the total welfare generated by the lopsided equilibrium

given x1 = θ , due to the assumption θ ≥ 2/3 (Lemmas A.11 and A.16).

Claim 4. If θ ≤ 3/4 then any PBE of the following form generates less total welfare than the
lopsided equilibrium associated with x1 = θ :

σ1(w), σ2(w) ∈ (0, 1) and σ1(s) = σ2(s) = 1.(16)

Among all the PBE in the form of (16), the total welfare maximum is attained by the one
in Case 4 in Subsection 4.1, associated with the equal-split proposal, x1 = 1/2 (Lemma A.17,

11 This is in line with the previous int\uition that an increase in pR
1 could improve the total welfare.
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14 kamranzadeh and zheng

Appendix A.10). Then we show that the total welfare generated by this local maximum is still
less than the one generated by the lopsided equilibrium under the proposal x1 = θ (last para-
graph, Appendix A.10), where the assumption θ ≤ 3/4 is used.

Finally, it is easy to show that the lopsided equilibrium converges to a trivial (always con-
flict) equilibrium when x1 → 1. As the total welfare is decreasing when x1 increases in [θ, 1)
(Claim 1), the trivial equilibrium is suboptimal. Thus, all other trivial equilibria are subop-
timal because they have the same posterior system (Lemma A.1.a) and hence generate the
same total welfare. Now that all possible equilibria when x1 varies in its entire range [1/2, 1]
have been covered, the optimality of x1 = θ is proved.

Remark 4. The assumption 2/3 ≤ θ ≤ 3/4 in Proposition 1, though partially relaxable with
more calculations, reflects an intuition that the equal-split proposal (x1 = 1/2) could be opti-
mal when θ is close to 1/2 or 1. Since the equal-split proposal fully prevents conflict when θ ≤
1/2 (cf. Footnote 8), it might remain optimal when θ is just slightly above 1/2. When θ ≈ 1,
the total welfare puts a heavy weight on the weak type, and one can show that the total ex-
pected payoff for the weak type of both players under the equal-split proposal is almost equal
to the full size of the prize.12

Remark 5. While a lopsided equilibrium involves an off-path posterior, the equilibrium un-
der the optimal (lopsided) proposal x1 = θ satisfies both the Intuitive and D1 criteria of re-
finement (Appendix A.4).

Remark 6. Even though the player who is offered the larger share of the good is “favored”
at face value by a peace proposal, he need not end with a larger share of the total welfare at
equilibrium. In any nonlopsided equilibrium, for instance, it is the player i for whom pR

i > pR
−i

and qi < θ that has a larger share of the total welfare (Remark 3). As shown by Claim 3 in the
above proof, when player 1 is offered the larger share of the good and the equilibrium takes
the form of (14) or (15), pR

1 ≤ pR
2 and q2 < θ . That is, the player who is offered less by the pro-

posed split ends with a larger share of the total welfare. Nonetheless, in the lopsided equilib-
rium given the optimal proposal x1 = θ , the two senses of favoritism coincide. Here player 1 is
offered a larger share in the proposed split; meanwhile, as shown in Appendix A.6, player 1’s
equilibrium ex ante expected payoff 1 − θ/2 is no less than its counterpart 2 − 2θ for player 2
due to the assumption θ ≥ 2/3. The alternative of giving player 2 a larger share of the total
welfare turns out to be suboptimal as shown in Claim 3. Intuitively speaking, player 2 is of-
fered a smaller share of the good and hence his rejecting the proposal may be attributed to
the smaller offer instead of his strength. Thus, it is inefficient to raise pR

2 thereby to enlarge
his ex ante payoff advantage |q2 − θ |(pR

2 − pR
1 ) over player 1. In other words, it is inefficient

to enlarge the total welfare through transferring welfare from the player favored by the peace
proposal to his opponent.

6. conclusion

Humanity is often trapped in conflict situations where conflict cannot be fully avoided. In
such situations, it is inadequate for a benevolent social planner to aim merely at minimizing
the likelihood of conflict, as the social welfare in both the event of peace and the event of
conflict should be taken into account. This article contributes to the conflict mediation liter-
ature by incorporating both conflict and peace into maximization of total welfare and pre-
senting an explicit solution for the maximization problem. In our model, a mediator is re-
stricted in instruments so that she cannot effect any information structure deemed desirable
with tailor-made communication mechanisms, but rather can only indirectly influence the out-
come through simple mechanisms the integrity of which is easy to trust. Thus, techniques in

12 In a PBE under the equal-split proposal, pR
1 = pR

2 = 1/2 (Lemma A.17, Appendix A.10) and hence each player’s
weak type gets pR

1 − (1 − θ ) = θ − 1/2 (Figure A.3). Thus, the total expected payoff for them, 2θ − 1, converges to
one as θ → 1.
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unequal peace 15

the information-design literature are not readily available, and this article contributes an ex-
plicit analysis on how a mediator can nonetheless achieve a constrained optimal posterior in-
formation structure given simple, message-independent mechanisms.

Our solution produces a surprising implication: Even though the adversaries are ex ante
identical, and are assigned equal welfare weights, the socially optimal peace proposal favors
one adversary against the other so much that the favored party always accepts the proposal.
Thus, it should not be taken for granted that a peace proposal should offer a fair share to each
contestant even from the viewpoint of a benevolent mediator. The insight conveyed by our re-
sult is that a peace proposal biased toward one side may, counterintuitively, achieve better so-
cial welfare than an unbiased one because the favored side is willing to accept the peace deal
without fearing being viewed to be weak and getting exploited later, so that the mediator can
devote more resources to compensate the unfavored side.

Whereas the design objective we consider is to maximize the total welfare, the optimality of
a lopsided peace proposal demonstrated by our result is extendable to models where the de-
sign objective is to minimize the probability of conflict. With the same intermediate range of
the weak-type probability θ given which the lopsided proposal maximizes total welfare, one
can show that the lopsided proposal also minimizes the probability of conflict. In addition, the
equal-split proposal minimizes the probability of conflict when the probability of being weak
is very high or when it is low enough to be near to the region where peace can be guaranteed.
This is similar to the pattern with respect to the objective that we consider.

An open question is what happens if a contestant can renege on its acceptance of a peace
deal. After Iran accepted the nuclear deal in 2015, the United States withdrew from the agree-
ment in 2018 thereby resuming the hostile relationship. It is conceivable that Iran, in retro-
spect, would attribute the U.S. withdrawal to Iran’s acceptance of the deal in 2015, which
might have revealed Iran’s weak position in the conflict. That taken into account, Iran will
be more reluctant to accept any nuclear deal in the future than before, for fear of its weak-
ness being further revealed and exploited. Thus, we conjecture that the inscrutability of a con-
testant’s response to a peace proposal can only become more important when contestants
may renege. In the sense that a lopsided solution guarantees the same action from both types
of the favored side thereby keeping its type inscrutable, the optimality of lopsided solutions
may be robust to such limited commitment situations. See Chapter 4 in Kamranzadeh (2022)
for details.

For tractability, and for a clear contrast with the lopsided solution, we assume that the two
contestants are ex ante identical and that the contested prize is of common value. A natural
question is to what extent a lopsided solution may remain optimal when ex ante asymmetry
or private values are considered. While we conjecture that the inscrutability advantage that a
lopsided solution provides for the favored party remains crucial, extension in either direction
is likely to bring about new questions.

DATA AVAILABILITY STATEMENT Data sharing not applicable to this article as no
data sets were generated or analyzed during the current study.

appendix A

A.1. Derivation of (2) and (3) for the All-Pay Auction. Consider any Bayesian Nash equi-
librium (BNE) of the all-pay auction where pi denotes the probability with which player i’s
type is s (strong) for each i = 1, 2. If player i’s type is ti (ti ∈ {w, s}) and if G−i is the c.d.f. of
the bid from the rival −i at equilibrium, then i’s expected payoff from bidding b is equal to

1
α

(
G−i(b) − b

ti

)
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16 kamranzadeh and zheng

Figure A.1

the equilibrium in the all-pay auction

unless b is an atom of G−i. According to the all-pay auction literature, there exists a unique
equilibrium and (G1, G2) is characterized by the first-order condition

G′
i(b) =

{
1/s if G−i(b) > 1 − p−i

1/w if G−i(b) < 1 − p−i

for each i ∈ {1, 2}. Assume for now that p1 ≥ p2. Coupled with the equilibrium boundary con-
dition that Gi(0) = 0 for at least one player, this differential equation system admits a unique
solution. 13 One way to solve it is to start with the endogenous maximum bid b, common to
both players, and trace the graphs of G1 and G2 according to the differential equation sys-
tem when the bid decreases from b to zero. As in Figure A.1, both graphs start by decreasing
at the rate equal to 1/s. Then the graph of G1 changes to the steeper slope 1/w at the bid b
for which G2(b) = 1 − p2, whereas G2 remains decreasing at the rate 1/s until G1(b) = 1 − p1

(because p1 ≥ p2). Thus, when the bid decreases down to zero, G2(0) ≥ G1(0). Since the zero
bid cannot be an atom for both bidders (or an equilibrium condition is violated), G1(0) = 0.
That pins down b and G2(0):

b̄/s = 1 − (1 − w/s)(1 − p2) = 1 − α(1 − p2),

G2(0) = (1 − w/s)(p1 − p2) = α(p1 − p2),

where we have used the notation α := 1 − w/s. Thus, for each player i, the expected payoff for
the strong type in the equilibrium is equal to

U s
i (p1, p2) = 1

α

(
1 − b̄

s

)
= 1 − p2 = 1 − min{p1, p2}.

