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Abstract
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ing incentives and continuum of types, any interim incentive efficient mechanism is a
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1 Introduction

Initially formulated by Holmström and Myerson [4], interim incentive efficiency (IIE) is a

profound concept for mechanism design that incorporates the interests from various parties

across their various private information rather than merely optimize on behalf of only one of

the parties. It is particularly relevant to political issues such as wealth distributions across

individuals or across groups. There, the social surplus, or a simple sum of the expected

payoffs across individuals, is insufficient to capture the various preference intensities across

individuals and across groups.

IIE has been studied by Gresik [3] and Wilson [15] on bilateral trade, Laussel and Pal-

frey [6] and Ledyard and Palfrey [7] on public good mechanisms, and Ledyard and Palfrey [8]

and Pérez-Nievas [10] on a broad class of quasilinear environments. Ledyard and Palfrey [8]

have provided a forceful motivation for IIE from both normative and positive perspectives.

Recently, in the IIE spirit of allowing for arbitrary welfare weights across player-types, Dwor-

czak, Kominers and Akbarpour [2] consider redistributions in public finance.

Requiring immunity to Pareto improvement across types of any player, IIE is a mul-

tidimensional design objective. To characterize IIE through mechanism design techniques,

the literature relies on a utilitarian representation assertion that IIE implies maximization

of a one-dimensional objective that aggregates the preferences across the multiple player-

types through an endogenous welfare weight distribution, which assigns measures to sets of

player-types. While it is trivial given finitely many possible types, as in Holmström and

Myerson [4], the utilitarian representation assertion, even if true, is nontrivial given a con-

tinuum of possible types, as occurs in many applications and in all the other works cited

above. In those works except Pérez-Nievas [10], the assertion is either implicitly assumed

or stated without a proof. Pérez-Nievas [10] gives a clever proof of the assertion, though

the proof relies on the assumption that types are all one-dimensional.1 This note proves

the representation assertion in a quasilinear environment that is broader than those in the

above-cited literature. I allow for multidimensional types (e.g., multiple-object auctions)

and countervailing incentives when a player can act as a buyer or as a seller endogenously.

Both cases are new to the above-cited works that assume continuum of types.2

The complication of the theorem caused by a continuum of types is analogous to the

complication that macroeconomists face in decentralizing a planner’s optimum into a price

system given infinite-horizon models, with our profile of interim expected payoffs across

1It uses a clever maneuver of integration-by-parts along the dimension of each player’s type. With

multidimensional types, this step would not go through unless the endogenous welfare distribution is somehow

stochastically independent across the dimensions of each player’s type (cf. McAfee and McMillan [9]).
2Dworczak et al. [2] argue that their model can be extended to a case with two-dimensional types. They

implicitly assume the utilitarian representation and do not state or prove it.
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player-types corresponding to their consumption streams across periods. As is explained in

Stokey, Lucas and Prescott [14, §15.4, §16.6], one would need an appropriate topological

vector space for such infinite-dimensional objects to guarantee existence of a separating

hyperplane and ensure that the separating hyperplane can be represented by an economically

meaningful operator. My proof exploits a basic fact in mechanism design that a player’s

interim expected payoff is a continuous function of the type. That allows us to formulate

the space of payoff profiles as the product of the spaces of continuous functions defined on

compact cubes, thereby applying the Riesz-Markov theorem to represent the player-type

preference aggregator by a profile of player-specific Radon measures of their types.

2 The Environment

There are n players (n ≥ 2), each assumed risk neutral, and m kinds of transferable objects

other than money (m ≥ 1). Each player’s type belongs to a set Ti :=
∏m

j=1[aij, bij] such

that either Ti is singleton or the type is independently drawn according to an absolutely

continuous cdf Fi whose support is Ti.

