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Abstract

Two players contest a good. Each player knows privately his own type, which is ei-

ther strong or weak. A mediator proposes a split of the good and the players separately

choose whether to accept or reject it. Unless both players accept the proposal, conflict

ensues as an all-pay auction, where the good is won by the player who bids higher,

and the cost of bidding is borne by each, inversely related to the player’s strength.

The parameter value precludes the existence of any proposal that can prevent conflict

with probability one. Nonetheless, the mediator’s proposal can improve the welfare

of the players because the outcome of the conflict depends on their bids chosen after

they have observed each other’s responses to the proposal. In the proposal that maxi-

mizes the total welfare, the good is split unequally so that one player is offered a much

larger share than the other. That makes the favored player always willing to accept

the proposal without fearing that his action signals weakness that may be exploited in

the event of conflict. Consequently, conflict does not occur if the unfavored player also

accepts the proposal, and hence he does not have that fear either.
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1 Introduction

Conflict is often unavoidable despite every effort to mediate a peace settlement. Yet medi-

ation still has an effect, because the outcome of the conflict is determined by the actions

chosen by both adversaries, and their actions are conditional on their observations about

each other during the mediation stage. With a stylistic model of such situations, this paper

observes such crucial role of a mediator. All that she needs to do is to propose a particular

split of the object contested by the two parties.

This paper belongs to a series of papers on mediation and conflict prevention. An-

alyzing mediation in a two-player all-pay contest with private information, Zheng [27] has

derived necessary and sufficient conditions for mediation to fully prevent bargaining failure.

In this paper, we consider a polar opposite case, a contest in which conflict cannot ever be

prevented with probability one. Specifically, the primitives do not satisfy the condition for

full prevention of conflict derived in [27], and so there exists no peace proposal acceptable

to both parties for sure. The mediator’s problem is to maximize the total welfare of both

parties taking into account that conflict is unavoidable. This is distinct and novel relative

to earlier models (e.g., Hörner et al. [16]), in which the mediator’s objective is to maximize

the probability of peaceful conflict resolution.

In our model, two players contest a good. Each player knows privately his own type,

which is either strong or weak. After the types are drawn, a mediator proposes a split of the

good and the players separately choose whether to accept or reject it. Unless both players

accept the proposal, conflict ensues as an all-pay auction, where the good is won by the

player who bids higher, and the cost of bidding is borne by each, inversely related to the

player’s strength.

The key aspect of the mediator’s optimal solution is that she can make the action

of accepting the proposal by one of the players so uninformative that the action does not

signal weakness that may be exploited in the event of conflict. Such helpful inscrutability

is achieved by proposing a significantly unequal split of the good. The favored player is

offered such a larger share that he would accept it whether he is weak or strong, and so his

accepting the proposal does not signal weakness. Consequently, conflict would not occur if

the unfavored player also accepts the proposal, and hence neither would he fear that the

weakness that his acceptance might signal would hurt him in the event of conflict.
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In contrast to the unequal split in the optimal proposal, symmetry between the two

players is assumed in the model, so their types are drawn from the same distribution, and

they weigh equally in the mediator’s objective. Although such inequality could be mitigated,

in theory, if the mediator randomizes which player is offered the larger share, in practice such

ex ante randomizations in large stake disputes are rare. Moreover, randomization or not, the

ensuing split would still remain unequal. Such inequality as a normative solution is quite

different from the usual notion that symmetric contestants should be treated equally such

as the symmetry axiom in the Nash bargaining solution.1

Our result suggests a new insight: It should not be taken for granted, even from a

benevolent social planner’s standpoint, that a peace proposal should offer a fair share to

each contestant. Counterintuitively, a proposal favoring one contestant against the other is

conducive to peacemaking. This allows one to interpret in a new light the United States

announcement of its embassy relocation to Jerusalem in 2018. The announcement can be

viewed as a proposal for a new status quo that recognizes Israel’s full ownership of Jerusalem.

Soon after the announcement, the number of Arab League countries that agreed to establish

diplomatic relations with Israel jumped from two to six. Another example of an unequal

peace proposal is the Vatican mediation of the Beagle Channel Dispute between Argentina

and Chile. In the shadow of a war between the two countries, the Pope issued a proposal

that awarded Chile all of the disputed islands, granting Argentina only the navigation rights

in the area waters and a shared resource right in a part of the sea. Chile immediately

accepted the proposal while Argentina was initially reluctant but eventually accepted it (cf.

Garrett [14], and Greig and Diehl [15]).2

Our approach differs from existing models by focusing on what can be accomplished

when the mediator does not condition her proposal on any signal from the contestants and

1The notion of equal split between equal claimants dates back to the Talmud (cf. Aumann and

Maschler [1]). Yaari and Bar-Hillel [25] suggest several ways to justify the equal split between contest-

ing claimants (including the equal treatment property in general equilibrium). Recently, Keniston et al. [18]

provide a rationale for, and conduct an experimental study of, the equal split of the perceived surplus between

two bargainers in a dynamic game.
2If we view trade unions as settlements among countries to avoid potential trade conflicts, the Maastricht

Treaty for the UK to join the European Union is yet another episode of unequal proposals. The treaty offered

the UK the opt-outs from the single currency mandate and the Social Chapter of employment regulations,

while none of the other member nations were offered such opt-outs (cf. Baun [6] and Burton [8, Chapter 5]).
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instead makes a single unconditional proposal for a resolution. This restriction would have

rendered mediation useless to incentive compatible communications between the contestants

should the outcome of conflict be exogenous. In those cases, communications between the

contestants are relevant only before they accept or reject a proposal, after which the players

have no more action to take. Thus, as in Hörner et al.’s [16] exogenous conflict model, the

prediction that mediation outperforms the bilateral communication between the contestants

relies on the mediator’s capability to collect confidential information from the contestants.3

In our model, by contrast, communications are relevant even after the proposal has been

rejected, because the outcome of conflict thereafter depends on the contestants’ bids, which

are chosen after negotiation failure. Even though the mediator’s proposal conveys no sig-

nal between the contestants, and the contestants cannot communicate with each other once

conflict ensues, the proposal nonetheless provides an implicit channel for them to communi-

cate: Upon seeing each other’s responses to the proposal the contestants update their beliefs

about each other, and such posterior beliefs determine their equilibrium bids in the conflict.

Thus, the mediator in proposing an appropriate split can still indirectly influence their beliefs

and hence their total welfare. Such signal-independent proposals, albeit restrictive, have a

transparency appeal that makes them relevant to situations where a mediator cannot fully

control the communication mechanism, say due to the likeliness of leaks (e.g., Feerick [11])

or the doubts about the mediator’s commitment to truthful conveyance of communications

(cf. Kydd [19], Rauchhaus [22], and Smith and Stam [23]).

The paper complements the existing literature by considering the mediator’s objective

as maximizing the contestants’ total welfare that includes their expected payoffs both in the

event of peace and in the event of conflict, instead of maximizing the probability of a peaceful

resolution (e.g., Balzer and Schneider [4] and Hörner et al.’s [16]). The two objectives coincide

in models where full prevention of conflict is possible (e.g., Celik and Peters [9], Zheng [27],

and Balzer and Schneider [5]), where a peace proposal that is accepted by both for sure

maximizes both the probability of peace and the contestants’ total welfare. In a model

3Hörner et al.’s [16] result requires the assumption that a contestant’s payoff from conflict depends on

both contestants’ types so that each would like to learn about the opponent’s type before taking actions.

When that payoff depends only on the contestant’s type, Fey and Ramsay [12] show that a mediator can do

no better than a one-shot cheap talk between the contestants. Our model roughly corresponds to [16], as

the outcome of conflict depends endogenously on both contestants’ bids during the conflict, which in turn

are conditional on their types.
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where full prevention of conflict is impossible such as in the current paper, the objective of

maximizing the probability of peace would lead the mediator to enlarge the chance of peace

resolution at the expense of the contestants’ payoffs in the event of conflict. That may hurt

the contestants’ overall welfare as the probability of conflict cannot be eliminated.

The possibility of full prevention of conflict is considered by Bester and Wärneryd [7],

Compte and Jehiel [10], Fey and Ramsay [13], Hörner et al. [16], Meirowitz et al. [21], and

Spier [24], who model conflict as an exogenous lottery for the contestants, and recently by

Zheng [26, 27], Celik and Peters [9] and Lu et al. [20], who model conflict as a continuation

game after negotiation failure. Our model differs from this literature by precluding the

possibility of full prevention of conflict. Balzer and Schneider [4] have also considered a model

where full prevention of conflict is impossible. They consider communication mechanisms

that maximize the probability of peaceful resolution and focus on the case where the designer

is an arbitrator with full commitment power. While they also consider a mediation case, the

mediator is assumed able to communicate separately and confidentially to the contestants

and able to condition such communications on the negotiation outcome. In our model, by

contrast, a mediator maximizes the total welfare of both parties, taking into account that

conflict is unavoidable, and can only indirectly influence the posterior systems through a

message-independent peace proposal.

Endogenizing the initial status quo through a mediator’s decision, our study comple-

ments a literature of conflict where contestants themselves take the initiative to mitigate or

escalate conflict with an implicitly exogenous status quo that defines the sequence of actions.

In Baliga and Sjöström [2], the two contestants decide simultaneously whether to escalate

the conflict. In Baliga and Sjöström [3], given an exogenous initial status quo, each contes-

tant decides whether to challenge it. In Lu et al. [20], one of the two contestants has the

bargaining power to make a take-it-or-leave offer to the other player for a peace settlement.

The focus in this literature is the dynamic interaction between the contestants given the

implicit status quo. We simplify this interaction into a static all-pay auction game and focus

on the determination of the initial status quo.

The next section defines the model. Section 3 derives the players’ interim and ex

ante expected payoffs and describes how equilibria vary with the peace proposal. Section 5

presents the result. Section 6 concludes and suggests a couple of possible extensions. The

appendix contains all omitted details.
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2 The Model

Two players, named 1 and 2, contest a prize of size one. Each player’s type is independently

drawn from the same binary distribution, whose realization is either w (“weak”) with prob-

ability θ, or s (“strong”) with probability 1 − θ, such that 0 < θ < 1 and s > w > 0.4

Denote

α := 1− w/s.

Thus 0 < α < 1. After each player’s type ti is drawn and privately learned by the player, a

neutral mediator makes a peace proposal , which proposes a split of the prize:

(x1, x2) ∈ [0, 1]2 such that x1 + x2 = 1.

Then each player independently and publicly announces whether to accept (A) or reject (R)

the proposal. If both choose A, the game ends with player i getting a payoff equal to xi

(∀i = 1, 2). If at least one player chooses R, then conflict takes place in the form of an all-

pay auction: Each player i, after observing the actions (choices between A and R) of both,

submits a sealed bid bi ∈ R+; the higher bidder wins the prize, with ties broken randomly

with equal probabilities; the payoff for player i of type ti is equal to 1
α

(1− bi/ti) if i wins,

and equal to 1
α

(−bi/ti) otherwise. Then the game ends. A player’s bid represents the player’s

total amount of warring efforts in the conflict, and the reciprocal 1/ti of a player’s type ti

represents the player’s marginal cost of warring efforts in the conflict.5

Any proposed split (x1, x2) determines a two-stage game, for which perfect Bayesian

equilibrium (PBE) is the solution concept. We call any pair of a proposed split and a PBE

of such relationship proposal-PBE pair , or solution for short.

We measure the social welfare achieved by a proposal-PBE pair by the total welfare

generated on path of the PBE. By total welfare we mean the sum of the two players’ ex ante

expected payoffs (before realization of types). A peace proposal of particular interest is the

4Our assumption of binary types is in line with much of the conflict resolution literature such as Balzer

and Schneider [4, 5], Hörner et al. [16], and Meirowitz et al. [21],
5We scale the payoff from the conflict by the parameter 1/α purely for notational convenience. That

is because α emerges as a multiple of each player’s expected payoff from any equilibrium of the conflict

continuation game (Section 3.1), and our scalar 1/α cancels out the multiple. Without the scalar 1/α to

cancel out α, α would appear in most expressions in the paper thereby complicating them, though all our

results remain true.
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equal split (1/2, 1/2), treating the two ex ante identical players equally. Another proposal of

interest is (θ, 1 − θ), splitting the prize according to the prior probabilities assigned to the

weak and strong types.

Throughout the paper we maintain the following assumption, which constitutes our

major point of departure from the previous conflict mediation literature:

θ > 1/2. (1)

This inequality is the necessary and sufficient condition for nonexistence of any negotiation

mechanism that admits a PBE where conflict occurs with zero probability.6 That is, due

to (1), full preemption of conflict is impossible, and conflict is necessarily an on-path event.

Thus, it is appropriate for a mediator to adopt an objective—such as the total welfare

considered in this paper—that incorporates the players’ welfare in both peace and conflict.

3 Interim Payoffs and Posterior Beliefs

3.1 The Post-Mediation Payoff in the Conflict

Let us start by considering the continuation game where conflict ensues (due to at least

one player having chosen R at the proposal stage). The belief about a rival is updated

conditional on the rival’s response to the proposal. For each player i ∈ {1, 2}, denote by pi

the posterior probability of player i being type s (strong). This, together with the players’

private information of their own types ti, defines a Bayesian game.