13 Since Gi and G−i need not be differentiable, the differential equation system holds only for almost all b in their

common support. However, one can prove that Gi and G−i are each absolutely continuous on
[
0, b

]
and hence the

system coupled with a boundary condition admits a unique solution. See Zheng (2019b) for details.
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unequal peace 17

The expected payoffs for the weak type of the two players are:

Uw
1 (p1, p2) = 1

α
(G2(0) − 0/w) = p1 − p2 = p1 − min{p1, p2},

Uw
2 (p2, p1) = 0 = p2 − min{p2, p1}.

Then remove the assumption p1 ≥ p2 to generalize the above to (2) and (3).

A.2. Categorization of All Equilibria. The next lemma classifies all the possible cases of
proposal-PBE (perfect Bayesian equilibrium) pairs, called solutions for short. Case (a) corre-
sponds to the trivial (always conflict) equilibria, Case (b) corresponds to lopsided equilibria,
Case (c) the PBEs that satisfy (16), Case (d) those satisfying (15), and Case (e) those satisfy-
ing (13) or (14).

Lemma A.1. For any solution (xi, σi, pA
i , pR

i , qi)2
i=1, exactly one of the following is true:

a. qi = 1 for some player i, and the on-path posterior is equal to the prior for both players;
b. for some i ∈ {1, 2}, σi(w) = σi(s) = 0 and 0 < σ−i(w) < 1 = σ−i(s);
c. for each i ∈ {1, 2}, 0 < σi(w) < 1 = σi(s);
d. for each i ∈ {1, 2}, σi(w), σi(s) ∈ (0, 1);
e. for some i ∈ {1, 2}, σi(w), σi(s), σ−i(w) ∈ (0, 1), and σ−i(s) = 1.

Proof. First, we observe that the lemma follows from the following claims:

1. If qi = 1 for some player i, the on-path posterior is equal to the prior for each player.
2. If qi < 1 for each player i, then there does not exist any i ∈ {1, 2} for whom:

i. σi(w) = 0 < σi(s) ≤ 1; or
ii. σi(s) = 0 < σi(w) ≤ 1; or

iii. 0 < σi(s) < 1 = σi(w); or
iv. σi(w) = σi(s) = 0 and σ−i(w), σ−i(s) ∈ (0, 1).

To see why the claims suffice, note that Claims 2.i and 2.ii together imply σi(w) = 0 ⇔
σi(s) = 0, and Claim 2.iii implies 0 < σi(s) < 1 ⇒ σi(w) < 1. This coupled with Claim 2.i im-
plies 0 < σi(s) < 1 ⇒ 0 < σi(w) < 1. In sum, for each player i ∈ {1, 2}, if qi < 1 then there
are only three possibilities: either σi(w) = σi(s) = 0, or “0 < σi(w) < 1 and 0 < σi(s) < 1,” or
“0 < σi(w) < 1 and σi(s) = 1” (where σi(s) 
= 0 because of the first implication). Thus, in any
equilibrium where qi < 1 for both players i (i.e., outside Case (a) in the lemma), there are
only nine combinations for (σ1, σ2), as in the following table:

σ2(w) = σ2(s) = 0 σ2(w), σ2(s) ∈ (0, 1) 0 < σ2(w) < 1 = σ2(s)

σ1(w) = σ1(s) = 0 impossible impossible case (b)
σ1(w), σ1(s) ∈ (0, 1) impossible case (d) case (e)
0 < σ1(w) < 1 = σ1(s) case (b) case (e) case (c)

In this table, the cell (1, 1) (σ1(w) = σ1(s) = 0 = σ2(w) = σ2(s)) is impossible because our
assumption θ > 1/2 implies that it is impossible to have σi(s) = σi(w) = 0 for both players i
(Footnote 8). Claim 2.iv says that the cells (1, 2) and (2, 1) (one player’s strategy is totally
mixed and the other chooses A for sure) are each impossible. The other cells are the possible
ones, filled in with the corresponding cases in the lemma.

The rest of the proof establishes the claims listed above. �
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18 kamranzadeh and zheng

Claim 1 Let qi = 1 for some player i. Then the on-path posterior about i is pR
i = 1 − θ . For

player −i, suppose that the action A is on path and pA
−i is not equal to the prior 1 − θ . Then

Bayes’s rule requires that the other action R be on path as well so that pR
−i 
= 1 − θ and (7) be

satisfied. Thus, one of pA
−i and pR

−i is above 1 − θ , and the other below 1 − θ . If pA
−i > 1 − θ >

pR
−i, then by (2) and (3) (or simply Figure 1),

U s
−i(pA

−i, 1 − θ ) = θ < 1 − pR
−i = U s

−i(pR
−i, 1 − θ ),

Uw
−i(pR

−i, 1 − θ ) = 0 < pA
−i − θ + 1 = Uw

−i(pA
−i, 1 − θ ).

Thus, player −i of type s would choose R for sure, and −i of type w, A for sure. That implies
pR

−i = 1 and pA
−i = 0, contradicting pA

−i > 1 − θ > pR
−i. The other case, where pA

−i < 1 − θ <

pR
−i, is self-contradicting analogously. This proves Claim 1.

Claim 2.i Suppose, to the contrary, that σi(w) = 0 < σi(s) ≤ 1 for some player i. By
Bayes’s rule, σi(w) = 0 implies pR

i = 1. Then the two graphs in Figure 1 coincide, with pi there
equal to pR

i = 1, and hence V R
i (s) = V R

i (w) = 1 − (1 − θ ) = θ by (6)—simply put, the dashed
segment in Figure 2 coincides with the solid thick line because any pA

−i and pR
−i are less than or

equal to 1 = pR
i . Recall from (5) that V A

i (t) denotes i’s expected payoff from choosing A given
type t ∈ {s,w}. By the best response condition,

σi(w) = 0 ⇒ V A
i (w) ≥ V R

i (w) = θ,

σi(s) > 0 ⇒ V A
i (s) ≤ V R

i (s) = θ.

Thus, V A
i (w) ≥ V A

i (s). Meanwhile, (5) implies that V A
i (w) ≤ V A

i (s), as Uw
i (pA

i , ·) ≤ U s
i (pA

i , ·)
for any pA

i ∈ [0, 1]. Consequently, V A
i (w) = V A

i (s). Then (5) coupled with q−i > 0 implies that
Uw

i (pA
i , pR

−i) = U s
i (pA

i , pR
−i). Compare (2) with (3)—or simply inspect Figure 1—to see that

the equation is possible only if pA
i = 1. But that violates Bayes’s rule given that σi(w) < 1.

Thus, Claim 2.i follows.

Claim 2.ii Suppose, to the contrary, that qi < 1 for both players i, and σi(s) = 0 < σi(w) ≤
1 for some player i. By Bayes’s rule, σi(s) = 0 implies pR

i = 0. By (2) and (3), U s
i (pR

i , ·) = 1
and Uw

i (pR
i , ·) = 0. It follows from (6) that V R

i (s) = 1 and V R
i (w) = 0. By the best response

condition for σi(w) > 0,

0 = V R
i (w) ≥ V A

i (w)
(5)= q−iUw

i (pA
i , pR

−i) + (1 − q−i)xi ≥ (1 − q−i)xi

and hence xi = 0 (since 1 − q−i > 0). This coupled with the best response condition for σi(s) =
0 implies

1 = V R
i (s) ≤ V A

i (s) = 0 + q−iU s
i (pA

i , pR
−i)

(2)= q−i
(
1 − min{pA

i , pR
−i}
)
.

Thus, q−i = 1, contradiction.

Claim 2.iii Suppose, to the contrary, that qi < 1 for both players i, and 0 < σi(s) < 1 =
σi(w) for some player i. By Bayes’s rule, σi(w) = 1 implies pA

i = 1. It then follows from (2)
and (3) that U s

i (pA
i , ·) = Uw

i (pA
i , ·) and hence, by (5), V A

i (s) = V A
i (w). By the best response

condition, 0 < σi(s) < 1 implies V R
i (s) = V A

i (s), and σi(w) > 0 implies V R
i (w) ≥ V A

i (w). Thus,
V R

i (w) ≥ V R
i (s). This, by inspection of Figure 2—or (6)—is possible only if pR

i = 1. But pR
i =

1 violates Bayes’s rule since σi(w) > 0, contradiction.