Any outcome takes the form ((xij)
m
j=1, yi)

n
i=1 ∈ (Rm × R)n such that:

i. the non-monetary outcome ((xij)
m
j=1)

n
i=1, with xij denoting the quantity of player i’s

net receipt of the jth kind of objects, belongs to a commonly known subset X of Rmn;

ii. the monetary transfer configuration (yi)
n
i=1, with yi being player i’s net monetary pay-

ment, satisfies an aggregate condition that
∑n

i=1 yi belongs to a subset Y
(
((xij)

m
j=1)

n
i=1

)
of R+, where Y is a commonly known correspondence.

Denote xi := (xij)
m
j=1, ti := (tij)

m
j=1, and xi · ti :=

∑
j xijtij. Given any type ti ∈ Ti,

player i’s preference relation on the outcomes is represented by the vNM utility function

(xi, yi) 7−→ xi · ti − yi. (1)

Assumption 1 X is convex and contains the zero vector 0 in Rmn; 0 ∈ Y (0).

Assumption 2 There exist (x0i )
n
i=1 ∈ X and (y0i )

n
i=1 ∈ Rn for which

∑n
i=1 y

0
i ∈ Y ((x0i )

n
i=1)

and x0i · ti − y0i > 0 for all i ∈ {1, . . . , n} and all ti ∈ Ti.

Assumption 3 For any x ∈ X, Y (x) is convex and, for any x′ ∈ X and any α ∈ [0, 1],

Y (αx+ (1− α)x′) ⊇ αY (x) + (1− α)Y (x′). (2)
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Assumption 1 says it is physically feasible that everyone gets zero payoff. Assumption 2

requires that there be an outcome that, if implemented, gives positive payoff to everyone.

In most applications, the correspondence Y in Assumption 2 is simply the set [0,∞) con-

stantly, requiring only ex post budget balancing. More generally, however, the assumption

allows Y (x) to vary with x so as to include the case of public good provision, where the

minimal amount of aggregate payment is a function of the quantity of the public good. The

convexity conditions in Assumptions 1 and 3 are natural because the representation theorem,

essentially a separating hyperplane argument, inevitably involves convex analysis.3

This environment has two features. First, types can be multidimensional. Second, a

player has countervailing incentives, playing the role of a buyer and that of a seller, depending

on the realized type and the mechanism: xij, the counterpart to player i’s winning probability

of object j in the usual auction models, can be positive–so the player acts as a buyer—or

negative—so the player acts as a seller. Following are the main special cases:

Provision of a public good This is the case where m = 1,

X = {(xi)ni=1 ∈ [0, 1]n | x1 = · · · = xn} ,

and, for some c ≥ 0, Y ((xi)
n
i=1) = [cx1,∞) for all (xi)

n
i=1 ∈ X. Here the parameter c

is the per-unit cost of providing the public good.

Multiunit auctions with capacity constraints for any coalition Let m = 1. The ca-

pacity constraints, as is formulated by Che, Kim and Mierendorff [1], correspond to

a pair (L,C) of functions L,C : 2{1,...,n} → R+, with L 5 C, such that any outcome

(xi, yi)
n
i=1 ∈ R2n is required to satisfy L(G) ≤

∑
i∈G xi ≤ C(G) for any subset G of

{1, . . . , n}. These inequalities obviously define a convex compact polytope X in Rn.

Multiple-object auctions This is the case where m > 1. Various degrees of complemen-

tarity or substitutability across objects for player i can be captured by the various

shapes of the projection of X onto the subspace for xi. For instance, if the projection

is a lattice with respect to the coordinate-wise ≥ partial ordering on Rm, then acquir-

ing a larger quantity xij of object j makes it feasible for player i to acquire a larger

quantity xik of object k. By contrast, if the projection is a hyperplane in Rm then the

various objects are perfect substitutes to player i.