Given any pair (p1, p2) ∈ [0, 1]2 of posterior probabilities, one can show that there is a

unique Bayesian Nash equilibrium (BNE) of the continuation game. Both players randomly

select their bids from an interval
[
0, b
]

(b endogenous to the equilibrium). The strong type of

a player selects his bid from an upper subinterval of
[
0, b
]
, and the weak type of the player,

from the complement of the upper subinterval. The player whose posterior probability pi of

being the strong type is lower than the other’s bids zero with a positive probability when

6To see this, apply Zheng [27, Example 4]. Since we have scaled up the payoff in the conflict to 1/α times

the quantity assumed in [27], the peace-implementability threshold c∗ = αθ there becomes (1/α)c∗ = θ.

Thus the necessary and sufficient condition for peace implementability becomes 2θ ≤ 1. If 2θ ≤ 1, one can

split the prize such that each player gets a share at least as large as θ, and it is an equilibrium for both to

accept any such splits, the equal split (1/2, 1/2) being one of them.
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his type is weak, while the other player bids zero with zero probability and hence enjoys a

positive probability of winning even by bidding zero. For each player i ∈ {1, 2} and each

type t ∈ {s, w}, let U t
i (pi, p−i) denote the expected payoff for player i of type t in this BNE.

One can show (Appendix A):

U s
i (pi, p−i) = 1−min{pi, p−i}, (2)

Uw
i (pi, p−i) = pi −min{pi, p−i}. (3)

The functions U s
i (pi, ·) and Uw

i (pi, ·) are graphed in Figure 1. These conflict payoffs play

p−i

payoff

pi

pi

1 − pi

1

0

Us
i (pi, ·)

Uw
i (pi, ·)

Figure 1: Payoff in the conflict as a function of the opponent’s posterior

a similar role as the ex post payoff that a designer would like to concavify in the information

design framework, except that in our game concavification need not bring about larger total

welfare, as they are the payoffs only in the event of conflict.

Much of the tradeoff faced by the mediator grows out of the following observation.

Remark 1 An increase in pi hurts the strong type of player i and benefits the weak type

of i. In other words, a strong type would like to reduce, and a weak type would like to

enlarge, the posterior probability that his rival assigns to the event that his type is strong.

Remark 1 can be observed from Figure 1, as an increase in pi corresponds to a downward

shift of the graph of U s
i (pi, ·), and an upward shift of the graph of Uw

i (pi, ·). Intuitively

speaking, to the strong type of, say, player 1, the issue is not whether he can win the prize

but rather how much he has to pay to win. When the rival player 2 is complacent, believing
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that player 1 is unlikely to be strong, player 2’s bid (which is costly, win or lose) becomes

low stochastically, and so the strong type of player 1 can win at a low cost in expectation.

To the weak type of player 1, by contrast, the issue is whether he can win at all, and he gets

a positive expected payoff only when player 2 bids zero. The more often is player 1 believed

to be weak, the less often would player 2 bid zero (as he sees little need to concede to a weak

player 1), and the less expected payoff the weak type of player 1 gets.

3.2 Interim Payoffs in Mediation

Given any proposal-PBE pair, let qi denote player i’s (∀i ∈ {1, 2}) ex ante probability (before

realization of i’s type) of choosing R, namely,

qi := θσi(w) + (1− θ)σi(s), (4)

and let pAi (resp. pRi ) denote the posterior probability of player i being type s conditional

on i having chosen A (resp. R) in response to the peace proposal. Given type t ∈ {w, s} and

anticipating the continuation payoff U t
i in the event of conflict, player i’s expected payoff

from choosing A is equal to

V A
i (t) := q−iU

t
i

(
pAi , p

R
−i
)

+ (1− q−i)xi, (5)

and that from choosing R is equal to

V R
i (t) := q−iU

t
i

(
pRi , p

R
−i
)

+ (1− q−i)U t
i

(
pRi , p

A
−i
)
. (6)

One can derive from Bayes’s rule the next condition, called Bayesian plausibility in the

information design literature.

qip
R
i + (1− qi) pAi = 1− θ. (7)

Thus, the point (1−θ, V R
i (t)) is the convex combination between the two points on the graph

of U t
i (p

R
i , ·) whose horizontal coordinates are pR−i and pA−i. This is illustrated by Figure 2,

where pA−i, 1− θ and pR−i are positioned according to an intuitive Lemma 3 (Appendix B):

∀i ∈ {1, 2} : pAi ≤ 1− θ ≤ pRi . (8)

That is, R (rejecting the peace proposal) signals one’s strength more than A does.
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p−i

payoff

pRi

pRi
1 − pRi

1

0

Us
i (pRi , ·)

Uw
i (pRi , ·)

V R
i (s)

V R
i (w)

pA−i pR−i
1 − θ

Figure 2: Interim expected payoffs as convex combinations

Remark 2 Figure 2 reveals the following: (a) The interim payoff for type w (weak) in the

conflict is bounded from above by θ, and attains this upper bound when pRi = 1. (b) The

interim payoff for type s (strong) in the conflict is bounded from below by θ, and attains

this lower bound when pRi ≥ pR−i. (c) It follows from (b) that, in any proposal-PBE pair,

the strong type of each player can always secure an interim payoff no less than θ through

choosing R.

4 Equilibrium and Total Welfare

4.1 The Equilibria

There is always a trivial PBE where conflict occurs for sure regardless of what the peace

proposal is: each player always chooses R because he expects the same from the opponent.

The other PBEs are determined by the peace proposal. For each player i ∈ {1, 2} and each

type t ∈ {w, s}, let σi(t) denote the probability with which player i of type t chooses R at

the proposal stage, and let pAi (resp. pRi ) denote the posterior probability of player i being

type s conditional on having chosen A (resp. R). The posteriors (pAi , p
R
i )2i=1 determine the

players’ expected payoffs (U t
i )

2
i=1)

s
t=w in the event of conflict (Section 3.1), which in turn

determine their interim expected payoffs at the proposal stage (Section 3.2). Then (σ1, σ2)

is determined by the mutual best response condition based on the interim expected payoffs.

Without loss of generality, suppose that the larger share in the proposed split (x1, x2)
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is offered to player 1, namely, x1 ≥ x2. When x1 varies in [1/2, 1) (which is the entire range

of x1 except x1 = 1, where the trivial PBE prevails), the nontrivial PBEs change in the

manner listed below. We assume 2/3 ≤ θ ≤ 3/4.

1. x1 ∈ [θ, 1): This is the necessary and sufficient condition for any PBE of the following

form to exist: σ1(s) = σ1(w) = 0, σ2(s) = 1, and σ2(w) ∈ (0, 1). In any such a PBE,

the share x1 ∈ [θ, 1) offered to player 1 is so large that both types of player 1 choose A

for sure, and the strong type of player 2 chooses R for sure, leaving only his weak type

to mix between A and R. We call any PBE in this format lopsided equilibrium.

2. x1 ∈ [2(1 − θ), θ) is a necessary condition for any PBE of the following form to exist:

σ1(s), σ1(w), σ2(w) ∈ (0, 1), σ2(s) = 1, and pR1 ≥ pR2 . Now that the share x1 offered

to player 1 falls below the threshold θ, he no longer chooses A for sure. Player 2’s

strategy remains similar to that in the previous case.

3. There exists a unique ξ ∈ [1/2, 2(1− θ)] such that:

a. ξ < x1 < 2(1 − θ) is a necessary condition for any PBE of the following form to

exist: σ1(s), σ1(w), σ2(w) ∈ (0, 1), σ2(s) = 1, and pR1 < pR2 . With the share x1

offered to him lower than before, player 1 is willing to reject the offer more of-

ten than he does in the previous case even if his type is weak, and hence the

posterior pR1 of his type being strong signaled by R drops below pR2 .

b. Given any x1 ∈ [1/2, ξ], a PBE of the following form may exist: σi(t) ∈ (0, 1) for

all i ∈ {1, 2} and all t ∈ {w, s}. The proposal is so near to the equal split that

the two players behave similarly, each type mixing between A and R.

4. If θ = 3/4 then when x1 = 1/2 (= 2(1−θ)) there is also a PBE for which σ1(w), σ2(w) ∈
(0, 1) and σ1(s) = σ2(s) = 1. Under the equal-split proposal, the strong type of both

players chooses R for sure, and the weak type of each player mixes between A and R.

The above list covers all the possible nontrivial PBEs (Lemma 2, Appendix B). Among them

and the trivial equilibria, the lopsided equilibrium associated with the proposal x1 = θ will

be shown to be optimal (Section 5). The rest of this section will prove the existence of

lopsided equilibria and the necessity of x1 ≥ θ for their existence.7

7The necessity of x1 ∈ [2(1 − θ), θ) for the existence of the PBE in Case 2 is deferred to Lemma 7
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Construction of Lopsided Equilibria For any x1 ∈ [θ, 1) as in Case 1, define pR2 :=

2 − θ − x1. We will see at the end of the construction that this pR2 rationalizes player 2’s

strategy. Define the off-path posterior pR1 := pR2 for player 1.8

Being offered the share x1 ≥ θ, player 1 chooses A for sure whether his type is strong

or weak. The strong type chooses A because deviation leads to the off-path posterior pR1 that

is greater than or equal to its counterpart p2 for the rival player 2, whether p2 = pA2 when

the rival chooses A (pR1 ≥ 1− θ ≥ pA2 by (8)), or p2 = pR2 when the rival chooses R (pR1 = pR2

by the previous definition). That reduces the strong player 1’s expected payoff U s
1 (pR1 , p2) in

the event of conflict to its minimum θ (Remark 2.b). By contrast, his expected payoff is at

least θ from choosing A: If the rival chooses A, player 1 gets the share x1 ≥ θ; if the rival

chooses R, player 1 gets U s
1 (pA1 , p

R
2 ), which is equal to θ because pA1 = 1− θ at any lopsided

equilibrium and 1− θ ≤ pR2 by (8).

To see that the weak type of player 1 chooses A for sure, note that his expected payoff is

zero conditional on the rival choosing R. This follows from the fact p1 ≤ p2 ⇒ Uw
1 (p1, p2) = 0

(Eq. (3)). With the rival choosing R, p2 = pR2 ≥ 1−θ by (8). If player 1 chooses A as expected

on path, p1 = pA1 = 1−θ; if he deviates to R, the off-path posterior is pR1 = pR2 . Thus, p1 ≤ p2

either way and so Uw
1 (p1, p2) = 0. It follows that the weak type of player 1 chooses A if he

prefers so conditional on the rival choosing A. In that event, player 1 gets the offered share

x1 ≥ θ from choosing A. That is better than R, which gets him into the conflict and yields

at most θ (Remark 2.a).

Meanwhile, the strong type of player 2 chooses R for sure because the share x2 = 1−x1
offered to him is no more than 1 − θ, which is less than θ by (1), while he can secure an

expected payoff at least θ in conflict (Remark 2.b). To see why the weak type of player 2 mixes

between A and R, note that he gets x2 from choosing A, and Uw
2 (pR2 , p

A
1 ) from choosing R,

since player 1 chooses A for sure. Since the on-path action of player 1 signals no news,

pA1 = 1− θ. Since the strong type of player 2 chooses R for sure, pR2 ≥ 1− θ by Bayes’s rule.

Thus Uw
2 (pR2 , p

A
1 ) = pR2 − (1 − θ) by (3). Consequently, the weak type of player 2 is willing

to mix between A and R because pR2 − (1− θ) = x2 due to the definition of pR2 at the outset

in Appendix H.1, and that of x1 ∈ (ξ, 2(1 − θ)) for Case 3a., deferred to Lemma 10 in Appendix H.2,

where x̂2 is equal to 1−ξ for the cutoff ξ. For both Case 3b. (detailed in Appendix I) and Case 4 (detailed in

Appendix J), we do not bother to show the existence of the corresponding PBEs or the set of x1 necessary for

their existence, because we will show that any PBE in either case is suboptimal (Claims 3 and 4, Section 5).
8Any other pR1 ≥ pR2 works as well, with slightly longer calculations.
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(σ2 is then derived from pR2 via Bayes’s rule).

Necessity of x1 ≥ θ for any Lopsided Equilibrium Suppose, to the contrary, that a

lopsided equilibrium exists despite x1 < θ. Conditional on such an equilibrium, the strong

type of player 1 would deviate to R, which secures for him an expected payoff at least θ

(Remark 2.b), while choosing A gives him less than θ: he would get x1 < θ if the opponent

chooses A, and θ if the opponent chooses R (shown in the construction of lopsided equilibria).

Consequently, the strong type of player 1 chooses R sometimes, contradiction.

The Weak Type’s Incentive to Mix Let us illustrate the incentive for a weak type to

mix between A and R with the player 2 in Case 2. Within that case, observe that the weak

player 2’s expected payoff conditional on the opponent choosing R is zero regardless of his

choice: If player 2 choses A, the posterior system is (pR1 , p
A
2 ) and we have pR1 ≥ 1 − θ ≥ pA2

by (8); if player 2 choses R, the posterior system (pR1 , p
R
2 ) is such that pR1 ≥ pR2 as defined in

Case 2. Thus, whichever he chooses, p1 ≥ p2 holds and hence Uw
2 (p2, p1) = 0 by (3). Thus,

the decision of the weak type of player 2 is purely based on the event where the opponent

chooses A. The weak player 2 therefore mixes between A and R if x2 = Uw
2 (pR2 , p

A
1 ), which

by (3) and (8) is equivalent to x2 = pR2 − pA1 . This indifference is valid because one can show

that a solution of (pA1 , p
R
2 ) for this equation exists.