Claim 2.iv Suppose, to the contrary, that for each player i we have qi < 1 and σi(w) =
σi(s) = 0, 0 < σ−i(w) < 1 and 0 < σ−i(s) < 1. With σi(w) = σi(s) = 0, we have qi = 0 and
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unequal peace 19

Figure A.2

rejection payoffs for the strong type

pA
i = 1 − θ . Plug them into (6)—or simply noting that the convex combination in Figure 2 de-

generates to the point 1 − θ—to see that V R
−i(w) = pR

−i − (1 − θ ) and V R
−i(s) = 1 − (1 − θ ) =

θ . Since σ−i(w) > 0, pR
−i < 1 and hence pR

−i − (1 − θ ) < θ . Consequently, V R
−i(w) < V R

−i(s).
Meanwhile, by the best response condition and qi = 0,

0 < σ−i(w) < 1 ⇒ x−i = V A
−i(w) = V R

−i(w),

0 < σ−i(s) < 1 ⇒ x−i = V A
−i(s) = V R

−i(s).

Thus, V R
−i(w) = V R

−i(s), contradiction.
An implication of Lemma A.1 is that the condition pR

i ≥ 1 − θ ≥ pA
i in Figures 2–A.2 is in-

deed satisfied:

Lemma A.2. For any solution (xi, σi, pA
i , pR

i , qi)2
i=1, either qi = 1 for some player i and the

on-path posterior is equal to the prior for both players, or qi < 1 for both players i and, for each
player i, qi > 0 ⇒ pR

i > 1 − θ > pA
i .

Proof. By Lemma A.1, either Case (a) is true, which means the on-path posterior is equal
to the prior for both players, or (a) is not true and hence qi < 1 for both players i. In the latter
alternative, if qi > 0 then we have either (I) σi(w), σi(s) ∈ (0, 1)—which is true for both play-
ers in case (d), and player i in case (e), in Lemma A.1—or (II) σi(s) > σi(w) (which is true for
player −i in case (b), both players in case (c), and player −i in case (e)). In (I), the best re-
sponse condition implies

V R
i (s) − V A

i (s) = 0 = V R
i (w) − V A

i (w),

which, by (A.1), simplifies to 1 − pR
i = q−i(1 − pA

i ). This coupled with q−i < 1 implies 1 −
pR

i < 1 − pA
i , that is, pR

i > pA
i . In (II), by Bayes’s rule σi(s) = qi pR

i /(1 − θ ) and σi(w) = qi(1 −
pR

i )/θ , and by qi > 0, we have pR
i /(1 − θ ) > (1 − pR

i )/θ , namely, pR
i > 1 − θ . Both cases

considered, we have shown that qi > 0 implies pR
i > pA

i or pR
i > 1 − θ . In either case, the

Bayesian plausibility condition (7) implies pR
i > 1 − θ > pA

i . �

A.3. Proof of (11) and (12) for Lemma 1. Figure A.2 depicts the expected payoff from
choosing R for the strong type of each player, with curve ILM for player 1, and curve IJK
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20 kamranzadeh and zheng

Figure A.3

rejection payoffs for the weak type

for player 2. Curve ILM lies below curve IJK because the lemma labels the players so that
pR

1 ≥ pR
2 . Similarly, Figure A.3 depicts the expected payoff from choosing R for the weak type

of each player, with curve DEH for player 1, and curve FGH for player 2. Curve DEH lies
above curve FGH again by pR

1 ≥ pR
2 .

To prove (11), note in Figure A.2 that �NK′L′ and �NKL are similar triangles. Thus,

|K′L′|
|KL| = 1 − θ − pA

1

pR
1 − pA

1

.

Consequently, since |K′L′| = V R
2 (s) − V R

1 (s) and |KL| = pR
1 − pR

2 , we have

V R
2 (s) − V R

1 (s) = 1 − θ − pA
1

pR
1 − pA

1

(pR
1 − pR

2 ) = q1(pR
1 − pR

2 )

with the second equality due to the Bayesian plausibility condition (7). Thus (11) follows.
Analogously, in Figure A.3, �EB′C′ and �EBC are similar triangles. Thus,

|B′C′|
|BC| = pR

1 − (1 − θ )

pR
1 − pA

1

= 1 − q1,

with the second equality again due to (7). Consequently, since V R
2 (w) − V R

1 (w) = −|B′C′| and
|BC| = pR

1 − pR
2 , Equation (12) follows.

A.4. Verification of the Intuitive and D1 Criteria. It is easy to derive from the construc-
tion of lopsided equilibria (Subsection 4.1) that q2 = 1/2 and pR

2 = 2(1 − θ ) in the lopsided
equilibrium when the proposal is x1 = θ . Note that the only observable deviation from the
equilibrium is player 1 choosing R. Also note that player 1’s expected payoff from this equilib-
rium is equal to V A

1 (s) = θ when his type is s, and V A
1 (w) = θ/2 when the type is w. For each

t ∈ {s,w} and any pR
1 ∈ [0, 1], let Ṽ R

1 (t, pR
1 ) denote type-t player 1’s expected payoff from the

deviation provided that the posterior probability of him being strong is pR
1 (together with the

on-path posterior probability pR
2 = 2(1 − θ ) of player 2 being strong).
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unequal peace 21

Intuitive Criterion Denote J for the set of player 1’s types whose equilibrium payoff is
higher than any payoff he could get by playing R, as long as player 2’s action is rationalizable.
That is,

J :=
{

t ∈ {s,w}
∣∣∣∣∣V A

1 (t) > max
pR

1 ∈[0,1]
Ṽ R

1 (t, pR
1 )

}
.

Observe that J = ∅: s 
∈ J because the equilibrium payoff θ is the minimum payoff that a
strong type s can achieve from playing R (Remark 2); w 
∈ J because the equilibrium pay-
off θ/2 is less than θ , which is equal to Ṽ R

1 (w, 1) because pR
1 = 1 > 2(1 − θ ) = pR

2 implies
via (10) that Ṽ R

1 (w, 1) = 1 − (1 − θ ) = θ . Now that J = ∅, the set of distributions of player 1’s
type whose supports exclude J (the empty set) contains the posterior distribution that sup-
ports the lopsided equilibrium. Thus, the equilibrium satisfies the Intuitive Criterion.

D1 Criterion It suffices to falsify the following inequality for each t ∈ {s,w} (and {t ′} :=
{s,w} \ {t}):{

pR
1 ∈ [0, 1]

∣∣V A
1 (t) ≤ Ṽ R

1 (t, pR
1 )
}
�
{

pR
1 ∈ [0, 1]

∣∣V A
1 (t ′) < Ṽ R

1 (t ′, pR
1 )
}
.

To that end, consider first t = s (so t ′ = w). Since V A
1 (s) = θ is the minimum payoff that a

strong type s can achieve from playing R (Remark 2), the left-hand side is equal to [0, 1]
and hence the (strict) inequality cannot hold. Next consider t = w (and so t ′ = s). Note that
pR

1 = 1 belongs to the left-hand side, as V A
1 (w) = θ/2 < θ = Ṽ R

1 (w, 1), shown in the previous
paragraph. However, pR

1 = 1 does not belong to the right-hand side, because V A
1 (s) = θ and

Ṽ R
1 (s, 1) = θ by (9). Thus again the inequality displayed above does not hold. Both cases con-

sidered, the D1 Criterion is satisfied.

A.5. Three Useful Equations.

Lemma A.3. In any solution (xi, σi, pA
i , pR

i , qi)2
i=1,

V R
i (s) − V A

i (s) − (
V R

i (w) − V A
i (w)

) = 1 − pR
i − q−i(1 − pA

i )(A.1)

for each player i, and if pR
i ≥ pR

−i ≥ 1 − θ , then

V R
i (w) − V A

i (w) = pR
i − (1 − q−i)xi − 1 + θ,(A.2)

V R
−i(w) − V A

−i(w) = (1 − qi)
(
pR

−i − pA
i − x−i

)
.(A.3)

Proof. To prove (A.1), note from (5) and (6) that the left-hand side is equal to

q−i
(
U s

i (pR
i , pR

−i) − U s
i (pA

i , pR
−i) − Uw

i (pR
i , pR

−i) + Uw
i (pA

i , pR
−i)
)

+ (1 − q−i)
(
U s

i (pR
i , pA

−i) − Uw
i (pR

i , pA
−i)
)

(2),(3)= q−i
(
1 − min{pR

i , pR
−i} − 1 + min{pA

i , pR
−i} − pR

i + min{pR
i , pR

−i} + pA
i − min{pA

i , pR
−i}
)

+ (1 − q−i)
(
1 − min{pR

i , pA
−i} − pR

i + min{pR
i , pA

−i}
)

= q−i
(−pR

i + pA
i

)+ (1 − q−i)
(
1 − pR

i

)
,

which is equal to the right-hand side. To prove (A.2), assume without loss that pR
1 ≥ pR