3In particular, condition (2) plays only one role in the proof: if a payment configuration (yi)
n
i=1 is phys-

ically feasible given non-monetary outcome (xi)
n
i=1, and another payment configuration (y′i)

n
i=1 physically

feasible given another outcome (x′i)
n
i=1, then any convex combination between (yi)

n
i=1 and (y′i)

n
i=1 is physically

feasible given the corresponding convex combination between (xi)
n
i=1 and (x′i)

n
i=1.
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Partnership dissolution This is the case where m = 1,

X =

{
(xi)

n
i=1 ∈

n∏
i=1

[−ei, 1− ei]

∣∣∣∣∣
n∑
i=1

xi = 0

}
,

where (ei)
n
i=1 ∈ [0, 1]n is a list of parameters for which

∑
i ei = 1, and Y (x) = {0} for

all x ∈ X. Here, ei ∈ [0, 1] is interpreted as player i’s initial share of the partnership,

Y (x) = {0} the budget balance condition that allows for no undistributed monetary

surplus, and xi player i’s net increase in the share of the partnership. This case is

equivalent to an exchange economy where ei is i’s endowment of the good, and xi

player i’s net trade thereof.

Allocation of a good and a NIMBY This is the case where m = 1,

X =

{
(xi)

n
i=1 ∈ [−c, 1]n

∣∣∣∣∣ −c ≤
n∑
i=1

xi ≤ 1

}
,

and Y (x) = [0,∞) for all x ∈ X. Here xi corresponds to a lottery involving two

items, a good and a bad (NIMBY), such that the value of the good is equal to one,

and that of the bad equal to −c, to all players. Thus xi = πiA − cπiB for some

(πiA, πiB) ∈ [0, 1]2 such that player i receives the good with probability πiA, and the

bad with probability πiB (cf. Kang and Zheng [5]).

3 Incentive Efficiency and Utilitarian Representation

Denote T :=
∏

i Ti. Without loss of generality, we shall restrict attention to direct revelation

mechanisms (DRM), each in the form of a profile (qi, pi)
n
i=1 of functions qi : T → Rm

and pi : T → R that assigns, to every profile t ∈ T of realized types across players, an

outcome (qi(t), pi(t))
n
i=1. Recall the definition of outcomes in Section 2.

For any i, denote T−i :=
∏

j 6=i Tj and F−i for the cumulative distribution on T−i gen-

erated by (Fj)j 6=i. A reduced form means a profile (Qi, Pi)
n
i=1 of functions Qi : Ti → Rm

and Pi : Ti → R for all i. A reduced form (Qi, Pi)
n
i=1 is said to be ex post feasible (XF) iff

there exists a DRM (qi, pi)
n
i=1 such that, for each i, Qi is the marginal of qi onto Ti, i.e.,

Qi(ti) =
∫
T−i

qi(ti, t−i)dF−i(t−i) for any ti ∈ Ti, and Pi is the marginal of pi onto Ti.

For any reduced form (Q,P ) := (Qi, Pi)
n
i=1, any player i and any ti ∈ Ti, define

Ui(ti|Q,P ) := ti ·Qi(ti)− Pi(ti). (3)

Incentive compatibility (IC) of (Q,P ) means that, for any player i and any ti ∈ Ti,

Ui(ti|Q,P ) = max
t̂i∈Ti

{
ti ·Qi(t̂i)− Pi(t̂i)

}
. (4)
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Individual rationality (IR) of a reduced form (Q,P ) means that Ui(ti|Q,P ) ≥ 0 for any

player i and any type ti ∈ Ti.
A reduced form (Q′, P ′) interim Pareto dominates another reduced form (Q,P ) if and

only if (i) (Q′, P ′) is XF, IC and IR; and (ii) Ui(·|Q′, P ′) ≥ Ui(·|Q,P ) a.e. [Fi] on Ti for all

player i, and there exists a player i and a subset S ⊆ Ti such that S is of (strictly) positive

Fi-measure and Ui(·|Q′, P ′) > Ui(·|Q,P ) on S.

A reduced form (Q,P ) is interim incentive efficient (IIE) if and only if (i) (Q,P ) is

XF, IC and IR; and (ii) it is not interim Pareto dominated by a reduced form.