4.2 The Total Welfare

By total welfare we mean the sum of the ex ante expected payoffs (before realization of types)

across the two players. The total welfare of the lopsided equilibrium is easy to calculate

(Lemma 5, Appendix F). For the equilibrium in the other cases in Section 4.1, R is chosen

with positive probabilities by both types of each player, and hence the total welfare is equal

to
∑2

i=1

(
θV R

i (w) + (1− θ)V R
i (s)

)
. The next lemma provides a formula for this sum.

Lemma 1 Let (σi, p
A
i , p

R
i )2i=1 represent any PBE that is not lopsided, and define qi by (4)

for each i = 1, 2. Relabel the players if necessary so that pR1 ≥ pR2 . Then the total welfare at

this PBE is equal to 2θpR1 + (q1 − θ)
(
pR1 − pR2

)
.

Proof This lemma is based on (6) and (7), or the convex combination observation about a

player’s interim expected payoff in Figure 2. The upper solid graph in that figure represents a
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strong type’s expected payoff from choosing R as a function of the rival’s posterior probability

of being strong, and the lower solid graph represents the counterpart for the weak type. The

two graphs are reproduced separately for player 1 in Figure 3 (for the strong type) and

Figure 4 (for the weak type). Since the lemma labels the players so that pR1 ≥ pR2 , player 1’s

p2

payoff

pR1pR21 − θ

θ

1

1 − pR1

pA1

L′

L

J

M

I

N

Figure 3: Strong player 1’s payoff: L′ as a convex combination between N and J

p2

payoff

pR1

pR1pR2pA1 1 − θ

B

B′
pR1 − 1 + θ

H

D

E

G

Figure 4: Weak player 1’s payoff: B′ as a convex combination between B and G

expected payoff U t
1(p

R
1 , p

R
2 ) from choosing R in the event where the rival also chooses R

corresponds to the point J in Figure 3 if player 1’s type is strong, or the point G in Figure 4

if player 1’s type is weak. It then follows from (6) and (7) that player 1’s interim expected

payoff from choosing R corresponds to the point L′ in Figure 3 if his type is strong, and the

14



point B′ in Figure 4 if his type is weak. That is,

V R
1 (s) = θ, (9)

V R
1 (w) = pR1 − 1 + θ. (10)

Taking the weighted sum of (9) and (10) according to the prior distribution (Pr{s} = 1− θ),
we see that the ex ante expected payoff for player 1 is equal to θpR1 .

Comparing Figure 3 with its counterpart for the strong type of player 2, and comparing

Figure 4 with its counterpart for the weak type of player 2, one can show (Appendix C):

V R
2 (s)− V R

1 (s) = q1
(
pR1 − pR2

)
(11)

V R
2 (w)− V R

1 (w) = − (1− q1)
(
pR1 − pR2

)
. (12)

The weighted sum of (11) and (12) according to the prior Pr{s} = 1− θ yields the difference

in the ex ante expected payoffs between player 2 and player 1: (q1 − θ)(pR1 − pR2 ).

Consequently, the total welfare
∑2

i=1

(
θV R

i (w) + (1− θ)V R
i (s)

)
is equal to

θpR1 + θpR1 + (q1 − θ)(pR1 − pR2 ) = 2θpR1 + (q1 − θ)(pR1 − pR2 ). �

Remark 3 The proof of Lemma 1 reveals which player gets the larger share of the total

welfare in a non-lopsided equilibrium: It is the player with the larger posterior pRi , provided

that his ex ante probability qi of choosing R is less than θ. Since the lemma labels the players

so that pR1 ≥ pR2 , it is player 1 who gets the larger share of the total welfare provided that

q1−θ < 0, for then (q1−θ)(pR1 −pR2 ), the amount by which the rival’s ex ante expected payoff

“exceeds” player 1’s, is nonpositive. In other words, when rejecting a peace proposal is an

on-path action for both players, the player who is perceived to become stronger conditional

on having rejected the proposal gets the larger share of the total welfare, provided that

he does not reject the proposal too often from the ex ante viewpoint. Roughly speaking,

showing off strength through aggression pays off provided that one is rarely aggressive.

5 The Optimality of a Lopsided Proposal

A lopsided equilibrium (Case 1, Section 4.1) has the advantage that one of the players

chooses A independently of his own type. That is, the player accepts the peace proposal

without fearing that his acceptance may betray some information that the opponent may
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use against him later. Among the peace proposals whose associated equilibria are lopsided,

the mediator prefers those that offer more shares to the unfavored player thereby having

a larger probability for him to accept the proposal as well, as long as acceptance from the

favored player is still guaranteed. Since the strong type of a player can always secure an

expected payoff no less than θ by choosing R (Remark 2), the share offered to the favored

player cannot fall below θ and still guarantee his acceptance. The threshold θ constitutes

the optimal split to offer:

Proposition If 2/3 ≤ θ ≤ 3/4, the proposal that maximizes total welfare among all peace

proposals is to offer θ to one player and 1− θ to the other player.

To appreciate the proposition, recall that the received insight in the literature (e.g.,

[27]) is to discourage players from rejecting a peace proposal through maximizing pRi to one,

namely, assigning probability one to the event that a player who has rejected the proposal is

of the strong type. In our model, if pRi = 1, the interim payoff from choosing R is minimized

to θ for the strong type of player i, and maximized to θ for the weak type of i (Remark 2).

This would have constituted an optimal solution should each player be offered a share at

least as large as θ so that each is willing to accept the proposal. Given our assumption

θ > 1/2, however, such proposals do not exist, as any split of the prize (of size one) renders

the share for some player below θ. Thus, any PBE of any proposal sees some player reject

the proposal sometimes. Consequently, a player’s interim payoff from choosing rejection,

namely R, is part of the total welfare. This, coupled with the fact that an increase in pRi

benefits the weak and hurts the strong (Remark 1), means that the calculus of pRi is more

involved than that in the existing literature.

Nonetheless, there are two intuitive reasons why the previous insight of achieving op-

timality through maximizing pRi might still work. First, since a strong type incurs less

marginal cost in conflict than a weak type does, one would expect that a strong type is more

inclined than a weak type to reject a peace proposal. Thus, if we are to pick a type to deter

it from choosing R, it would be the strong type, and so we would reduce its interim payoff

from R through enlarging pRi . Second, from the ex ante viewpoint, any quantity of payoff

to a weak type contributes more to the total welfare than the same quantity of payoff to a

strong type does, due to the assumption θ > 1/2. Thus, one would expect that an increase
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total welfare

x1

1/2 1θξ 2(1− θ)

Figure 5: The lopsided proposal (θ, 1− θ) as the global optimum

in pRi , benefiting the weak at the expense of the strong, enlarges the total welfare.

It is therefore conceivable that, the less constrained is pRi , the more can pRi be maxed

out and hence the larger is the total welfare. That is where lopsided equilibria have an

advantage over non-lopsided ones. In a non-lopsided equilibrium, both A and R being on

path for each player, each component of the posterior system (pAi , p
R
i )2i=1 is constrained by

Bayes’s rule. In a lopsided equilibrium, by contrast, R is off path for the favored player, say

player 1; hence the posterior probability pR1 is unconstrained by Bayes’s rule.

Proof of the Proposition Relabel the players if necessary so that player 1 is offered the

larger share in the peace proposal, namely, x1 ≥ x2. A peace proposal is then represented

by x1, whose entire range is [1/2, 1]. We shall prove that x1 = θ maximizes the total welfare

among all x1 ∈ [1/2, 1]. We do that by establishing four claims, illustrated by Figure 5.

Claim 1 x1 = θ maximizes the total welfare among all lopsided equilibria associated

with any x1 ∈ [θ, 1).

Let us observe that the total welfare based on the lopsided equilibrium given any

x1 ∈ [θ, 1) (Case 1, Section 4.1) is a strictly increasing function of pR2 . This follows from the

construction of any such equilibrium (Section 4.1): The ex ante expected payoff for player 2

is strictly increasing in pR2 because her on-path interim expected payoff is equal to pR2 −1 + θ

when her type is weak, and θ when her type is strong. To see the same monotonicity

property for player 1, first note that player 1 prefers smaller q2 (ex ante probability of

player 2 choosing R) to larger q2: If player 2 chooses A, player 1 (who chooses A for sure)
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gets x1 ≥ θ; else player 1 gets θ if his type is strong, and zero if his type is weak. Thus

smaller q2 makes player 1’s ex ante expected payoff strictly larger. Then apply Bayes’s rule

to see that q2p
R
2 = 1 − θ: smaller q2 means bigger pR2 . Thus, both players considered, the

total welfare is maximized among all lopsided equilibria when the pR2 in the equilibrium is

maximized among all such equilibria. Since x1 ∈ [θ, 1) is necessary and sufficient for any

lopsided equilibrium to exist (Section 4.1), and since pR2 = 2− θ− x1 by the construction of

such equilibria (Section 4.1), maximizing pR2 is equivalent to minimizing x1. Thus, x1 = θ

maximizes the total welfare among all such equilibria.

Claim 2 When x1 increases in [2(1− θ), θ), the total welfare of the PBE in the form

of Case 2 in Section 4.1 increases; as x1 converges to θ from below, the total welfare of the

PBE converges to the total welfare of the lopsided equilibrium associated with x1 = θ.

Any PBE in the form of Case 2 in Section 4.1 is characterized by

σ1(s), σ1(w), σ2(w) ∈ (0, 1), σ2(s) = 1, and pR1 ≥ pR2 . (13)

Accordingly, one can calculate the PBE (Lemma 7, Appendix H.1) and obtain

pR1 =
3− 2θ − x2

2
,

pR2 = 2− 2θ,

q1 =
2(θ − 1 + x2)

2θ + x2 − 1
.

Since the equilibrium is non-lopsided, Lemma 1 implies that the total welfare is equal to

S(x2) = 2θpR1 + (q1 − θ)
(
pR1 − pR2

)
= θpR1 + q1(p

R
1 − pR2 ) + θpR2 ,

where the total welfare is denoted as a function of x2 (= 1 − x1) because the variables on

the right-hand side are each a function of x2 according to the equations displayed above.

As stated in Case 2, Section 4.1, a PBE of this form exists only when x1 ∈ [2(1−θ), θ),
namely, x2 ∈ (1 − θ, 1 − 2(1 − θ)]. To prove the monotonicity claim, note from the above

formula that S(x2) is determined by the values of pR1 , pR2 and q1 when the PBE varies with x2.

As displayed above, pR2 is constant. Thus the total welfare of the PBE is determined solely

by the values of pR1 and q1. By the above-displayed formulas of pR1 and q1, an increase of x2

has two opposite effects. First, it increases q1 (player 1 choosing R more often as the share x1

offered to him shrinks). Second, it decreases pR1 (with the weak type of player 1 more willing
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to reject the shrinking x1, R signals less about the strength of player 1). The above formula

of S(x2) says that the total welfare is enlarged by the first effect, and reduced by the second

effect. One can show (Lemma 9 in Appendix H.1, with the assumption θ ≤ 3/4) that the

second effect outweighs the first,9 and hence S(x2) is strictly decreasing when x2 increases.

To prove the convergence part of the claim, simply use the four equations displayed

above to show that limx2↓1−θ S(x2) is equal to the total welfare of the lopsided equilibrium

associated with x1 = θ (Lemma 8, Appendix H.1).

Claim 3 Any PBE in the form of Cases 3a. or 3b. in Section 4.1 generates less total

welfare than the lopsided equilibrium associated with x1 = θ does.

According to Section 4.1, Cases 3a. and 3b. correspond to

either σ1(s), σ1(w), σ2(w) ∈ (0, 1), σ2(s) = 1, and pR1 < pR2 ; (14)

or ∀i ∈ {1, 2} : σi(w), σi(s) ∈ (0, 1). (15)

To prove the claim, we first establish that in any such a PBE, pR2 ≥ pR1 and q2 < θ. If the

PBE is in the form of (14), pR2 ≥ pR1 is part of the definition, and q2 < θ is derived (Lemma 11,

Appendix H.2) from the assumption 2/3 ≤ θ ≤ 3/4 and the fact x1 ≥ ξ > 1/2 (a necessary

condition for the form (14), stated in Case 3a., Section 4.1). Else, the PBE is in the form

of (15), which satisfies pR2 ≥ pR1 and q2 < θ due to (48) and Lemma 16 in Appendix I. Second,

apply Lemma 1 to the non-lopsided equilibrium, switching the roles between players 1 and 2

in the lemma because pR2 ≥ pR1 here. It then follows that the total welfare of the equilibrium

is less than 2θpR2 . This quantity is less than the total welfare generated by the lopsided

equilibrium given x1 = θ, due to the assumption θ ≥ 2/3 (Lemmas 12 and 17).