2 . Thus
for each player i, pR

i ≥ 1 − θ and hence, by the Bayesian plausibility condition (7), pA
i ≤ 1 − θ .
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22 kamranzadeh and zheng

Use (5) and (6) to obtain

V R
1 (w) − V A

1 (w) = q2
(
Uw

1 (pR
1 , pR

2 ) − Uw
1 (pA

1 , pR
2 )
)+ (1 − q2)

(
Uw

1 (pR
1 , pA

2 ) − x1
)

(3)= q2
(
pR

1 − min{pR
1 , pR

2 } − pA
1 + min{pA

1 , pR
2 })+ (1 − q2)

(
pR

1 − min{pR
1 , pA

2 } − x1
)

= q2
(
pR

1 − pR
2 − pA

1 + pA
1

)+ (1 − q2)
(
pR

1 − pA
2 − x1

)
= pR

1 − q2 pR
2 − (1 − q2)pA

2 − (1 − q2)x1

= pR
1 − (1 − θ ) − (1 − q2)x1,

with the third line due to pR
1 ≥ pR

2 ≥ 1 − θ ≥ pA
j for each player j, and the last line due to the

Bayesian plausibility condition (7). Thus (A.2) is true. Analogously, (A.3) follows from

V R
2 (w) − V A

2 (w) = q1
(
pR

2 − pR
2 − pA

2 + pA
2

)+ (1 − q1)
(
pR

2 − pA
1 − x2

)
= (1 − q1)

(
pR

2 − pA
1 − x2

)
.

�

A.6. The Total Welfare of the Optimal Lopsided Solution.

Lemma A.4. The total welfare generated by the lopsided equilibrium associated with the pro-
posal (θ, 1 − θ ) is equal to θ (3 − 5θ/2).

Proof. By definition of any lopsided equilibrium, q1 = 0 and 0 < σ2(w) < 1 = σ1(s). Thus,
the total welfare from (θ, 1 − θ ) is equal to

(1 − q2)θ + q2
[
θUw

1 (pA
1 , pR

2 ) + (1 − θ )U s
1 (pA

1 , pR
2 )
]︸ ︷︷ ︸

player 1

+ θUw
2 (pR

2 , pA
1 ) + (1 − θ )U s

2 (pR
2 , pA

1 )︸ ︷︷ ︸
player 2

.

By Bayes’s rule, pA
1 = 1 − θ , pA

2 = 0 and q2 = (1 − θ )/pR
2 . As explained in the construction

of lopsided equilibria (Subsection 4.1), pR
2 = 1 − θ + x2 = 2(1 − θ ). Combine them with (2)

and (3) to calculate the above-displayed sum:

(1 − q2)θ + q2(θ · 0 + (1 − θ )(1 − 1 + θ )) + θ (pR
2 − 1 + θ ) + (1 − θ )(1 − 1 + θ )

=
(

1 − 1 − θ

pR
2

)
θ + 1 − θ

pR
2

(1 − θ )θ + θ (pR
2 − 1 + θ ) + (1 − θ )θ

=
(

1 − 1 − θ

2(1 − θ )

)
θ + 1 − θ

2(1 − θ )
(1 − θ )θ + θ (2(1 − θ ) − 1 + θ ) + (1 − θ )θ

= (2 − θ )θ/2︸ ︷︷ ︸
player 1

+ (2 − 2θ )θ︸ ︷︷ ︸
player 2

= θ (3 − 5θ/2).

�

A.7. Suboptimality of Any Trivial Equilibrium. By Claim 1 in the proof of Lemma A.1,
any trivial PBE, namely, any Case-(a) solution, has the on-path posterior equal to the prior
for each player. Since qi = 1 for some player i, conflict takes place for sure and hence each
player’s ex ante payoff from the PBE is equal to

θUw
i (1 − θ, 1 − θ ) + (1 − θ )U s

i (1 − θ, 1 − θ ) = 0 + (1 − θ )(1 − (1 − θ )) = θ (1 − θ ).
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unequal peace 23

Thus, the total welfare generated by the PBE is equal to 2θ (1 − θ ), which is less than θ (3 −
5θ/2), the total welfare generated by the lopsided proposal (θ, 1 − θ ) (Lemma A.4). Thus, any
PBE that belongs to Case (a) is suboptimal.

A.8. Suboptimality of Any Equilibrium in Equation (13) or (14). Equilibria in the form
of Equation (13) or (14) correspond to Case (e) in Lemma A.1: exactly one of the two play-
ers is totally mixing A and R for each type. Relabeling the players if necessary, assume with-
out loss that in any Case-(e) PBEs it is player 1 who is totally mixing, that is,

0 < σ1(w) < 1, 0 < σ1(s) < 1, 0 < σ2(w) < 1, σ2(s) = 1.(A.4)

Call a Case-(e) solution Case (e)-i if pR
2 ≤ pR

1 , and Case (e)-ii if pR
1 < pR

2 . This labeling of the
players implies x1 ≥ x2 (and hence is consistent with the labeling in Subsection 4.1), because
x2 ≤ 1/2 according to Lemma A.6 for Subcase-(e)-i, and Lemma A.9 for Subcase-(e)-ii.

Lemma A.5. A tuple (xi, σi, pA
i , pR

i , qi)2
i=1 constitutes a Case-(e)-i solution if and only if it sat-

isfies (A.4) and all the following:

1 − pR
1 = q2(1 − pA

1 ),(A.5)

1 − pR
2 ≥ q1,(A.6)

pR
2 ≤ pR

1 ,(A.7)

pR
1 + θ − 1 = (1 − q2)x1,(A.8)

pR
2 = pA

1 + x2.(A.9)

A tuple (xi, σi, pA
i , pR

i , qi)2
i=1 constitutes a Case-(e)-ii solution if and only if it satisfies (A.4),

(A.5), (A.6) and all the following:

pR
1 < pR

2 ,(A.10)

pR
1 = x1,(A.11)

pR
2 + θ − 1 = (1 − q1)x2.(A.12)

Proof. The best response condition for (A.4) to constitute a PBE is that V R
1 (w) −

V A
1 (w) = V R

1 (s) − V A
1 (s) = 0 for player 1 and V R

2 (w) − V A
2 (w) = 0 ≤ V R

2 (s) − V A
2 (s) for

player 2. By (A.1), that is equivalent to simultaneous satisfaction of V R
1 (w) − V A

1 (w) =
V R

2 (w) − V A
2 (w) = 0,

(
1 − pR

1

) = q2
(
1 − pA

1

)
and 1 − pR

2 ≥ q1 (i.e., Ineq. (A.6), the derivation
of which also uses the fact pA

2 = 0 implied by Bayes’s rule with respect to σ2(s) = 1). To
write the condition V R

1 (w) − V A
1 (w) = V R

2 (w) − V A
2 (w) = 0 explicitly, note for each player i

that qi < 1 in this PBE and hence pA
i < 1 − θ < pR

i by Lemma A.2. If the solution belongs to
Subcsae (i) of Case (e), pR

1 ≥ pR
2 , then (A.2) and (A.3) apply to the case i = 1 and hence

V R
1 (w) − V A

1 (w) = pR
1 − (1 − θ ) − (1 − q2)x1,

V R
2 (w) − V A

2 (w) = (1 − q1)
(
pR

2 − pA
1 − x2

)
.

Thus the condition V R
1 (w) − V A

1 (w) = 0 becomes (A.8), and the condition V R
2 (w) − V A

2 (w) =
0 becomes (A.9). Analogously, if it is Subcase (ii) of Case (e), pR

1 ≤ pR
2 , then (A.2) and (A.3)
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24 kamranzadeh and zheng

apply to the case i = 2 and hence

V R
2 (w) − V A

2 (w) = pR
2 − (1 − θ ) − (1 − q1)x2,

V R
1 (w) − V A

1 (w) = (1 − q2)
(
pR

1 − pA
2 − x1

) = (1 − q2)
(
pR

1 − x1
)
,

with the last “=” due to pA
2 = 0 (since σ2(s) = 1). Thus, the condition V R

i (w) − V A
i (w) = 0 for

both players i becomes (A.11) and (A.12). �

A.8.1. Subcase (i): pR
1 ≥ pR

2 (Equation (13)).

Lemma A.6. For any x2 ∈ [0, 1] there is at most one tuple
(
σi, pA

i , pR
i , qi

)2
i=1 that constitutes a

Case-(e)-i solution, and for any such solution, 1 − θ < x2 ≤ 2θ − 1, where 2θ − 1 ≤ 1/2 if θ ≤
3/4.