Theorem For any IIE (Q∗, P ∗) there exists a profile (Λi)
n
i=1 such that Λi is a Radon

measure on Ti for each i, with Λi not identically zero for some i, and (Q∗, P ∗) maximizes

n∑
i=1

∫
Ti

Ui(ti|Q,P )dΛi(ti) (5)

among all (Q,P ) that are IC, IR and XF.

Remark 1 In (5), individual player-type preferences are aggregated by the player-specific

Radon measures (Λi)
n
i=1. Such form of aggregators affords as much tractability as the stan-

dard integration-by-parts routine in mechanism design requires. That is because Fubini’s

theorem applies to the product measure formed by Λi and Fi. See Kang and Zheng [5]) for

an application in a countervailing incentive environment.

Remark 2 Λi(Ti) corresponds to the ex ante expected welfare weight assigned to player i.

In the extant literature on IIE such as Ledyard and Palfrey [7], mechanisms are not subject

to the IR constraint and the counterpart of Λi(Ti) is thus identical across players. In my

model, mechanisms are required to be IR, it is possible that Λi(Ti) > Λj(Tj). In that case,

the ex ante expected value of monetary surplus raised from implementing an allocation is

transferred, as lump sums, only to those players belonging to arg maxi Λi(Ti).

Remark 3 Even if the welfare weight Λi on player i is identically zero on Ti, an optimal

mechanism of (5) does not always give zero surplus to i. With player i assigned zero welfare

weight, the optimal mechanism transfers the expected revenue extracted from i to those

players who have maximum ex ante welfare weights (arg maxj Λj(Tj)). To extract such

expected revenues from player i, the mechanism needs to concede some rent to i.

Remark 4 Since my model allows a player’s type space to be singleton, if this player is

the seller in an auction environment that has no private information, when Λi is identically

zero for all bidders and nonzero only for the seller, a maximum of (5) becomes the revenue-

maximizing auction in the traditional sense.
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4 The Proof of the Theorem

Characterization of Incentive Compatibility For any integrable function g : Rm → R
and any v, w ∈ Rm, with v := (vj)

m
j=1 and w := (wj)

m
j=1, denote∫ w

v

g(s) · ds :=

∫ w1

v1

g(τ, v2, . . . , vm)dτ +

∫ w2

v2

g(w1, τ, v3, . . . , vm)dτ + · · ·

+

∫ wm−1

vm−1

g(w1, . . . , wm−2, τ, vm)dτ +

∫ wm

vm

g(w1, . . . , wm−2, wm−1, τ)dτ.

Lemma 1 A reduced form (Q,P ) is IC if and only if, for any player i, the function Ui(·|Q,P )

defined by (3) is convex on Ti, and

∀ti ∈ Ti : Ui(ti|Q,P )− Ui(ai|Q,P ) =

∫ ti

ai

Qi(si) · dsi. (6)

Proof The proof is similar to Rochet [11, Prop. 2]. First, suppose that (Q,P ) is IC.

Then for any player i and any ti ∈ Ti, (4) holds. Thus, Ui(·|Q,P ), the supremum of linear

functions, is convex. For any ti := (tij)
m
j=1 ∈ Ti and any j ∈ {1, . . . ,m}, denote

t≤ji := (tik)
j
k=1, t≥ji := (tik)

m
k=j, t≤0i := t≥n+1

i := null.

For any j ∈ {1, . . . ,m}, (4) implies that, for any tij ∈ [aij, bij], setting sij := tij solves

max
sij∈[aij ,bij ]

(
t≤j−1i , tij, a

≥j+1
i

)
·Qi

(
t≤j−1i , sij, a

≥j+1
i

)
− Pi

(
t≤j−1i , sij, a

≥j+1
i

)
.