Claim 4 If θ ≤ 3/4 then any PBE of the following form generates less total welfare

than the lopsided equilibrium associated with x1 = θ:

σ1(w), σ2(w) ∈ (0, 1) and σ1(s) = σ2(s) = 1. (16)

Among all the PBE in the form of (16), the total welfare maximum is attained by the

one in Case 4 of Section 4.1, associated with the equal-split proposal, x1 = 1/2 (Lemma 18,

Appendix J). Then we show that the total welfare generated by this local maximum is still

9This is in line with the previous intuition that an increase in pR1 could improve the total welfare.
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less than the one generated by the lopsided equilibrium under the proposal x1 = θ (last

paragraph, Appendix J), where the assumption θ ≤ 3/4 is used).

Finally, it is easy to show that the lopsided equilibrium converges to a trivial (always

conflict) equilibrium when x1 → 1. As the total welfare is decreasing when x1 increases in

[θ, 1) (Claim 1), the trivial equilibrium is suboptimal. Thus, all other trivial equilibria are

suboptimal because they have the same posterior system (Lemma 2.a, Appendix B) and

hence generate the same total welfare. Now that all possible equilibria when x1 varies in its

entire range [1/2, 1] have been covered, the optimality of x1 = θ is proved. �

Remark 4 The assumption 2/3 ≤ θ ≤ 3/4 in the proposition, though partially relaxable

with more calculations, reflects an intuition that the equal-split proposal (x1 = 1/2) could

be optimal when θ is close to 1/2 or 1. Since the equal-split proposal fully prevents conflict

when θ ≤ 1/2 (cf. Footnote 6), it might remain optimal when θ is just slightly above 1/2.

When θ ≈ 1, the total welfare puts a heavy weight on the weak type, and one can show that

the total expected payoff for the weak type of both players under the equal-split proposal is

almost equal to the full size of the prize.10

Remark 5 While a lopsided equilibrium involves an off-path posterior, the equilibrium

under the optimal (lopsided) proposal x1 = θ satisfies both the Intuitive and D1 criteria of

refinement (Appendix D).

Remark 6 Although the player who is offered the larger share of the good is “favored” at

face value by the peace proposal, he need not end with a larger share of the total welfare

at equilibrium. In any non-lopsided equilibrium, for instance, it is the player i for whom

pRi > pR−i and qi < θ that has a larger share of the total welfare (Remark 3). As shown by

Claim 3 in the above proof, when player 1 is offered the larger share of the good and the

equilibrium takes the form of (14) or (15), pR1 ≤ pR2 and q2 < θ. That is, the player who is

offered less by the proposed split ends with a larger share of the total welfare. Nonetheless,

in the lopsided equilibrium given the optimal proposal x1 = θ, the two senses of favoritism

coincide. Here player 1 is offered a larger share in the proposed split; meanwhile, as shown

in Appendix F, player 1’s equilibrium ex ante expected payoff 1 − θ/2 is no less than its

10In a PBE under the equal-split proposal, pR1 = pR2 = 1/2 (Lemma 18, Appendix J) and hence each

player’s weak type gets pR1 − (1− θ) = θ − 1/2 (Figure 8). Thus the total expected payoff for them, 2θ − 1,

converges to one as θ → 1.
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counterpart 2 − 2θ for player 2 due to the assumption θ ≥ 2/3. The alternative of giving

player 2 a larger share of the total welfare turns out to be suboptimal as shown in Claim 3.

Intuitively speaking, player 2 is offered a smaller share of the good and hence his rejecting

the proposal may be attributed to the smaller offer rather than his strength. Thus it is

inefficient to raise pR2 thereby to enlarge his ex ante payoff advantage |q2 − θ|(pR2 − pR1 ) over

player 1. In other words, it is inefficient to enlarge the total welfare through transferring

welfare from the player favored by the proposed split to his opponent.

6 Conclusion

Humanity is often trapped in conflict situations where full preemption of conflict is impos-

sible. In such situations, it is inadequate for a benevolent social planner to aim merely at

minimizing the likelihood of conflict, as the social welfare in both the event of peace and the

event of conflict should be taken into account. This paper contributes to the conflict medi-

ation literature by incorporating both conflict and peace into maximization of total welfare

and presenting an explicit solution for the maximization problem. In our model, a mediator

is restricted in instruments so that she cannot effect any information structure deemed desir-

able with tailor-made communication mechanisms, but rather can only indirectly influence

the outcome through simple mechanisms whose integrity is easy to trust. Thus, techniques

in the information-design literature are not readily available, and this paper contributes an

explicit analysis on how a mediator can nonetheless achieve a constrained optimal posterior

information structure given simple, message-independent mechanisms.

Our solution produces a surprising implication: Even though the adversaries are ex ante

identical, and are assigned equal welfare weights, the socially optimal peace proposal favors

one adversary against the other so much that the favored party always accepts the proposal.

Thus it should not be taken for granted that a peace proposal should offer a fair share to

each contestant even from the viewpoint of a benevolent mediator. The insight conveyed by

our result is that a peace proposal biased towards one side may, counterintuitively, achieve

better social welfare than an unbiased one because the favored side is willing to accept the

peace deal without fearing being viewed to be weak and taken advantage of later, so that

the mediator can devote more resources to compensate the unfavored side.

While the design objective we consider is to maximize the total welfare, the optimality
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of a lopsided peace proposal demonstrated by our result is extendable to models where the

design objective is to minimize the probability of conflict. Given the same intermediate range

of the weak-type probability θ for which the lopsided proposal maximizes total welfare, one

can show that the lopsided proposal also minimizes the probability of conflict. In addition,

the equal-split proposal minimizes the probability of conflict when the probability of being

weak is very high or when it is low enough to be near to the region where peace can be

guaranteed. This is similar to the pattern with respect to the objective that we consider.

An open question is what happens if a contestant can renege on its acceptance of

a peace deal. After Iran accepted the nuclear deal in 2015, the United States withdrew

from the agreement in 2018 thereby resuming the hostile relationship. It is conceivable

that Iran, in retrospect, would attribute the US withdrawal to Iran’s acceptance of the deal

in 2015, which might have revealed Iran’s weak position in the conflict. That taken into

account, Iran will be more reluctant to accept any nuclear deal in the future than before,

for fear of its weakness being further revealed and exploited. Thus we conjecture that the

inscrutability of a contestant’s response to a peace proposal can only become more important

when contestants may renege. In the sense that a lopsided solution guarantees acceptance

from the favored side thereby making its private information inscrutable from its acceptance,

the optimality of lopsided solutions may be robust to such limited commitment situations.

See Kamranzadeh [17, Chapter 4] for details.

For tractability, and for a clear contrast with the lopsided solution, we assume that the

two contestants are ex ante identical with a common value of the contested prize. A natural

question is to what extent a lopsided solution may remain optimal when ex ante asymmetry

or private values are considered. While we conjecture that the inscrutability advantage that

a lopsided solution provides for the favored party remains crucial, the ex ante asymmetry

between the two sides is likely to bring about new questions.

22



A Derivation of (2) and (3) for the All-Pay Auction

Consider any Bayesian Nash equilibrium (BNE) of the all-pay auction where pi denotes the

probability with which player i’s type is s (strong) for each i = 1, 2. If player i’s type is ti

(ti ∈ {w, s}) and if G−i is the c.d.f. of the bid from the rival −i at equilibrium, then i’s

expected payoff from bidding b is equal to

1

α

(
G−i(b)−

b

ti

)
unless b is an atom of G−i. According to the all-pay auction literature, there exists a unique

equilibrium and (G1, G2) is characterized by the first-order condition

G′i(b) =

 1/s if G−i(b) > 1− p−i
1/w if G−i(b) < 1− p−i

for each i ∈ {1, 2}. Assume for now that p1 ≥ p2. Coupled with the equilibrium boundary

condition that Gi(0) = 0 for at least one player, this differential equation system admits

a unique solution.11 One way to solve it is to start with the endogenous maximum bid b,

common to both players, and trace the graphs of G1 and G2 according to the differential

equation system when the bid decreases from b to zero. As in Figure 6, both graphs start by

decreasing at the rate equal to 1/s. Then the graph of G1 changes to the steeper slope 1/w

at the bid b for which G2(b) = 1 − p2, while G2 remains decreasing at the rate 1/s until

G1(b) = 1−p1 (because p1 ≥ p2). Thus, when the bid decreases down to zero, G2(0) ≥ G1(0).

Since the zero bid cannot be an atom for both bidders (or an equilibrium condition is

violated), G1(0) = 0. That pins down b and G2(0):

b̄/s = 1− (1− w/s)(1− p2) = 1− α(1− p2),

G2(0) = (1− w/s) (p1 − p2) = α(p1 − p2),

where we have used the notation α := 1−w/s. Thus, for each player i, the expected payoff

for the strong type in the equilibrium is equal to

U s
i (p1, p2) =

1

α

(
1− b̄/s

)
= 1− p2 = 1−min{p1, p2}.

11Since Gi and G−i need not be differentiable, the differential equation system holds only for almost all b

in their common support. However, one can prove that Gi and G−i are each absolutely continuous and

hence the system coupled with a boundary condition admits a unique solution. See Zheng [27] for details.
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bid

cumulative mass

0

1− p1

b

1

1− p2

G1 = G2

G2

G2

G1

G2(0)

t2 = s

t1 = s

slope= 1/s

slope= 1/w

Figure 6: The equilibrium in the all-pay auction

The expected payoffs for the weak type of the two players are:

Uw
1 (p1, p2) =

1

α
(G2(0)− 0/w) = p1 − p2 = p1 −min{p1, p2},

Uw
2 (p2, p1) = 0 = p2 −min{p2, p1}.

Then remove the assumption p1 ≥ p2 to generalize the above to (2) and (3).

B Categorization of All Equilibria

The next lemma classifies all the possible cases of proposal-PBE pairs, called solutions for

short. Case (a) corresponds to the trivial (always conflict) equilibria, Case (b) corresponds

to lopsided equilibria, Case (c) the PBEs that satisfy (16), Case (d) those satisfying (15),

and Case (e) those satisfying (13) or (14).

Lemma 2 For any solution (xi, σi, p
A
i , p

R
i , qi)

2
i=1, exactly one of the following is true:

a. qi = 1 for some player i, and the on-path posterior is equal to the prior for both players;

b. for some i ∈ {1, 2}, σi(w) = σi(s) = 0 and 0 < σ−i(w) < 1 = σ−i(s);

c. for each i ∈ {1, 2}, 0 < σi(w) < 1 = σi(s);

d. for each i ∈ {1, 2}, σi(w), σi(s) ∈ (0, 1);
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e. for some i ∈ {1, 2}, σi(w), σi(s), σ−i(w) ∈ (0, 1), and σ−i(s) = 1.

Proof First, we observe that the lemma follows from the following claims:

1. If qi = 1 for some player i, the on-path posterior is equal to the prior for each player.

2. If qi < 1 for each player i, then there does not exist any i ∈ {1, 2} for whom:

i. σi(w) = 0 < σi(s) ≤ 1; or

ii. σi(s) = 0 < σi(w) ≤ 1; or

iii. 0 < σi(s) < 1 = σi(w); or

iv. σi(w) = σi(s) = 0 and σ−i(w), σ−i(s) ∈ (0, 1).

To see why the claims suffice, note that Claims 2.i and 2.ii together imply σi(w) = 0 ⇔
σi(s) = 0, and Claim 2.iii implies 0 < σi(s) < 1 ⇒ σi(w) < 1. This coupled with Claim 2.i

implies 0 < σi(s) < 1 ⇒ 0 < σi(w) < 1. In sum, for each player i ∈ {1, 2}, if qi < 1

then there are only three possibilities: either σi(w) = σi(s) = 0, or “0 < σi(w) < 1 and

0 < σi(s) < 1,” or “0 < σi(w) < 1 and σi(s) = 1” (where σi(s) 6= 0 because of the first

implication). Thus, in any equilibrium where qi < 1 for both players i (i.e., outside Case (a)

in the lemma), there are only nine combinations for (σ1, σ2), as in the following table:

σ2(w) = σ2(s) = 0 σ2(w), σ2(s) ∈ (0, 1) 0 < σ2(w) < 1 = σ2(s)

σ1(w) = σ1(s) = 0 impossible impossible case (b)

σ1(w), σ1(s) ∈ (0, 1) impossible case (d) case (e)

0 < σ1(w) < 1 = σ1(s) case (b) case (e) case (c)

In this table, the cell (1, 1) (σ1(w) = σ1(s) = 0 = σ2(w) = σ2(s)) is impossible because

our assumption θ > 1/2 implies that it is impossible to have σi(s) = σi(w) = 0 for both

players i (Footnote 6). Claim 2.iv says that the cells (1, 2) and (2, 1) (one player’s strategy

is totally mixed and the other chooses A for sure) are each impossible. The other cells are

the possible ones, where we fill in the corresponding cases in the lemma.

The rest of the proof establishes the claims listed above.
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Claim 1 Let qi = 1 for some player i. Then the on-path posterior about i is pRi = 1 − θ.
For player −i, suppose that the action A is on path and pA−i is not equal to the prior 1− θ.
Then Bayes’s rule requires that the other action R be on path as well such that pR−i 6= 1− θ
and (7) be satisfied. Thus, one of pA−i and pR−i is above 1− θ, and the other below 1− θ. If

pA−i > 1− θ > pR−i, then by (2) and (3) (or simply Figure 1),

U s
−i(p

A
−i, 1− θ) = θ < 1− pR−i = U s

−i(p
R
−i, 1− θ),

Uw
−i(p

R
−i, 1− θ) = 0 < pA−i − θ + 1 = Uw

−i(p
A
−i, 1− θ);

thus player −i of type s would choose R for sure, and −i of type w, A for sure. That

implies pR−i = 1 and pA−i = 0, contradicting pA−i > 1 − θ > pR−i. The other case, where

pA−i < 1− θ < pR−i, is self-contradicting analogously. This proves Claim 1.