Proof. Let x2 ∈ [0, 1] and
(
xi, σi, pA

i , pR
i , qi

)2
i=1 be a Case-(e)-i solution. By Lemma A.5, the

tuple satisfies Equations (A.5), (A.8), and (A.9). Combine (A.5), (A.8), and (A.9) with q2 =
θσ2(w) + 1 − θ (definition of qi), pR

2 = (1 − θ )/q2 (Bayes’s rule with respect to σ2(s) = 1) and
x1 + x2 = 1 (definition of a peace proposal) to obtain

σ2(w) = 1 − 1
2θ

.(A.13)

Plug (A.13) into the system consisting of (A.4), (A.5), (A.8), and (A.9) to obtain a unique so-
lution for all components of the tuple:

q2 = θ

(
1 − 1

2θ

)
+ 1 − θ = 1

2
,

pR
2 = 1 − θ

q2
= 2 − 2θ,(A.14)

pR
1 = 1 − θ + (1 − 1/2)(1 − x2) = 3 − 2θ − x2

2
,(A.15)

pA
1 = pR

2 − x2 = 2(1 − θ ) − x2,

q1 = 1 − θ − pA
1

pR
1 − pA

1

= 2(θ − 1 + x2)
2θ + x2 − 1

,(A.16)

σ1(w) = θ − 1 + x2

θ
.(A.17)

In particular, (A.17) follows from

θσ1(w) = q1 − (1 − θ )σ1(s) = q1 − pR
1 q1

= 2(θ − 1 + x2)
2θ + x2 − 1

(
1 − 3 − 2θ − x2

2

)
= θ − 1 + x2.

Since σ1(w) > 0 by definition of any Case-(e) solution, (A.17) implies x2 > 1 − θ .
To prove x2 ≤ 2θ − 1, plug (A.14) and (A.15) into the condition pR

1 ≥ pR
2 that defines Sub-

case (e)-i to obtain

pR
1 ≥ pR

2 ⇐⇒ 3 − 2θ − x2

2
≥ 2 − 2θ ⇐⇒ x2 ≤ 2θ − 1.

�
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Lemma A.7. When x1 converges to θ from above, the total welfare generated by any Case-(e)-
i solution given proposal (x1, x2) converges to the total welfare generated by the lopsided equi-
librium given proposal (θ, 1 − θ ).

Proof. By Lemma A.6, any Case-(e)-i solution is uniquely determined by the x2 in the tu-
ple, with 2 being the label for the player for whom pR

2 ≤ pR
1 . Thus, the total welfare generated

by the solution is uniquely determined by x2. Hence let Se(x2) denote the total welfare gener-
ated by a Case-(e)-i solution that offers x2 to the player −i for whom pR

−i ≤ pR
i . Since R is a

best reply for each type of each player in any Case-(e) solution, Lemma 1 implies

Se(x2) = 2θ pR
1 + (q1 − θ )(pR

1 − pR
2 ).(A.18)

By Lemma A.6, x2 > 1 − θ . Taking the limit of (A.15) and (A.16) as x2 converges to 1 − θ

from above, we have

lim
x2↓1−θ

pR
1 = 2 − θ

2
,

lim
x2↓1−θ

q1 = 0.

Combine them with the above formula of Se(x2) and (A.14) to obtain

lim
x2↓1−θ

Se(x2) = 2θ pR
1 − θ (pR

1 − pR
2 ) = θ (pR

1 + pR
2 )

= θ

(
2 − θ

2
+ 2 − 2θ

)

= θ

(
3 − 5

2
θ

)
,

which by Lemma A.4 is equal to the total welfare generated by the lopsided equilibrium given
proposal (θ, 1 − θ ). �

Lemma A.8. If θ ≤ 3/4, the lopsided equilibrium given proposal (θ, 1 − θ ) generates larger
total welfare than any Case-(e)-i solution.

Proof. By Lemma A.7, it suffices to prove that d
dx2

Se(x2) < 0 for all x2 > 1 − θ . To prove
that, use (A.18) and dpR

2 /dx2 = 0 (Equation (A.14)) to obtain

d
dx2

Se(x2) = ∂Se

∂ pR
1

dpR
1

dx2
+ ∂Se

∂q1

dq1

dx2
= (q1 + θ )

dpR
1

dx2
+ (

pR
1 − pR

2

)dq1

dx2

= −q1 + θ

2
+ (

pR
1 − pR

2

) 2θ

(2θ + x2 − 1)2 ,(A.19)

with the last equality due to (A.15) and (A.16). Note that the expression (A.19) is strictly de-
creasing in x2: By (A.14) and (A.15), pR

1 − pR
2 = (2θ − 1 − x2)/2, which is strictly decreasing

in x2; as can be seen above (due to (A.16)),

dq1

dx2
= 2θ

(2θ + x2 − 1)2 > 0

and so −(q1 + θ )/2 is strictly decreasing in x2 as well. Thus, d
dx2

Se(x2) is strictly decreasing
in x2.
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26 kamranzadeh and zheng

Now that d
dx2

Se(x2) is strictly decreasing in x2 for all x2 > 1 − θ , and x2 > 1 − θ for any
Case-(e)-i solution, to show that Se(x2) is strictly decreasing in x2, we need only

lim
x2↓1−θ

d
dx2

Se(x2) < 0.

To show that, take the limit of (A.19) as x2 converges to 1 − θ from above and use (A.14),
(A.15), and (A.16) (so limx2↓1−θ q1 = 0 and limx2↓1−θ

(
pR

1 − pR
2

) = (3θ − 2)/2) to obtain

lim
x2↓1−θ

d
dx2

Se(x2) = −θ

2
+ (3θ − 2)

2
· 2
θ

= −θ2 + 6θ − 4
2θ

= − 1
2θ

(
(θ − 3)2 − 5

)
,

which is negative because the condition θ ≤ 3/4 in the lemma implies θ < 3 − √
5. Thus, the

supremum of d
dx2

Se(x2) is negative among all x2 > 1 − θ , so limx2↓1−θ Se(x2) is the supremum
total welfare among all Case-(e)-i solutions. By Lemma A.7, the supremum is equal to the to-
tal welfare generated by the lopsided equilibrium given proposal [θ, 1 − θ ]. �

A.8.2. Subcase (ii): pR
1 < pR

2 (Equation (14)).

Lemma A.9. For any x2 ∈ [0, 1] there is at most one tuple
(
σi, pA

i , pR
i , qi

)2
i=1 that constitutes

a Case-(e)-ii solution; if θ ≤ 3/4 in addition, then 2θ − 1 < x2 < x̂2 for any such a solution,
where x̂2 is uniquely determined by θ and belongs to [2θ − 1, 1/2].

Proof. By Lemma A.5, the tuple satisfies Equations (A.5), (A.11), and (A.12). Plug
Bayes’s rule 1 − pR

1 = θσ1(w)/q1 into Equation (A.11) to obtain

σ1(w) = (1 − θ )(1 − x1)
θx1

σ1(s).(A.20)

Equation (A.11), combined with 1 − pR
1 = θσ1(w)/q1 and x1 + x2 = 1, also implies

q1 = θσ1(w)
x2

.(A.21)

Thus, from Bayes’s rule we have

1 − pA
1 = θ (1 − σ1(w))

1 − q1
= θ − q1x2

1 − q1
.

Plug this into (A.5), replace pR
1 via pR

1 = x1 (Equation (A.11)) and replace q2 through q2 =
(1 − θ )/pR

2 (due to (7) and pA
2 = 0, the latter due to σ2(s) = 1), and eliminate pR

2 by (A.12).
Then

x2 = (1 − θ )
1 − θ + (1 − q1)x2

· θ − q1x2

1 − q1
,

which simplifies to a quadratic equation

(q1)2(x2)2 − 2q1(x2)2 + (x2)2 + (1 − θ )(x2 − θ ) = 0,

namely,

(x2)2(q1 − 1)2 = (1 − θ )(θ − x2).

We claim θ − x2 > 0. To see that, note pA
1 < pR

1 due to Lemma A.2 and σ1(w) < 1 and hence
q1 < 1 in any Case-(e) PBE. Then the Bayesian plausibility condition (7) implies pR

1 > 1 − θ .
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unequal peace 27

This, combined with Bayes’s rule pR
1 = (1 − θ )σ1/q1 and 1 − pR

1 = θσ1(w)/q1, implies σ1(w) <

σ1(s). Then (A.20) implies 1 − x1 < θ , namely,

θ − x2 > 0.(A.22)

Thus, the above quadratic equation implies x2(q1 − 1) = −√(1 − θ )(θ − x2), namely,

q1 = 1 − 1
x2

√
(1 − θ )(θ − x2).(A.23)

Thus, the Case-(e) solution is uniquely determined by x2. In particular,

pR
1

(A.11)= 1 − x2,(A.24)

pR
2

(A.12)= 1 − θ +
√

(1 − θ )(θ − x2),(A.25)

σ1(w)
(A.21)= x2 −√

(1 − θ )(θ − x2)
θ

,(A.26)

q2 = 1 − θ

pR
2

,(A.27)

with (A.27) due to Bayes’s rule with respect to σ2(s) = 1.
Finally, we verify that 2θ − 1 < x2 < 1/2 in any Case-(e)-ii solution. Recall from the defini-

tion of Case-(e)-ii solutions that pR
2 > pR

1 . By (A.24) and (A.25),

pR
2 > pR

1 ⇐⇒ 1 − θ +
√

(1 − θ )(θ − x2) > 1 − x2

⇐⇒
√

(1 − θ )(θ − x2) > θ − x2.(A.28)