Claim 2.i Suppose, to the contrary, that σi(w) = 0 < σi(s) ≤ 1 for some player i. By

Bayes’s rule, σi(w) = 0 implies pRi = 1. Then the two graphs in Figure 1 coincide, with pi

there equal to pRi = 1, and hence V R
i (s) = V R

i (w) = 1− (1− θ) = θ by (6)—simply put, the

dashed segment in Figure 2 coincides with the solid thick line because any pA−i and pR−i are

less than or equal to 1 = pRi . Recall from (5) that V A
i (t) denotes i’s expected payoff from

choosing A given type t ∈ {s, w}. By the best response condition,

σi(w) = 0 ⇒ V A
i (w) ≥ V R

i (w) = θ,

σi(s) > 0 ⇒ V A
i (s) ≤ V R

i (s) = θ.

Thus V A
i (w) ≥ V A

i (s). Meanwhile, (5) implies that V A
i (w) ≤ V A

i (s), as Uw
i (pAi , ·) ≤ U s

i (pAi , ·)
for any pAi ∈ [0, 1]. Consequently, V A

i (w) = V A
i (s). Then (5) coupled with q−i > 0 implies

that Uw
i (pAi , p

R
−i) = U s

i (pAi , p
R
−i). Compare (2) with (3)—or simply inspect Figure 1—to see

that the equation is possible only if pAi = 1. But that violates Bayes’s rule given that

σi(w) < 1. Thus Claim 2.i follows.

Claim 2.ii Suppose, to the contrary, that qi < 1 for both players i, and σi(s) = 0 <

σi(w) ≤ 1 for some player i. By Bayes’s rule, σi(s) = 0 implies pRi = 0. By (2) and (3),

U s
i (pRi , ·) = 1 and Uw

i (pRi , ·) = 0. It follows from (6) that V R
i (s) = 1 and V R

i (w) = 0. By the

best response condition for σi(w) > 0,

0 = V R
i (w) ≥ V A

i (w)
(5)
= q−iU

w
i (pAi , p

R
−i) + (1− q−i)xi ≥ (1− q−i)xi
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and hence xi = 0 (since 1 − q−i > 0). This coupled with the best response condition for

σi(s) = 0 implies

1 = V R
i (s) ≤ V A

i (s) = 0 + q−iU
s
i (pAi , p

R
−i)

(2)
= q−i

(
1−min{pAi , pR−i}

)
.

Thus, q−i = 1, contradiction.

Claim 2.iii Suppose, to the contrary, that qi < 1 for both players i, and 0 < σi(s) < 1 =

σi(w) for some player i. By Bayes’s rule, σi(w) = 1 implies pAi = 1. It then follows from (2)

and (3) that U s
i (pAi , ·) = Uw

i (pAi , ·) and hence, by (5), V A
i (s) = V A

i (w). By the best response

condition, 0 < σi(s) < 1 implies V R
i (s) = V A

i (s), and σi(w) > 0 implies V R
i (w) ≥ V A

i (w).

Thus, V R
i (w) ≥ V R

i (s). This, by inspection of Figure 2—or (6)—is possible only if pRi = 1.

But pRi = 1 violates Bayes’s rule since σi(w) > 0, contradiction.

Claim 2.iv Suppose, to the contrary, that for each player i we have qi < 1 and σi(w) =

σi(s) = 0, 0 < σ−i(w) < 1 and 0 < σ−i(s) < 1. With σi(w) = σi(s) = 0, we have qi = 0 and

pAi = 1− θ. Plug them into (6)—or simply noting that the convex combination in Figure 2

degenerates to the point 1−θ—to see that V R
−i(w) = pR−i−(1−θ) and V R

−i(s) = 1−(1−θ) = θ.

Since σ−i(w) > 0, pR−i < 1 and hence pR−i − (1 − θ) < θ. Consequently, V R
−i(w) < V R

−i(s).

Meanwhile, by the best response condition and qi = 0,

0 < σ−i(w) < 1 ⇒ x−i = V A
−i(w) = V R

−i(w),

0 < σ−i(s) < 1 ⇒ x−i = V A
−i(s) = V R

−i(s).

Thus V R
−i(w) = V R

−i(s), contradiction.

An implication of Lemma 2 is that the condition pRi ≥ 1 − θ ≥ pAi in Figures 2–7 is

indeed satisfied.

Lemma 3 For any solution (xi, σi, p
A
i , p

R
i , qi)

2
i=1, either qi = 1 for some player i and the

on-path posterior is equal to the prior for both players, or qi < 1 for both players i and, for

each player i, qi > 0⇒ pRi > 1− θ > pAi .

Proof By Lemma 2, either Case (a) is true, which means the on-path posterior is equal

to the prior for both players, or (a) is not true and hence qi < 1 for both players i. In the

latter alternative, if qi > 0 then we have either (I) σi(w), σi(s) ∈ (0, 1)—which is true for

27



both players in case (d), and player i in case (e), in Lemma 2—or (II) σi(s) > σi(w) (which

is true for player −i in case (b), both players in case (c), and player −i in case (e)). In (I),

the best response condition implies

V R
i (s)− V A

i (s) = 0 = V R
i (w)− V A

i (w),

which, by (17), simplifies to 1−pRi = q−i(1−pAi ). This coupled with q−i < 1 implies 1−pRi <
1− pAi , i.e., pRi > pAi . In (II), by Bayes’s rule σi(s) = qip

R
i /(1− θ) and σi(w) = qi(1− pRi )/θ,

and by qi > 0, we have pRi /(1− θ) > (1− pRi )/θ, namely, pRi > 1− θ. Both cases considered,

we have shown that qi > 0 implies pRi > pAi or pRi > 1 − θ. In either case, the Bayesian

plausibility condition (7) implies pRi > 1− θ > pAi .

C Proof of (11) and (12) for Lemma 1

Figure 7 depicts the expected payoff from choosing R for the strong type of each player, with

curve ILM for player 1, and curve IJK for player 2. Curve ILM lies below curve IJK

because the lemma labels the players so that pR1 ≥ pR2 . Similarly, Figure 8 depicts the

expected payoff from choosing R for the weak type of each player, with curve DEH for

player 1, and curve FGH for player 2. Curve DEH lies above curve FGH again by pR1 ≥ pR2 .

opponent’s p

payoff

pR1pR21 − θ

θ

V R
2 (s)

1 − pR2

1

1 − pR1

pA1

L′

K ′

L

K
J

M

I

N

Figure 7: Rejection payoffs for the strong type

To prove (11), note in Figure 7 that ∆NK ′L′ and ∆NKL are similar triangles. Thus,

|K ′L′|
|KL|

=
1− θ − pA1
pR1 − pA1

.
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opponent’s p

payoff

pR1

pR1

pR2

pR2pA1 1 − θ

B

C

B′

C ′

pR1 − 1 + θ

V R
2 (w)

H

D

E

F

G

Figure 8: Rejection payoffs for the weak type

Consequently, since |K ′L′| = V R
2 (s)− V R

1 (s) and |KL| = pR1 − pR2 , we have

V R
2 (s)− V R

1 (s) =
1− θ − pA1
pR1 − pA1

(pR1 − pR2 ) = q1(p
R
1 − pR2 ),

with the second equality due to the Bayesian plausibility condition (7). Thus (11) follows.

Analogously, in Figure 8, ∆EB′C ′ and ∆EBC are similar triangles. Thus,

|B′C ′|
|BC|

=
pR1 − (1− θ)
pR1 − pA1

= 1− q1,

with the second equality again due to (7). Consequently, since V R
2 (w) − V R

1 (w) = −|B′C ′|
and |BC| = pR1 − pR2 , Eq. (12) follows.

D Verification of the Intuitive and D1 Criteria

It is easy to derive from the construction of lopsided equilibria (Section 4.1) that q2 = 1/2

and pR2 = 2(1 − θ) in the lopsided equilibrium when the proposal is x1 = θ. Note that

the only observable deviation from the equilibrium is player 1 choosing R. Also note that

player 1’s expected payoff from this equilibrium is equal to V A
1 (s) = θ when his type is s, and

V A
1 (w) = θ/2 when the type is w. For each t ∈ {s, w} and any pR1 ∈ [0, 1], let Ṽ R

1 (t, pR1 ) denote

type-t player 1’s expected payoff from the deviation provided that the posterior probability

of him being strong is pR1 (together with the on-path posterior probability pR2 = 2(1− θ) of

player 2 being strong).
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Intuitive Criterion Denote J for the set of player 1’s types whose equilibrium payoff is

higher than any payoff it could get by playing R, as long as player 2’s action is rationalizable.

That is,

J :=

{
t ∈ {s, w}

∣∣∣∣ V A
1 (t) > max

pR1 ∈[0,1]
Ṽ R
1 (t, pR1 )

}
.

Observe that J = ∅: s 6∈ J because the equilibrium payoff θ is the minimum payoff that

a strong type s can achieve from playing R (Remark 2); w 6∈ J because the equilibrium

payoff θ/2 is less than θ, which is equal to Ṽ R
1 (w, 1) because pR1 = 1 > 2(1− θ) = pR2 implies

via (10) that Ṽ R
1 (w, 1) = 1 − (1 − θ) = θ. Now that J = ∅, the set of distributions of

player 1’s type whose supports exclude J (the empty set) contains the posterior distribution

that supports the lopsided equilibrium. Thus, the equilibrium satisfies the Intuitive Criterion.

D1 Criterion It suffices to falsify the following inequality for each t ∈ {s, w} (and {t′} :=

{s, w} \ {t}):{
pR1 ∈ [0, 1]

∣∣∣ V A
1 (t) ≤ Ṽ R

1 (t, pR1 )
}
(
{
pR1 ∈ [0, 1]

∣∣∣ V A
1 (t′) < Ṽ R

1 (t′, pR1 )
}
.

To that end, consider first t = s (so t′ = w). Since V A
1 (s) = θ is the minimum payoff that a

strong type s can achieve from playing R (Remark 2), the left-hand side is equal to [0, 1] and

hence the (strict) inequality cannot hold. Next consider t = w (and so t′ = s). Note that

pR1 = 1 belongs to the left-hand side, as V A
1 (w) = θ/2 < θ = Ṽ R

1 (w, 1), shown in the previous

paragraph. However, pR1 = 1 does not belong to the right-hand side, because V A
1 (s) = θ and

Ṽ R
1 (s, 1) = θ by (9). Thus again the inequality displayed above does not hold. Both cases

considered, the D1 Criterion is satisfied.

E Three Useful Equations

Lemma 4 In any solution (xi, σi, p
A
i , p

R
i , qi)

2
i=1,

V R
i (s)− V A

i (s)−
(
V R
i (w)− V A

i (w)
)

= 1− pRi − q−i(1− pAi ) (17)

for each player i, and if pRi ≥ pR−i ≥ 1− θ, then

V R
i (w)− V A

i (w) = pRi − (1− q−i)xi − 1 + θ, (18)

V R
−i(w)− V A

−i(w) = (1− qi)
(
pR−i − pAi − x−i

)
. (19)
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Proof To prove (17), note from (5) and (6) that the left-hand side is equal to

q−i
(
U s
i (pRi , p

R
−i)− U s

i (pAi , p
R
−i)− Uw

i (pRi , p
R
−i) + Uw

i (pAi , p
R
−i)
)

+(1− q−i)
(
U s
i (pRi , p

A
−i)− Uw

i (pRi , p
A
−i)
)

(2),(3)
= q−i

(
1−min{pRi , pR−i} − 1 + min{pAi , pR−i} − pRi + min{pRi , pR−i}+ pAi −min{pAi , pR−i}

)
+(1− q−i)

(
1−min{pRi , pA−i} − pRi + min{pRi , pA−i}

)
= q−i

(
−pRi + pAi

)
+ (1− q−i)

(
1− pRi

)
,

which is equal to the right-hand side. To prove (18), assume without loss that pR1 ≥ pR2 .

Thus for each player i, pRi ≥ 1 − θ and hence, by the Bayesian plausibility condition (7),

pAi ≤ 1− θ. Use (5) and (6) to obtain

V R
1 (w)− V A

1 (w) = q2
(
Uw
1 (pR1 , p

R
2 )− Uw

1 (pA1 , p
R
2 )
)

+ (1− q2)
(
Uw
1 (pR1 , p

A
2 )− x1

)
(3)
= q2

(
pR1 −min{pR1 , pR2 } − pA1 + min{pA1 , pR2 }

)
+ (1− q2)

(
pR1 −min{pR1 , pA2 } − x1

)
= q2

(
pR1 − pR2 − pA1 + pA1

)
+ (1− q2)

(
pR1 − pA2 − x1

)
= pR1 − q2pR2 − (1− q2)pA2 − (1− q2)x1

= pR1 − (1− θ)− (1− q2)x1,

with the third line due to pR1 ≥ pR2 ≥ 1 − θ ≥ pAj for each player j, and the last line due to

the Bayesian plausibility condition (7). Thus (18) is true. Analogously, (19) follows from

V R
2 (w)− V A

2 (w) = q1
(
pR2 − pR2 − pA2 + pA2

)
+ (1− q1)

(
pR2 − pA1 − x2

)
= (1− q1)

(
pR2 − pA1 − x2

)
. �

F The Total Welfare of the Optimal Lopsided Solution

Lemma 5 The total welfare generated by the lopsided equilibrium associated with the pro-

posal (θ, 1− θ) is equal to θ(3− 5θ/2).

Proof By definition of any lopsided equilibrium, q1 = 0 and 0 < σ2(w) < 1 = σ1(s). Thus

the total welfare from (θ, 1− θ) is equal to

(1− q2)θ + q2
[
θUw

1 (pA1 , p
R
2 ) + (1− θ)U s

1 (pA1 , p
R
2 )
]︸ ︷︷ ︸

player 1

+ θUw
2 (pR2 , p

A
1 ) + (1− θ)U s

2 (pR2 , p
A
1 )︸ ︷︷ ︸

player 2

.
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By Bayes’s rule, pA1 = 1− θ, pA2 = 0 and q2 = (1− θ)/pR2 . As explained in the construction of

lopsided equilibria (Section 4.1), pR2 = 1− θ+x2 = 2(1− θ). Combine them with (2) and (3)

to calculate the above-displayed sum:

(1− q2)θ + q2 (θ · 0 + (1− θ)(1− 1 + θ)) + θ(pR2 − 1 + θ) + (1− θ)(1− 1 + θ)

=

(
1− 1− θ

pR2

)
θ +

1− θ
pR2

(1− θ)θ + θ(pR2 − 1 + θ) + (1− θ)θ

=

(
1− 1− θ

2(1− θ)

)
θ +

1− θ
2(1− θ)

(1− θ)θ + θ(2(1− θ)− 1 + θ) + (1− θ)θ

= (2− θ)θ/2︸ ︷︷ ︸
player 1

+ (2− 2θ)θ︸ ︷︷ ︸
player 2

= θ(3− 5θ/2). �

G Suboptimality of Any Trivial Equilibrium

By Claim 1 in the proof of Lemma 2, any trivial PBE, namely, any Case-(a) solution, has the

on-path posterior equal to the prior for each player. Since qi = 1 for some player i, conflict

takes place for sure and hence each player’s ex ante payoff from the PBE is equal to

θUw
i (1− θ, 1− θ) + (1− θ)U s

i (1− θ, 1− θ) = 0 + (1− θ)(1− (1− θ)) = θ(1− θ).

Thus, the total welfare generated by the PBE is equal to 2θ(1 − θ), which is less than

θ(3 − 5θ/2), the total welfare generated by the lopsided proposal (θ, 1 − θ) (Lemma 5).

Thus, any PBE that belongs to Case (a) is suboptimal.

H Suboptimality of Any Equilibrium in Eqs. (13) or (14)

Equilibria in the form of Eqs. (13) or (14) correspond to Case (e) in Lemma 2: exactly one of

the two players is totally mixing A and R for each type. Relabeling the players if necessary,

assume without loss that in any Case-(e) PBEs it is player 1 who is totally mixing, i.e.,

0 < σ1(w) < 1, 0 < σ1(s) < 1, 0 < σ2(w) < 1, σ2(s) = 1. (20)

Call a Case-(e) solution Case (e)-i if pR2 ≤ pR1 , and Case (e)-ii if pR1 < pR2 . This labeling

of the players implies x1 ≥ x2 (and hence is consisting with the labeling in Section 4.1),

because x2 ≤ 1/2 according to Lemma 7 for Subcase-(e)-i, and Lemma 10 for Subcase-(e)-ii.
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Lemma 6 A tuple (xi, σi, p
A
i , p

R
i , qi)

2
i=1 constitutes a Case-(e)-i solution if and only if it

satisfies (20) and all the following:

1− pR1 = q2(1− pA1 ), (21)

1− pR2 ≥ q1, (22)

pR2 ≤ pR1 , (23)

pR1 + θ − 1 = (1− q2)x1, (24)

pR2 = pA1 + x2. (25)

A tuple (xi, σi, p
A
i , p

R
i , qi)

2
i=1 constitutes a Case-(e)-ii solution if and only if it satisfies (20),

(21), (22) and all the following:

pR1 < pR2 , (26)

pR1 = x1, (27)

pR2 + θ − 1 = (1− q1)x2. (28)

Proof The best response condition for (20) to constitute a PBE is that V R
1 (w)− V A

1 (w) =

V R
1 (s) − V A

1 (s) = 0 for player 1 and V R
2 (w) − V A

2 (w) = 0 ≤ V R
2 (s) − V A

2 (s) for player 2.

By (17), that is equivalent to simultaneous satisfaction of V R
1 (w) − V A

1 (w) = V R
2 (w) −

V A
2 (w) = 0,

(
1− pR1

)
= q2

(
1− pA1

)
and 1− pR2 ≥ q1 (i.e., Ineq. (22), the derivation of which

also uses the fact pA2 = 0 implied by Bayes’s rule with respect to σ2(s) = 1). To write the

condition V R
1 (w)−V A

1 (w) = V R
2 (w)−V A

2 (w) = 0 explicitly, note for each player i that qi < 1

in this PBE and hence pAi < 1− θ < pRi by Lemmas 3. If the solution belongs to Subcsae (i)

of Case (e), pR1 ≥ pR2 , then (18) and (19) apply to the case i = 1 and hence

V R
1 (w)− V A

1 (w) = pR1 − (1− θ)− (1− q2)x1,

V R
2 (w)− V A

2 (w) = (1− q1)
(
pR2 − pA1 − x2

)
.

Thus the condition V R
1 (w)−V A

1 (w) = 0 becomes (24), and the condition V R
2 (w)−V A

2 (w) = 0

becomes (25). Analogously, if it is Subcase (ii) of Case (e), pR1 ≤ pR2 , then (18) and (19)

apply to the case i = 2 and hence

V R
2 (w)− V A

2 (w) = pR2 − (1− θ)− (1− q1)x2,

V R
1 (w)− V A

1 (w) = (1− q2)
(
pR1 − pA2 − x1

)
= (1− q2)

(
pR1 − x1

)
,

with the last “=” due to pA2 = 0 (since σ2(s) = 1). Thus, the condition V R
i (w)− V A

i (w) = 0

for both players i becomes (27) and (28).
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H.1 Subcase (i): pR1 ≥ pR2 (Eq. (13))

Lemma 7 For any x2 ∈ [0, 1] there is at most one tuple
(
σi, p

A
i , p

R
i , qi

)2
i=1

that constitutes a

Case-(e)-i solution, and for any such solution, 1 − θ < x2 ≤ 2θ − 1, where 2θ − 1 ≤ 1/2 if

θ ≤ 3/4.

Proof Let x2 ∈ [0, 1] and
(
xi, σi, p

A
i , p

R
i , qi

)2
i=1

be a Case-(e)-i solution. By Lemma 6, the

tuple satisfies Eqs. (21), (24) and (25). Combine (21), (24) and (25) with q2 = θσ2(w)+1−θ
(definition of qi), p

R
2 = (1 − θ)/q2 (Bayes’s rule with respect to σ2(s) = 1) and x1 + x2 = 1

(definition of peace proposal) to obtain

σ2(w) = 1− 1

2θ
. (29)

Plug (29) into the system consisting of (20), (21), (24) and (25) to obtain a unique solution

for all components of the tuple:

q2 = θ

(
1− 1

2θ

)
+ 1− θ =

1

2
,

pR2 =
1− θ
q2

= 2− 2θ, (30)

pR1 = 1− θ + (1− 1/2)(1− x2) =
3− 2θ − x2

2
, (31)

pA1 = pR2 − x2 = 2(1− θ)− x2,

q1 =
1− θ − pA1
pR1 − pA1

=
2(θ − 1 + x2)

2θ + x2 − 1
, (32)

σ1(w) =
θ − 1 + x2

θ
. (33)

In particular, (33) follows from

θσ1(w) = q1 − (1− θ)σ1(s) = q1 − pR1 q1

=
2(θ − 1 + x2)

2θ + x2 − 1

(
1− 3− 2θ − x2

2

)
= θ − 1 + x2.

Since σ1(w) > 0 by definition of any Case-(e) solution, (33) implies x2 > 1− θ.
To prove x2 ≤ 2θ − 1, plug (30) and (31) into the condition pR1 ≥ pR2 that defines

Subcase (e)-i to obtain

pR1 ≥ pR2 ⇐⇒
3− 2θ − x2

2
≥ 2− 2θ ⇐⇒ x2 ≤ 2θ − 1. �
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Lemma 8 When x1 converges to θ from above, the total welfare generated by any Case-

(e)-i solution with proposal (x1, x2) converges to the total welfare generated by the lopsided

equilibrium associated with the proposal (θ, 1− θ).

Proof By Lemma 7, any Case-(e)-i solution is uniquely determined by the x2 in the tuple,

with 2 being the label for the player for whom pR2 ≤ pR1 . Thus, the total welfare generated

by the solution is uniquely determined by x2. Hence denote Se(x2) for the total welfare

generated by a Case-(e)-i solution that offers x2 to the player −i for whom pR−i ≤ pRi . Since

Reject is a best reply for each type of each player in any Case-(e) solution, Lemma 1 implies

Se(x2) = 2θpR1 + (q1 − θ)(pR1 − pR2 ). (34)

By Lemma 7, x2 > 1 − θ. Taking the limit of (31) and (32) as x2 converges to 1 − θ from

above, we have

lim
x2↓1−θ

pR1 =
2− θ

2
,

lim
x2↓1−θ

q1 = 0.

Combine them with the above formula of Se(x2) and (30) to obtain

lim
x2↓1−θ

Se(x2) = 2θpR1 − θ(pR1 − pR2 ) = θ(pR1 + pR2 )

= θ

(
2− θ

2
+ 2− 2θ

)
= θ

(
3− 5

2
θ

)
,

which by Lemma 5 is equal to the total welfare generated by the lopsided equilibrium given

proposal (θ, 1− θ).

Lemma 9 If θ ≤ 3/4, the lopsided equilibrium given proposal (θ, 1−θ) generates larger total

welfare than any Case-(e)-i solution.

Proof By Lemma 8, it suffices to prove that d
dx2
Se(x2) < 0 for all x2 > 1 − θ. To prove

that, use (34) and dpR2 /dx2 = 0 (Eq. (30)) to obtain

d

dx2
Se(x2) =

∂Se
∂pR1

dpR1
dx2

+
∂Se
∂q1

dq1
dx2

= (q1 + θ)
dpR1
dx2

+
(
pR1 − pR2

) dq1
dx2

= −q1 + θ

2
+
(
pR1 − pR2

) 2θ

(2θ + x2 − 1)2
, (35)
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with the last equality due to (31) and (32). Note that the expression (35) is strictly decreasing

in x2: By (30) and (31), pR1 − pR2 = (2θ− 1− x2)/2, which is strictly decreasing in x2; as can

be seen above (due to (32)),
dq1
dx2

=
2θ

(2θ + x2 − 1)2
> 0

and so − q1+θ
2

is strictly decreasing in x2 as well. Thus, d
dx2
Se(x2) is strictly decreasing in x2.

Now that d
dx2
Se(x2) is strictly decreasing in x2 for all x2 > 1 − θ, and x2 > 1 − θ for

any Case-(e)-i solution, to show that Se(x2) is strictly decreasing in x2, we need only

lim
x2↓1−θ

d

dx2
Se(x2) < 0.

To show that, take the limit of (35) as x2 converges to 1− θ from above and use (30), (31),

and (32) (so limx2↓1−θ q1 = 0 and limx2↓1−θ
(
pR1 − pR2

)
= 3θ−2

2
) to obtain

lim
x2↓1−θ

d

dx2
Se(x2) = −θ

2
+

(3θ − 2)

2

2

θ
=
−θ2 + 6θ − 4

2θ
= − 1

2θ

(
(θ − 3)2 − 5

)
,

which is negative because the condition θ ≤ 3/4 in the lemma implies θ < 3−
√

5. Thus, the

supremum of d
dx2
Se(x2) is negative among all x2 > 1−θ, so limx2↓1−θ Se(x2) is the supremum

total welfare among all Case-(e)-i solutions. By Lemma 8, the supremum is equal to the

total welfare generated by the lopsided equilibrium given proposal [θ, 1− θ].

H.2 Subcase (ii): pR1 < pR2 (Eq. (14))

Lemma 10 For any x2 ∈ [0, 1] there is at most one tuple
(
σi, p

A
i , p

R
i , qi

)2
i=1

that constitutes

a Case-(e)-ii solution; if θ ≤ 3/4 in addition, then 2θ − 1 < x2 < x̂2 for any such solution,

where x̂2 is uniquely determined by θ and belongs to [2θ − 1, 1/2].