By (A.22), the inequality in (A.28) is equivalent to

(√
(1 − θ )(θ − x2)

)2
> (θ − x2)2,

namely, 1 − θ > θ − x2. Thus

x2 > 2θ − 1.(A.29)

To prove x2 < x̂2, the claim about x̂2 in the lemma, recall that (A.6) holds for any Case-(e)-
ii solution (Lemma A.5), namely, q1 ≤ 1 − pR

2 . Plug (A.23) and (A.25) into this inequality to
obtain (

1
x2

− 1
)√

(1 − θ )(θ − x2) ≥ 1 − θ,

namely,

(x2)2(1 − θ ) − (θ − x2)(1 − x2)2 ≤ 0.(A.30)

Note that the left-hand side of (A.30) is strictly increasing in x2. By the assumption θ ≤ 3/4,
the left-hand side of (A.30) is equal to (1 − θ )(4θ − 3) ≤ 0 when x2 = 2θ − 1, and equal to
3/8 − θ/2 ≥ 0 when x2 = 1/2. Thus, there exists a unique x̂2 ∈ [2θ − 1, 1/2] for which (A.30)
holds at equality when x2 = x̂2, and holds strictly for all x2 < x̂2, as asserted. �
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28 kamranzadeh and zheng

Lemma A.10. If 2/3 ≤ θ ≤ 3/4 then q2 < θ in any Case-(e)-ii PBE.

Proof. By (A.25) and (A.27).

q2 < θ ⇐⇒ 1 − θ

1 − θ +√
(1 − θ )(θ − x2)

< θ

⇐⇒ (1 − θ )2 ≤ θ
√

(1 − θ )(θ − x2)

⇐⇒ x2 ≤ θ − (1 − θ )3

θ2
.

Thus, since x2 < 1/2 by Lemma A.9, it suffices to show 1/2 ≤ θ − (1 − θ )3/θ2, namely,

4θ3 − 7θ2 + 6θ − 2
2θ2

≥ 0.

Thus, we are done if 4θ3 − 7θ2 + 6θ − 2 ≥ 0. To show that, note

d
dθ

[
4θ3 − 7θ2 + 6θ − 2

] = 12θ2 − 14θ + 6 = 6θ (2θ − 1) + 2(3 − 4θ ) > 0

because 2θ > 1 by (1) and θ ≤ 3/4 by assumption. Thus, the term 4θ3 − 7θ2 + 6θ − 2 is strictly
increasing in θ . Since it is equal to 2/27 at θ = 2/3, it follows that 4θ3 − 7θ2 + 6θ − 2 > 0 for
all θ ∈ [2/3, 3/4]. This proves q2 < θ , as desired. �

Lemma A.11. If 2/3 ≤ θ ≤ 3/4, then the lopsided equilibrium associated with proposal
(θ, 1 − θ ) generates larger total welfare than any Case-(e)-ii solution.

Proof. Since any Case-(e)-ii solution corresponds to a nonlopsided equilibrium, Lemma 1
applies with the roles of players 1 and 2 switched due to pR

2 ≥ pR
1 in Case-(e)-ii. Thus, the total

welfare is equal to

S′
e := 2θ pR

2 + (q2 − θ )(pR
2 − pR

1 ).

To prove that S′
e is less than the total welfare generated by the lopsided equilibrium given

proposal (θ, 1 − θ ), which is equal to θ (3 − 5θ/2) by Lemma A.4, it suffices to prove pR
2 <

2 − 2θ for any Case-(e)-ii solution: Since q2 < θ by Lemma A.10, we have S′
e < 2θ pR

2 because
pR

2 − pR
1 > 0 in any Case-(e)-ii solution. If, in addition, pR

2 < 2 − 2θ , then

S′
e < 2θ pR

2 < 2θ (2 − 2θ ) ≤ θ (3 − 5θ/2),

with the last inequality due to the condition θ ≥ 2/3 in the lemma.
Thus, we verify pR

2 < 2 − 2θ . Note from (A.25) that pR
2 < 2 − 2θ is equivalent to

1 − θ +
√

(1 − θ )(θ − x2) < 2 − 2θ ⇐⇒
√

(1 − θ )(θ − x2) < 1 − θ

⇐⇒ 1 − θ < θ − x2 ⇐⇒ 2θ − 1 < x2,

where 2θ − 1 < x2 is true by Lemma A.9. Thus, pR
2 < 2 − 2θ , as desired. �

A.9. Suboptimality of Any Equilibrium in Equation (15). Equilibria in the form of Equa-
tion (15) correspond to Case (d) in Lemma A.1. In any such PBE, each type of each player is
totally mixing A and R:

∀i ∈ {1, 2} : 0 < σi(w) < 1 and 0 < σi(s) < 1.(A.31)
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unequal peace 29

This being symmetric between the two players, let us assume without loss that

pR
2 ≥ pR

1 .(A.32)

This labeling of the players will be shown to imply x1 ≥ x2 (Lemma A.14) and hence consis-
tent with the labeling in Subsection 4.1.

Lemma A.12. A tuple (xi, σi, pA
i , pR

i , qi)2
i=1 that satisfies (A.32) constitutes a Case-(d) solution

if and only if it satisfies (A.31) and all the following:

1 − pR
1 = q2(1 − pA

1 ),(A.33)

1 − pR
2 = q1(1 − pA

2 ),(A.34)

pR
1 = pA

2 + x1,(A.35)

pR
2 + θ − 1 = (1 − q1)x2.(A.36)

Proof. The best response condition for (A.31) to constitute a PBE is that V R
i (w) −

V A
i (w) = V R

i (s) − V A
i (s) = 0 for each player i. By (A.1), that is equivalent to simultaneous

satisfaction of V R
1 (w) − V A

1 (w) = V R
2 (w) − V A

2 (w) = 0,
(
1 − pR

1

) = q2
(
1 − pA

1

)
, and 1 − pR

2 =
q1(1 − pA

2 ). To write the condition V R
1 (w) − V A

1 (w) = V R
2 (w) − V A

2 (w) = 0 explicitly, note for
each player i that qi < 1 in this PBE and hence pA

i < 1 − θ < pR
i by Lemma A.2. This com-

bined with (A.32) implies that (A.2) and (A.3) apply to the case i = 2 and hence

V R
2 (w) − V A

2 (w) = pR
2 − (1 − θ ) − (1 − q1)x2,

V R
1 (w) − V A

1 (w) = (1 − q2)
(
pR

1 − pA
2 − x1

)
.

Consequently, with q2 < 1,

V R
1 (w) − V A

1 (w) = 0 ⇐⇒ pR
1 = pA

2 + x1,

V R
2 (w) − V A

2 (w) = 0 ⇐⇒ pR
2 + θ − 1 = (1 − q1)x2.

�

Lemma A.13. If (xi, σi, pA
i , pR

i , qi)2
i=1 is a Case-(d) solution such that pR

2 ≥ pR
1 , then

σ1(w) = θ + x1 − 1 + q1(1 − 2x1)
θ

,(A.37)

σ1(s) = q1 − θσ1(w)
1 − θ

,(A.38)

σ2(w) = 1 − x2

θ
,(A.39)

σ2(s) = θ − x2

1 − θ
· 1 − θ + x2(1 − q1)

θ + x2(q1 − 1)
,(A.40)

x2 < θ, and(A.41)

(q1)3x2(1 − 2x2) + (q1)2x2(3x2 − 1 − θ ) + q1(3x2 − 1 − θ )(θ − x2) + (θ − x2)2 = 0.(A.42)
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30 kamranzadeh and zheng

Proof. Equation (A.38) follows trivially from q1 = θσ1(w) + (1 − θ )σ1(s). To prove the
rest, first apply Bayes’s rule to 1 − pA

2 and then to 1 − pR
2 to obtain

1 − pA
2 = θ (1 − σ2(w))

1 − q2
= (1 − pR

2 )θ (1 − σ2(w))

1 − pR
2 − (1 − pR

2 )q2
= (1 − pR

2 )θ (1 − σ2(w))

1 − pR
2 − θσ2(w)

.

Then,

pR
2 − pA

2 = (1 − pA
2 ) − (1 − pR

2 ) = (1 − pR
2 )θ (1 − σ2(w))

1 − pR
2 − θσ2(w)

− (1 − pR
2 ) = (1 − pR

2 )(θ + pR
2 − 1)

1 − pR
2 − θσ2(w)

.

By (A.34) we have q1 = (1 − pR
2 )/(1 − pA

2 ). Plug this into (A.36) to obtain

(θ + pR
2 − 1)(1 − pA

2 ) = (pR
2 − pA

2 )x2.