Proof By Lemma 6, the tuple satisfies Eqs. (21), (27) and (28). Plug Bayes’s rule 1−pR1 =

θσ1(w)/q1 into Eq. (27) to obtain

σ1(w) =
(1− θ)(1− x1)

θx1
σ1(s). (36)

Eq. (27), combined with 1− pR1 = θσ1(w)/q1 and x1 + x2 = 1, also implies

q1 =
θσ1(w)

x2
. (37)

Thus, from Bayes’s rule we have

1− pA1 =
θ(1− σ1(w))

1− q1
=
θ − q1x2
1− q1

.
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Plug this into (21), replace pR1 via pR1 = x1 (Eq. (27)) and replace q2 through q2 = (1− θ)/pR2
(due to (7) and pA2 = 0, the latter due to σ2(s) = 1), and eliminate pR2 by (28). Then

x2 =
(1− θ)

1− θ + (1− q1)x2
θ − q1x2
1− q1

,

which is simplified to a quadratic equation

(q1)
2(x2)

2 − 2q1(x2)
2 + x2 + (1− θ)(x− θ) = 0,

namely,

x22(q1 − 1)2 = (1− θ)(θ − x2).

We claim θ − x2 > 0. To see that, note pA1 < pR1 due to Lemma 3 and σ1(w) < 1 and

hence q1 < 1 in any Case-(e) PBE. Then the Bayesian plausibility condition (7) implies

pR1 > 1 − θ. This, combined with Bayes’s rule pR1 = (1 − θ)σ1/q1 and 1 − pR1 = θσ1(w)/q1,

implies σ1(w) < σ1(s). Then (36 implies 1− x1 < θ, namely,

θ − x2 > 0. (38)

Thus, the above quadratic equation implies x2(q1 − 1) = −
√

(1− θ)(θ − x2), namely,

q1 = 1− 1

x2

√
(1− θ)(θ − x2). (39)

Thus, the Case-(e) solution is uniquely determined by x2. In particular,

pR1
(27)
= 1− x2, (40)

pR2
(28)
= 1− θ +

√
(1− θ)(θ − x2), (41)

σ1(w)
(37)
=

x2 −
√

(1− θ)(θ − x2)
θ

, (42)

q2 =
1− θ
pR2

, (43)

with (43) due to Bayes’s rule with respect to σ2(s) = 1.

Finally we verify that 2θ − 1 < x2 < 1/2 in any Case-(e)-ii solution. Recall from the

definition of Case-(e)-ii solutions that pR2 > pR1 . By (40) and (41),

pR2 > pR1 ⇐⇒ 1− θ +
√

(1− θ)(θ − x2) > 1− x2

⇐⇒
√

(1− θ)(θ − x2) > θ − x2. (44)
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By (38), the above inequality is equivalent to(√
(1− θ)(θ − x2)

)2
> (θ − x2)2,

namely, 1− θ > θ − x2. Thus

x2 > 2θ − 1. (45)

To prove x2 < x̂2, the claim about x̂2 in the lemma, recall that (22) holds for any Case-(e)-ii

solution (Lemma 6), namely, q1 ≤ 1− pR2 . Plug (39) and (41) into this inequality to obtain(
1

x2
− 1

)√
(1− θ)(θ − x2) ≥ 1− θ,

namely,

(x2)
2(1− θ)− (θ − x2)(1− x2)2 ≤ 0. (46)

Note: the left-hand side of (46) is strictly increasing in x2. By the assumption θ ≤ 3/4,

the left-hand side of (46) is equal to (1 − θ)(4θ − 3) ≤ 0 when x2 = 2θ − 1, and equal to

3/8− θ/2 ≥ 0 when x2 = 1/2. Thus, there exists a unique x̂2 ∈ [2θ − 1, 1/2] for which (46)

holds at equality when x2 = x̂2, and holds strictly for all x2 < x̂2, as asserted.

Lemma 11 If 2/3 ≤ θ ≤ 3/4, then q2 < θ in any Case-(e)-ii PBE.

Proof By (41) and (43).

q2 < θ ⇐⇒ 1− θ
1− θ +

√
(1− θ)(θ − x2)

< θ

⇐⇒ (1− θ)2 ≤ θ
√

(1− θ)(θ − x2)

⇐⇒ x2 ≤ θ − (1− θ)3

θ2
.

Thus, since x2 < 1/2 by Lemma 10, it suffices to show 1/2 ≤ θ − (1− θ)3/θ2, namely,

4θ3 − 7θ2 + 6θ − 2

2θ2
≥ 0.

Thus we are done if 4θ3 − 7θ2 + 6θ − 2 ≥ 0. To show that, note

d

dθ

[
4θ3 − 7θ2 + 6θ − 2

]
= 12θ2 − 14θ + 6 = 6θ(2θ − 1) + 2(3− 4θ) > 0

because 2θ > 1 by (1) and θ ≤ 3/4 by assumption. Thus, the term 4θ3−7θ2+6θ−2 is strictly

increasing in θ. Since it is equal to 2/27 at θ = 2/3, it follows that 4θ3 − 7θ2 + 6θ − 2 > 0

for all θ ∈ [2/3, 3/4]. This proves q2 < θ, as desired.
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Lemma 12 If 2/3 ≤ θ ≤ 3/4, then the lopsided equilibrium associated with proposal (θ, 1−θ)
generates larger total welfare than any Case-(e)-ii solution.

Proof Since any Case-(e)-ii solution corresponds to a non-lopsided equilibrium, Lemma 1

applies with the roles of players 1 and 2 switched due to pR2 ≥ pR1 in Case-(e)-ii. Thus the

total welfare is equal to

S ′e := 2θpR2 + (q2 − θ)(pR2 − pR1 ).

To prove that S ′e is less than the total welfare generated by the lopsided equilibrium given

proposal (θ, 1−θ), which is equal to θ(3−5θ/2) by Lemma 5, it suffices to prove pR2 < 2−2θ for

any Case-(e)-ii solution: Since q2 < θ by Lemma 11, we have S ′e < 2θpR2 because pR2 −pR1 > 0

in any Case-(e)-ii solution; if, in addition, pR2 < 2− 2θ, then

S ′e < 2θpR2 < 2θ(2− 2θ) ≤ θ(3− 5θ/2),

with the last inequality due to the condition θ ≥ 2/3 in the lemma.

Thus, we verify that pR2 < 2− 2θ. Note from (41) that pR2 < 2− 2θ is equivalent to

1− θ +
√

(1− θ)(θ − x2) < 2− 2θ ⇐⇒
√

(1− θ)(θ − x2) < 1− θ

⇐⇒ 1− θ < θ − x2 ⇐⇒ 2θ − 1 < x2,

where 2θ − 1 < x2 is true by Lemma 10. Thus, pR2 < 2− 2θ, as desired.

I Suboptimality of Any Equilibrium in Eq. (15)

Equilibria in the form of Eq. (15) correspond to Case (d) in Lemma 2. In any such PBE,

each type of each player is totally mixing A and R:

0 < σi(w) < 1, 0 < σi(s) < 1, ∀i ∈ {1, 2}. (47)

This being symmetric between the two players, let us assume without loss that

pR2 ≥ pR1 . (48)

This labeling of the players will be shown to imply x1 ≥ x2 (Lemma 15) and hence consistent

with the labeling in Section 4.1.
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Lemma 13 A tuple (xi, σi, p
A
i , p

R
i , qi)

2
i=1 that satisfies (48) constitutes a Case-(d) solution if

and only if it satisfies (47) and all the following:

1− pR1 = q2(1− pA1 ), (49)

1− pR2 = q1(1− pA2 ), (50)

pR1 = pA2 + x1, (51)

pR2 + θ − 1 = (1− q1)x2. (52)

Proof The best response condition for (47) to constitute a PBE is that V R
i (w)−V A

i (w) =

V R
i (s)−V A

i (s) = 0 for each player i. By (17), that is equivalent to simultaneous satisfaction

of V R
1 (w)− V A

1 (w) = V R
2 (w)− V A

2 (w) = 0,
(
1− pR1

)
= q2

(
1− pA1

)
, and 1− pR2 = q1(1− pA2 ).

To write the condition V R
1 (w) − V A

1 (w) = V R
2 (w) − V A

2 (w) = 0 explicitly, note for each

player i that qi < 1 in this PBE and hence pAi < 1 − θ < pRi by Lemmas 3. This combined

with (48) implies that (18) and (19) apply to the case i = 2 and hence

V R
2 (w)− V A

2 (w) = pR2 − (1− θ)− (1− q1)x2,

V R
1 (w)− V A

1 (w) = (1− q2)
(
pR1 − pA2 − x1

)
.

Consequently, with q2 < 1,

V R
1 (w)− V A

1 (w) = 0 ⇐⇒ pR1 = pA2 + x1,

V R
2 (w)− V A

2 (w) = 0 ⇐⇒ pR2 + θ − 1 = (1− q1)x2. �

Lemma 14 If (xi, σi, p
A
i , p

R
i , qi)

2
i=1 is a Case-(d) solution such that pR2 ≥ pR1 , then

σ1(w) =
θ + x1 − 1 + q1(1− 2x1)

θ
, (53)

σ1(s) =
q1 − θσ1(w)

1− θ
, (54)

σ2(w) = 1− x2
θ
, (55)

σ2(s) =
θ − x2
1− θ

· 1− θ + x2(1− q1)
θ + x2(q1 − 1)

, (56)

x2 < θ, and (57)

(q1)
3 x2 (1− 2x2) + (q1)

2 x2 (3x2 − 1− θ) + q1 (3x2 − 1− θ) (θ − x2) + (θ − x2)2 = 0. (58)
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Proof Eq. (54) follows trivially from q1 = θσ1(w) + (1 − θ)σ1(s). To prove the rest, first

apply Bayes’s rule to 1− pA2 and then to 1− pR2 to obtain

1− pA2 =
θ(1− σ2(w))

1− q2
=

(1− pR2 )θ(1− σ2(w))

1− pR2 − (1− pR2 )q2
=

(1− pR2 )θ(1− σ2(w))

1− pR2 − θσ2(w)
.

Then

pR2 − pA2 = (1− pA2 )− (1− pR2 ) =
(1− pR2 )θ(1− σ2(w))

1− pR2 − θσ2(w)
− (1− pR2 ) =

(1− pR2 )(θ + pR2 − 1)

1− pR2 − θσ2(w)
.

By (50) we have q1 = (1− pR2 )/(1− pA2 ). Plug this into (52) to obtain

(θ + pR2 − 1)(1− pA2 ) = (pR2 − pA2 )x2.

Plugging into this equation the formulas of 1− pA2 and pR2 − pA2 obtained above, we have

(θ + pR2 − 1)
(1− pR2 )θ(1− σ2(w))

1− pR2 − θσ2(w)
=

(1− pR2 )(θ + pR2 − 1)

1− pR2 − θσ2(w)
x2,

namely,

θ(1− σ2(w)) = x2.

Thus (55) is true. Then Eq. (55) coupled with σ2(w) > 0 implies (57).

Second, plug Eqs. (50) and (51) into Eq. (52) to obtain

1− q1(1− pR1 + x1) = 1− θ + (1− q1)x2.

eliminate 1− θ therein by Eq. (7) and cancel and combine terms to obtain

(1− q1)(1− pA1 ) = x2 − q1 (x2 − x1) ,

which, by Bayes’s rule, is equivalent to

θ(1− σ1(w)) = x2 − q1 (x2 − x1) , (59)

which in turn is equivalent to Eq. (53).

Third, rewrite (50) as q1 = (1− pR2 )/(1− pA2 ) and then rewrite the right-hand side by

Bayes’s rule to obtain

q1 =
θσ2(w)

θ(1− σ2(w))
· θ(1− σ2(w)) + (1− θ)(1− σ2(s))

θσ2(w) + (1− θ)σ2(s)
(55)
=

θ − x2
x2

· x2 + (1− θ)(1− σ2(s))
θ − x2 + (1− θ)σ2(s)

,

which implies Eq. (56).
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Finally, we prove Eq. (58). Use Bayes’s rule on player 2 and then use (55) to obtain

(1− q2)(1− pA2 ) = θ(1− σ2(w)) = x2.

Eliminate the q2 in this equation by (49), and pA2 by (51), to rewrite the above equation as(
1− 1− pR1

1− pA1

)
(1− pR1 + x1) = x2,

namely,

(1− pA1 )x2 =
(
pR1 − pA1

) (
1− pR1 + x1

)
. (60)

Meanwhile, use Bayes’s rule on player 1 and then use (59) to obtain

1− pA1 =
θ(1− σ1(w))

1− q1
=
x2 − q1 (x2 − x1)

1− q1
.

Analogously, use Bayes’s rule on player 1 and then use Eq. (53) to obtain

1− pR1 =
θσ1(w)

q1
=
θ + x1 − 1 + q1(1− 2x1)

q1
.

From the two formulas we get

pR1 − pA1 =
x2 − q1 (x2 − x1)

1− q1
− θ + x1 − 1 + q1(x2 − x1)

q1

=
−θ − x1 + 1 + q1θ + 2q1x1 − q

q1(1− q1)

=
x2 − θ − q1(x2 − x1 − θ)

q1(1− q1)
(by x1 + x2 = 1).

Replace the 1− pA1 , 1− pR1 and pR1 − pA1 in (60) with the above formulas to rewrite (60) as

x2 − q1 (x2 − x1)
1− q1

x2 =

(
x2 − θ − q1 (x2 − x1 − θ)

(1− q1)q1

)(
θ + x1 − 1 + q1(1− 2x1)

q1
+ x1

)
=

(
x2 − θ − q1 (x2 − x1 − θ)

(1− q1)q1

)(
q1x2 + θ − x2

q1

)
,

with the second line due to x1 + x2 = 1. Simplify the above equation into

x2(x2 − q1(x2 − x1)) =
x2 − θ − q1(x2 − x1 − θ)

q1
· q1x2 + θ − x2

q1
,

namely,

(q1)
2 x2 (q1x1 + (1− q1)x2) = (q1x1 − (1− q1)(θ − x2)) (q1x2 + θ − x2) .
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Plug x2 = 1− x1 into the above displayed equation to obtain

(q1)
2 x2 (q1(1− x2) + (1− q1)x2) = (q1(1− x2)− (1− q1)(θ − x2)) · (q1x2 + θ − x2)

⇐⇒ (q1)
2 x2 (q1(1− 2x2) + x2) = (q1(1 + θ − 2x2) + x2 − θ) · (q1x2 + θ − x2) ,

⇐⇒ (q1)
3 x2(1− 2x2) + (q1)

2 (x2)
2 = (q1)

2 (1 + θ − 2x2)x2 + (θ − x2)q1(1 + θ − 3x2)− (θ − x2)2

⇐⇒ (q1)
3 x2(1− 2x2) + (q1)

2 x2(3x2 − 1− θ) + q1(θ − x2)(3x2 − 1− θ) + (θ − x2)2 = 0.

Thus, Eq. (58) is true.

Lemma 15 If (xi, σi, p
A
i , p

R
i , qi)

2
i=1 is a Case-(d) solution such that pR2 ≥ pR1 , x1 ≥ 1/2 ≥ x2.

Proof By Bayes’s rule,

1− pR1 =
θσ1(w)

q1

(53)
=

θ − x2 + q1(2x2 − 1)

q1
,

with the second “=” also using x1 + x2 = 1. Meanwhile, write (52) into

1− pR2 = θ + x2(q1 − 1).

Thus,

pR2 ≥ pR1 ⇐⇒
θ − x2 + q1(2x2 − 1)

q1
≥ θ + x2(q1 − 1)

⇐⇒ (3x2 − 1− θ) q1 + (θ − x2) ≥ (q1)
2 x2

⇐⇒ (3x2 − 1− θ) (θ − x2) q1 + (θ − x2)2 ≥ (q1)
2 x2(θ − x2), (61)

with the last line due to θ− x2 > 0 (Ineq. (57)). Subtract Ineq. (61) by Eq. (58) and cancel

some terms to see that Ineq. (61) is equivalent to

0 ≥ (q1)
3 x2 (1− 2x2) + (q1)

2 x2 (3x2 − 1− θ) + (q1)
2 x2(θ − x2),

namely,

0 ≥ (q1)
2 x2 (1− q1) (2x2 − 1) .

Thus,

pR2 ≥ pR1 ⇐⇒ 0 ≥ (q1)
2 x2 (1− q1) (2x2 − 1) ⇐⇒ 0 ≥ 2x2 − 1,

with the second “⇐⇒ ” due to the fact q1 < 1 in all Case-(d) PBEs. Thus we have 2x2 ≤ 1,

which by x1 + x2 = 1 means x1 ≥ 1/2 ≥ x2, as claimed.
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Lemma 16 In any Case-(d) solution, pR2 < 2− 2θ and, if θ ≥ 2/3 in addition, then x1 < θ

and q2 < θ.

Proof First, observe a necessary condition for any Case-(d) proposal-PBE pair:

q1 >
θ − x2
1− x2

. (62)

This follows from plugging (56) into the Case-(d) condition σ2(s) < 1, which gives

θ − x2
1− θ

· 1− θ + x2(1− q1)
θ − x2 + x2q1

< 1.

Since θ − x2 > 0 by (57), the above-displayed inequality simplifies to (62).

Next, we prove pR2 < 2−2θ. It suffices to show (1−q1)x2 < 1−θ, as the two inequalities

are equivalent by (52). Since (1 − q1)x2 < 1 − θ ⇐⇒ q1 > (x2 + θ − 1)/x2, the desired

inequality follows from (62) if
θ − x2
1− x2

≥ x2 + θ − 1

x2
,

which is equivalent to

(2x2 − 1)(1− θ) ≤ 0.

The last inequality is true because x2 ≤ 1/2 (Lemma 15).

Now assume θ ≥ 2/3 to prove x1 < θ and q2 < θ. By (53) and (54), the Case-(d)

condition σ1(s) < 1 becomes

q1 − θ (θ + x1 − 1 + q1(1− 2x1)) /θ

1− θ
< 1,

which simplifies to q1 < 1/2. This, coupled with (62), implies (θ − x2)/(1 − x2) < 1/2,

namely, x2 > 2θ − 1. Thus, since 2θ − 1 ≥ 1 − θ (assumption θ ≥ 2/3) and x2 = 1 − x1,
x1 < θ follows.

To prove q2 < θ, combine the proved fact x1 < θ (i.e., x2 > 1 − θ) with σ2(s) < 1

(part of the definition of Case (d)) to obtain σ2(s) < x2/(1− θ). Plug this and (55) into the

definition q2 = θσ2(w) + (1− θ)σ2(s) to obtain q2 < θ(1−x2/θ) + (1− θ)(x2/(1− θ)) = θ.

Lemma 17 If θ ≥ 2/3, the lopsided equilibrium given proposal (θ, 1 − θ) generates strictly

larger total welfare than any Case-(d) solution does.

Proof Consider any Case-(d) solution (xi, σi, p
A
i , p

R
i , qi)

2
i=1. As in (48), we have pR2 ≥ pR1 .

Then Lemma 1, with the roles between players 1 and 2 switched due to pR2 ≥ pR1 , implies
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that the total welfare generated by this solution is equal to 2θpR2 + (q2− θ)
(
pR2 − pR1

)
, which

by the fact q2 < θ (Lemma 16) is less than 2θpR2 . Since the total welfare generated by the

lopsided equilibrium under proposal (θ, 1− θ) is equal to θ(3− 5θ/2) (Lemma 5), the proof

is complete if θ(3− 5θ/2) ≥ 2θpR2 . As in the proof of Lemma 12, this inequality follows from

θ ≥ 2/3 (assumption) and pR2 < 2− 2θ (Lemma 16).

J Suboptimality of Any Equilibrium in Eq. (16)

Equilibria in the form of (16) correspond to Case (c) in Lemma 2. First we show that, within

the Case-(c) PBEs, the one admitted by the equal-split proposal maximizes the total welfare.

Lemma 18 (i) The Case-(c) PBE given the equal-split proposal maximizes the total welfare

among all Case-(c) solutions. (ii) At this Case-(c) optimal solution, pR1 = pR2 = 1/2, q2 =

2(1− θ), and the total welfare is equal to θ.

Proof As defined in Lemma 2, a PBE belongs to Case (c) if and only if its strategy profile

satisfies

∀i ∈ {1, 2} : 0 < σi(w) < 1 = σi(s). (63)

Then Bayes’s rule implies pAi = 0 and hence (by (7)) qip
R
i = 1 − θ for each player i. The

best response condition for (63) to constitute a PBE is that V R
i (w) − V A

i (w) = 0 and

V R
i (s) − V A

i (s) ≥ 0 for each player i. Since (63) is symmetric between the two players, let

us assume without loss that

pR1 ≥ pR2 . (64)

We will see that pR1 implies x2 ≤ 1/2 (Eq. (68)). Thus this assumption is consistent with

the labeling of the players in Section 4.1. Apply (18) and (19) to the case i = 1 to obtain

V R
1 (w)− V A

1 (w) = pR1 − (1− θ)− (1− q2)x1,

V R
2 (w)− V A

2 (w) = (1− q1)
(
pR2 − pA1 − x2

)
= (1− q1)(pR2 − x2),

with the last “=” due to pAi = 0. Thus, the condition V R
i (w)−V A

i (w) = 0 for both i becomes

pR1 = 1− θ + (1− q2)x1, (65)

pR2 = x2. (66)
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Plug q2 = (1− θ)/pR2 , x1 = 1− x2 and (66) into (65) to have

pR1 = 1− θ +

(
1− 1− θ

x2

)
(1− x2) =

θ + x2(1− 2θ)− (1− x2)2

x2
. (67)

Thus, Ineq. (64), pR1 ≥ pR2 , is equivalent to

θ + x2(1− 2θ)− (1− x2)2 ≥ x22 ⇐⇒ θ(1− 2x2) + x2(1− x2)− (1− x2)2 ≥ 0

⇐⇒ θ(1− 2x2) + (1− x2)(x2 − 1 + x2) ≥ 0

⇐⇒ (1− 2x2)(θ − 1 + x2) ≥ 0.

The last inequality in the multiline displayed above is equivalent to either (i) 1 − 2x2 ≥ 0

and θ− 1 + x2 ≥ 0, namely 1− θ ≤ x2 ≤ 1/2, or (ii) 1− 2x2 ≤ 0 and θ− 1 + x2 ≤ 0, namely

1/2 ≤ x2 ≤ 1− θ, which is impossible due to (1). Thus,

pR1 ≥ pR2 ⇐⇒ 1− θ ≤ x2 ≤ 1/2. (68)

Denote S for the total welfare generated by the PBE. By Lemma 1 (which applies

directly because pR1 ≥ pR2 here) and the fact q1p
R
1 = 1− θ,

S = 2θpR1 + (q1 − θ)(pR1 − pR2 ) = 2θpR1 +

(
1− θ
pR1
− θ
)

(pR1 − pR2 ).

Since pR1 and pR2 are each a function of x2 via (66) and (67), it follows that S is a function

of x2. We claim that S is strictly increasing in x2. To prove that, first calculate:

∂S

∂pR1
= 2θ +

1− θ
pR1
− θ − 1− θ

(pR1 )
2

(
pR1 − pR2

)
= θ +

(1− θ)pR2
(pR1 )

2 ,

∂S

∂pR2
= θ − 1− θ

pR1
.

Second, by (66) and (67), we have dpR2 /dx2 = 1 and

dpR1
dx2

=
1

x22

(
((1− 2θ) + 2(1− x2))x2 − θ − x2(1− 2θ) + (1− x2)2

)
=

1

x22
(1− θ − x22).

Then plug them into

d

dx2
S =

∂S

∂pR1

dpR1
dx2

+
∂S

∂pR2

dpR2
dx2

=
∂S

∂pR1
· 1− θ − (x2)

2

(x2)2
+

∂S

∂pR2
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to obtain

d

dx2
S =

(
θ +

(1− θ)pR2
(pR1 )

2

)(
1− θ
(x2)2

− 1

)
+ θ − 1− θ

pR1

=

(
θ +

(1− θ)pR2
(pR1 )

2

)(
1− θ
(pR2 )

2 − 1

)
+ θ − 1− θ

pR1
(since pR2 = x2, (66))

=
θ(1− θ)

(pR2 )
2 − θ +

(1− θ)2

(pR1 )
2
pR2
− (1− θ)pR2

(pR1 )2
+ θ − (1− θ)

pR1

=
(1− θ)

(pR1 )
2

(pR2 )
2

[
θ
(
pR1
)2

+ (1− θ)pR2 − pR2
(
pR2
)2 − pR1 (pR2 )2]

=
(1− θ)

(pR1 )
2

(pR2 )
2

[
θ
(
pR1
)2

+ q2
(
pR2
)2 − pR2 (pR2 )2 − pR1 (pR2 )2] (since q2p

R
2 = 1− θ)

≥ (1− θ)
(pR1 )

2
(pR2 )

2

[
θ
(
pR2
)2

+ q2
(
pR2
)2 − pR2 (pR2 )2 − pR1 (pR2 )2] (since pR1 ≥ pR2 )

=
(1− θ)
(pR1 )

2

[
θ + q2 − pR2 − pR1

]
=

(1− θ)
(pR1 )

2

[
θ − x2 + q2 − pR1

]
(since pR2 = x2)

> 0.

The inequality at the end holds because, by the fact q2 = (1− θ)/pR2 = (1− θ)/x2 and (67),

θ − x2 + q2 − pR1 = θ − x2 +
1− θ
x2
− θ + x2(1− 2θ)− (1− x2)2

x2

=
3θx2 + 2− 2θ − 3x2

x2
=

(1− θ)(2− 3x2)

x2

is strictly positive because x2 ≤ 1/2 < 2/3 due to (64) and (68).

Now that S is strictly increasing in x2 and x2 ≤ 1/2, S is maximized at x2 = 1/2 among

all the solutions (xi, σi, p
A
i , p

R
i , qi)

2
i=1 that belong to Case (c). It follows that the equal-split

proposal, x1 = x2 = 1/2, attains the maximum of S among these solutions. Since it is easy

to verify that the Case-(c) solution under this proposal does constitute a PBE, Claim (i) of

the lemma is proved.

To prove Claim (ii) of the lemma, plug x1 = x2 = 1/2 into (65)–(67) to obtain pR2 = 1/2,

q2 = (1 − θ)/pR2 = 2(1 − θ), and pR1 = 1/2. By pR1 = pR2 = 1/2 and Lemma 1, the total

welfare is equal to θ. Thus Claim (ii) follows.

By Lemma 18, the largest total welfare that any Case-(c) solution can achieve is equal

to θ. By contrast, the total welfare generated by the lopsided solution (θ, 1− θ) is equal to
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θ(3 − 5θ/2) by Lemma 5. Our assumption θ ≤ 3/4 in the proposition implies the desired

conclusion θ < θ(3− 5θ/2).
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