Plugging into this equation the formulas of 1 − pA
2 and pR

2 − pA
2 obtained above, we have

(θ + pR
2 − 1) · (1 − pR

2 )θ (1 − σ2(w))

1 − pR
2 − θσ2(w)

= (1 − pR
2 )(θ + pR

2 − 1)

1 − pR
2 − θσ2(w)

· x2,

namely,

θ (1 − σ2(w)) = x2.

Thus (A.39) is true. Then, Equation (A.39) coupled with σ2(w) > 0 implies (A.41).
Second, plug Equations. (A.34) and (A.35) into Equation (A.36) to obtain

1 − q1(1 − pR
1 + x1) = 1 − θ + (1 − q1)x2.

Eliminate 1 − θ therein by Equation (7) and combine terms to obtain

(1 − q1)(1 − pA
1 ) = x2 − q1(x2 − x1).

By Bayes’s rule, the above equation is equivalent to

θ (1 − σ1(w)) = x2 − q1(x2 − x1),(A.43)

which in turn is equivalent to Equation (A.37).
Third, rewrite (A.34) as q1 = (1 − pR

2 )/(1 − pA
2 ) and then rewrite the right-hand side by

Bayes’s rule to obtain

q1 = θσ2(w)
θ (1 − σ2(w))

· θ (1 − σ2(w)) + (1 − θ )(1 − σ2(s))
θσ2(w) + (1 − θ )σ2(s)

(A.39)= θ − x2

x2
· x2 + (1 − θ )(1 − σ2(s))

θ − x2 + (1 − θ )σ2(s)
,

which implies Equation (A.40).
Finally, we prove Equation (A.42). Use Bayes’s rule on player 2 and then use (A.39) to ob-

tain

(1 − q2)(1 − pA
2 ) = θ (1 − σ2(w)) = x2.

Eliminate the q2 in this equation by (A.33), and the pA
2 by (A.35). Then, the equation dis-

played above becomes (
1 − 1 − pR

1

1 − pA
1

)
(1 − pR

1 + x1) = x2,
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unequal peace 31

namely,

(1 − pA
1 )x2 = (

pR
1 − pA

1

)(
1 − pR

1 + x1
)
.(A.44)

Meanwhile, use Bayes’s rule on player 1 and then use (A.43) to obtain

1 − pA
1 = θ (1 − σ1(w))

1 − q1
= x2 − q1(x2 − x1)

1 − q1
.

Analogously, use Bayes’s rule on player 1 and then use Equation (A.37) to obtain

1 − pR
1 = θσ1(w)

q1
= θ + x1 − 1 + q1(1 − 2x1)

q1
.

From the two formulas, we get

pR
1 − pA

1 = x2 − q1(x2 − x1)
1 − q1

− θ + x1 − 1 + q1(x2 − x1)
q1

= −θ − x1 + 1 + q1θ + 2q1x1 − q1

q1(1 − q1)

= x2 − θ − q1(x2 − x1 − θ )
q1(1 − q1)

(by x1 + x2 = 1).

Replace the 1 − pA
1 , 1 − pR

1 and pR
1 − pA

1 in (A.44) with the above formulas to rewrite (A.44)
as

x2 − q1(x2 − x1)
1 − q1

x2 =
(

x2 − θ − q1(x2 − x1 − θ )
(1 − q1)q1

)(
θ + x1 − 1 + q1(1 − 2x1)

q1
+ x1

)

=
(

x2 − θ − q1(x2 − x1 − θ )
(1 − q1)q1

)(
q1x2 + θ − x2

q1

)
,

with the second line due to x1 + x2 = 1. Simplify the above equation into

x2(x2 − q1(x2 − x1)) = x2 − θ − q1(x2 − x1 − θ )
q1

· q1x2 + θ − x2

q1
,

namely,

(q1)2x2(q1x1 + (1 − q1)x2) = (q1x1 − (1 − q1)(θ − x2))(q1x2 + θ − x2).

Plug x2 = 1 − x1 into the above displayed equation to obtain

(q1)2x2(q1(1 − x2) + (1 − q1)x2) = (q1(1 − x2) − (1 − q1)(θ − x2)) · (q1x2 + θ − x2)

⇐⇒ (q1)2x2(q1(1 − 2x2) + x2) = (q1(1 + θ − 2x2) + x2 − θ ) · (q1x2 + θ − x2),

⇐⇒ (q1)3x2(1 − 2x2) + (q1)2(x2)2 = (q1)2(1 + θ − 2x2)x2 + (θ − x2)q1(1 + θ − 3x2) − (θ − x2)2

⇐⇒ (q1)3x2(1 − 2x2) + (q1)2x2(3x2 − 1 − θ ) + q1(θ − x2)(3x2 − 1 − θ ) + (θ − x2)2 = 0.

Thus, Equation (A.42) is true. �

Lemma A.14. If (xi, σi, pA
i , pR

i , qi)2
i=1 is a Case-(d) solution such that pR

2 ≥ pR
1 , then x1 ≥

1/2 ≥ x2.
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32 kamranzadeh and zheng

Proof. By Bayes’s rule,

1 − pR
1 = θσ1(w)

q1

(A.37)= θ − x2 + q1(2x2 − 1)
q1

,

with the second “=” also due to x1 + x2 = 1. Meanwhile, write (A.36) into

1 − pR
2 = θ + x2(q1 − 1).

Thus,

pR
2 ≥ pR

1 ⇐⇒ θ − x2 + q1(2x2 − 1)
q1

≥ θ + x2(q1 − 1)

⇐⇒ (3x2 − 1 − θ )q1 + (θ − x2) ≥ (q1)2x2

⇐⇒ (3x2 − 1 − θ )(θ − x2)q1 + (θ − x2)2 ≥ (q1)2x2(θ − x2),(A.45)

with the last line due to θ − x2 > 0 (Ineq. (A.41)). Subtract Ineq. (A.45) by Equation (A.42)
and cancel some terms to see that Ineq. (A.45) is equivalent to

0 ≥ (q1)3x2(1 − 2x2) + (q1)2x2(3x2 − 1 − θ ) + (q1)2x2(θ − x2),

namely,

0 ≥ (q1)2x2(1 − q1)(2x2 − 1).

Thus,

pR
2 ≥ pR

1 ⇐⇒ 0 ≥ (q1)2x2(1 − q1)(2x2 − 1) ⇐⇒ 0 ≥ 2x2 − 1,

with the second “ ⇐⇒ ” due to the fact q1 < 1 in all Case-(d) PBEs. We thus have 2x2 ≤ 1,
which by x1 + x2 = 1 implies x1 ≥ 1/2 ≥ x2, as claimed. �

Lemma A.15. In any Case-(d) solution, pR
2 < 2 − 2θ and, if θ ≥ 2/3 in addition, then x1 < θ

and q2 < θ .

Proof. First, observe a necessary condition for any Case-(d) proposal-PBE pair:

q1 >
θ − x2

1 − x2
.(A.46)

This follows from plugging (A.40) into the Case-(d) condition σ2(s) < 1, which gives

θ − x2

1 − θ
· 1 − θ + x2(1 − q1)

θ − x2 + x2q1
< 1.

Since θ − x2 > 0 by (A.41), the above-displayed inequality simplifies to (A.46).
Next, we prove pR

2 < 2 − 2θ . It suffices to show (1 − q1)x2 < 1 − θ , as the two inequalities
are equivalent by (A.36). Since (1 − q1)x2 < 1 − θ ⇐⇒ q1 > (x2 + θ − 1)/x2, the desired in-
equality follows from (A.46) if

θ − x2

1 − x2
≥ x2 + θ − 1

x2
,

which is equivalent to

(2x2 − 1)(1 − θ ) ≤ 0.

The last inequality is true because x2 ≤ 1/2 (Lemma A.14).
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Now assume θ ≥ 2/3 to prove x1 < θ and q2 < θ . By (A.37) and (A.38), the Case-(d) condi-
tion σ1(s) < 1 becomes

q1 − θ (θ + x1 − 1 + q1(1 − 2x1))/θ
1 − θ

< 1,

which simplifies to q1 < 1/2. This, coupled with (A.46), implies (θ − x2)/(1 − x2) < 1/2,
namely, x2 > 2θ − 1. Thus, since 2θ − 1 ≥ 1 − θ (assumption θ ≥ 2/3) and x2 = 1 − x1, x1 <

θ follows.
To prove q2 < θ , combine the proved fact x1 < θ (i.e., x2 > 1 − θ) with σ2(s) < 1 (part of

the definition of Case (d)) to obtain σ2(s) < x2/(1 − θ ). Plug this and (A.39) into the defini-
tion q2 = θσ2(w) + (1 − θ )σ2(s) to obtain q2 < θ (1 − x2/θ ) + (1 − θ )(x2/(1 − θ )) = θ . �

Lemma A.16. If θ ≥ 2/3, the lopsided equilibrium given proposal (θ, 1 − θ ) generates strictly
larger total welfare than any Case-(d) solution does.

Proof. Consider any Case-(d) solution (xi, σi, pA
i , pR

i , qi)2
i=1. As in (A.32), we have pR

2 ≥
pR

1 . Lemma 1, with the roles between players 1 and 2 switched due to pR
2 ≥ pR

1 , implies that
the total welfare generated by this solution is equal to 2θ pR

2 + (q2 − θ )
(
pR

2 − pR
1

)
, which by

the fact q2 < θ (Lemma A.15) is less than 2θ pR
2 . Since the total welfare generated by the lop-

sided equilibrium under proposal (θ, 1 − θ ) is equal to θ (3 − 5θ/2) (Lemma A.4), the proof is
complete if θ (3 − 5θ/2) ≥ 2θ pR

2 . As in the proof of Lemma A.11, this inequality follows from
θ ≥ 2/3 (assumption) and pR

2 < 2 − 2θ (Lemma A.15). �

A.10. Suboptimality of Any Equilibrium in Equation (16). Equilibria in the form of (16)
correspond to Case (c) in Lemma A.1. First we show that, within the Case-(c) PBEs, the one
admitted by the equal-split proposal maximizes the total welfare.

LemmaA.17 (i). The Case-(c) PBE given the equal-split proposal maximizes the total welfare
among all Case-(c) solutions. (ii) At this Case-(c) optimal solution, pR

1 = pR
2 = 1/2, q2 = 2(1 −

θ ), and the total welfare is equal to θ .

Proof. As defined in Lemma A.1, a PBE belongs to Case (c) if and only if its strategy pro-
file satisfies

∀i ∈ {1, 2} : 0 < σi(w) < 1 = σi(s).(A.47)

Then, Bayes’s rule implies pA
i = 0 and hence (by (7)) qi pR

i = 1 − θ for each player i. The best
response condition for (A.47) to constitute a PBE is that V R

i (w) − V A
i (w) = 0 and V R

i (s) −
V A

i (s) ≥ 0 for each player i. Since (A.47) is symmetric between the two players, assume with-
out loss that

pR
1 ≥ pR

2 .(A.48)

We will see that pR
1 implies x2 ≤ 1/2 (Equation (A.52)). Thus, this assumption is consistent

with the labeling of the players in Subsection 4.1. Apply (A.2) and (A.3) to the case i = 1 to
obtain

V R
1 (w) − V A

1 (w) = pR
1 − (1 − θ ) − (1 − q2)x1,

V R
2 (w) − V A

2 (w) = (1 − q1)
(
pR

2 − pA
1 − x2

) = (1 − q1)(pR
2 − x2),

with the last “=” due to pA
i = 0. Thus, the condition V R

i (w) − V A
i (w) = 0 for both i becomes

pR
1 = 1 − θ + (1 − q2)x1,(A.49)
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34 kamranzadeh and zheng

pR
2 = x2.(A.50)

Plug q2 = (1 − θ )/pR
2 , x1 = 1 − x2 and (A.50) into (A.49) to have

pR
1 = 1 − θ +

(
1 − 1 − θ

x2

)
(1 − x2) = θ + x2(1 − 2θ ) − (1 − x2)2

x2
.(A.51)

Thus, we obtain the following equivalent forms of pR
1 ≥ pR

2 (Ineq. (A.48)):

θ + x2(1 − 2θ ) − (1 − x2)2 ≥ x2
2 ⇐⇒ θ (1 − 2x2) + x2(1 − x2) − (1 − x2)2 ≥ 0

⇐⇒ θ (1 − 2x2) + (1 − x2)(x2 − 1 + x2) ≥ 0

⇐⇒ (1 − 2x2)(θ − 1 + x2) ≥ 0.

The last inequality in the multiline displayed above is equivalent to either (i) 1 − 2x2 ≥ 0
and θ − 1 + x2 ≥ 0 (namely, 1 − θ ≤ x2 ≤ 1/2), or (ii) 1 − 2x2 ≤ 0 and θ − 1 + x2 ≤ 0 (namely,
1/2 ≤ x2 ≤ 1 − θ), which is impossible due to (1). Thus,

pR
1 ≥ pR

2 ⇐⇒ 1 − θ ≤ x2 ≤ 1/2.(A.52)

Let S denote the total welfare generated by the PBE. By Lemma 1 (which applies directly
because pR

1 ≥ pR
2 here) and the fact q1 pR

1 = 1 − θ ,

S = 2θ pR
1 + (q1 − θ )(pR

1 − pR
2 ) = 2θ pR

1 +
(

1 − θ

pR
1

− θ

)
(pR

1 − pR
2 ).

Since pR
1 and pR

2 are each a function of x2 via (A.50) and (A.51), it follows that S is a function
of x2. We claim that S is strictly increasing in x2. To prove that, first calculate:

∂S

∂ pR
1

= 2θ + 1 − θ

pR
1

− θ − 1 − θ(
pR

1

)2

(
pR

1 − pR
2

) = θ + (1 − θ )pR
2(

pR
1

)2 ,

∂S

∂ pR
2

= θ − 1 − θ

pR
1

.

Second, by (A.50) and (A.51), we have dpR
2 /dx2 = 1 and

dpR
1

dx2
= 1

(x2)2

(
((1 − 2θ ) + 2(1 − x2))x2 − θ − x2(1 − 2θ ) + (1 − x2)2) = 1

(x2)2
(1 − θ − (x2)2).

Then plug them into

d
dx2

S = ∂S

∂ pR
1

dpR
1

dx2
+ ∂S

∂ pR
2

dpR
2

dx2
= ∂S

∂ pR
1

· 1 − θ − (x2)2

(x2)2
+ ∂S

∂ pR
2

to obtain

d
dx2

S =
(

θ + (1 − θ )pR
2(

pR
1

)2

)(
1 − θ

(x2)2
− 1

)
+ θ − 1 − θ

pR
1

=
(

θ + (1 − θ )pR
2(

pR
1

)2

)(
1 − θ(
pR

2

)2 − 1

)
+ θ − 1 − θ

pR
1

(since pR
2 = x2, (A.50))
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= θ (1 − θ )(
pR

2

)2 − θ + (1 − θ )2(
pR

1

)2
pR

2

− (1 − θ )pR
2

(pR
1 )2

+ θ − (1 − θ )
pR

1

= (1 − θ )(
pR

1

)2(
pR

2

)2

[
θ
(
pR

1

)2 + (1 − θ )pR
2 − pR

2

(
pR

2

)2 − pR
1

(
pR

2

)2
]

= (1 − θ )(
pR

1

)2(
pR

2

)2

[
θ
(
pR

1

)2 + q2
(
pR

2

)2 − pR
2

(
pR

2

)2 − pR
1

(
pR

2

)2
]

(since q2 pR
2 = 1 − θ)

≥ (1 − θ )(
pR

1

)2(
pR

2

)2

[
θ
(
pR

2

)2 + q2
(
pR

2

)2 − pR
2

(
pR

2

)2 − pR
1

(
pR

2

)2
]

(since pR
1 ≥ pR

2 )

= (1 − θ )(
pR

1

)2

[
θ + q2 − pR

2 − pR
1

]

= (1 − θ )(
pR

1

)2

[
θ − x2 + q2 − pR

1

]
(since pR

2 = x2)

> 0.

The inequality at the end holds because θ − x2 + q2 − pR
1 > 0. To prove this inequality, use the

fact q2 = (1 − θ )/pR
2 = (1 − θ )/x2 and (A.51) to obtain

θ − x2 + q2 − pR
1 = θ − x2 + 1 − θ

x2
− θ + x2(1 − 2θ ) − (1 − x2)2

x2

= 3θx2 + 2 − 2θ − 3x2

x2
= (1 − θ )(2 − 3x2)

x2
,

which is strictly positive because x2 ≤ 1/2 < 2/3 due to (A.48) and (A.52).
Now that S is strictly increasing in x2 and x2 ≤ 1/2, S is maximized at x2 = 1/2 among all

the solutions (xi, σi, pA
i , pR

i , qi)2
i=1 that belong to Case (c). It follows that the equal-split pro-

posal, x1 = x2 = 1/2, attains the maximum of S among these solutions. Since it is easy to verify
that the Case-(c) solution under this proposal does constitute a PBE, Claim (i) of the lemma
is proved.

To prove Claim (ii) of the lemma, plug x1 = x2 = 1/2 into (A.49)–(A.51) to obtain pR
2 =

1/2, q2 = (1 − θ )/pR
2 = 2(1 − θ ), and pR

1 = 1/2. By pR
1 = pR

2 = 1/2 and Lemma 1, the total
welfare is equal to θ . Claim (ii) thus follows. �

By Lemma A.17, the largest total welfare that any Case-(c) solution can achieve is equal
to θ . By contrast, the total welfare generated by the lopsided solution (θ, 1 − θ ) is equal to
θ (3 − 5θ/2) by Lemma A.4. Our assumption θ ≤ 3/4 in Proposition 1 implies the desired con-
clusion θ < θ (3 − 5θ/2).
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