Applying the Milgrom-Segal envelope theorem to the above problem, we have

Ui

(
t≤j−1i , tij, a

≥j+1
i | Q,P

)
− Ui

(
t≤j−1i , aij, a

≥j+1
i | Q,P

)
=

∫ tij

aij

Qi

(
t≤j−1i , sij, a

≥j+1
i

)
dsij.

Summing this equation across all j, we obtain (6).

Conversely, suppose that Ui(·|Q,P ) defined by (3) is convex and satisfies (6). For any

v ∈ Ti, now that Ui(·|Q,P ) is convex, any x ∈ Rm is a subgradient of Ui(·|Q,P ) at v if

lim
α↓0

1

α
(Ui(v + α(w − v) | Q,P )− Ui(ti | Q,P )) ≥ x · (w − v)

for any w ∈ Rm (by Rockafellar [12, Theorem 23.2, p216]). This inequality is satisfied by

x := Qi(v) for all w, due to (6) applied to the case where ti = v + α(w − v) and to the case

where ti is itself. Thus,

Qi(v) ∈ ∂Ui(v|Q,P )

for all v ∈ Ti, with ∂Ui(v|Q,P ) denoting the subdifferential of Ui(·|Q,P ) at v. For any

ti, t
′
i ∈ Ti, by definition of ∂Ui(t

′
i|Q,P ) we have

Ui(ti|Q,P ) ≥ Ui(t
′
i|Q,P ) + (ti − t′i) ·Qi(t

′
i).
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Plug (3) into this inequality to see that

ti ·Qi(ti)− Pi(ti) ≥ ti ·Qi(t
′
i)− Pi(t′i).

This true for all i, ti and t′i, we have shown that (Q,P ) is IC.

Convexity of the Utility Possibility Set For each i ∈ {1, . . . , n} denote C(Ti) for the

space of continuous real functions defined on the compact cube Ti, with the maximum norm

‖ · ‖max. Let

C :=
n∏
i=1

C(Ti)

and endow C with the maximum norm such that ‖(ϕi)ni=1‖max := maxi ‖ϕi‖max for all

(ϕi)
n
i=1 ∈ C . Thus, C is a normed linear space. Define the utility possibility set

U := {(Wi)
n
i=1 ∈ C | ∃ IC, IR & XF (Q,P ) [∀i ∀ti ∈ Ti [Wi(ti) ≤ Ui (ti | Q,P ))]]} .

By Lemma 1, (Ui(· | Q,P ))ni=1 ∈ C for any IC reduced form (Q,P ).

Lemma 2 U is convex.

Proof Pick any (W 1
i )ni=1, (W

2
i )ni=1 ∈ U. By definition of U, there exist reduced forms

(Q1
i , P

1
i )ni=1 and (Q2

i , P
2
i )ni=1 that are each IC, IR and XF and, for any i ∈ {1, . . . , n}, k ∈

{1, 2}, and ti ∈ Ti,
W k
i (ti) ≤ ti ·Qk

i (ti)− P k
i (ti). (7)

The IR condition means that, for any i, k, and ti,

0 ≤ ti ·Qk
i (ti)− P k

i (ti). (8)

By Lemma 1 and definition (3), the IC condition means, with the shorthand

Uk
i := Ui(·|Qk, P k),

that Uk
i is convex on Ti for each i and k, and

Uk
i (ti) = Uk

i (ai) +

∫ ti

ai

Qk
i (s) · ds (9)

for any ti ∈ Ti. The XF condition means that there exist DRMs (q1i , p
1
i )
n
i=1 and (q2i , p

2
i )
n
i=1

such that, for any k ∈ {1, 2}, any t ∈ T , any i ∈ {1, . . . , n} and any ti ∈ Ti,

(qki (t))ni=1 ∈ X, (10)
n∑
i=1

pki (t) ∈ Y ((qki (t))ni=1), (11)

Qk
i (ti) =

∫
T−i

qki (ti, t−i)dF−i(t−i), (12)

P k
i (ti) =

∫
T−i

pki (ti, t−i)dF−i(t−i). (13)
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Pick any γ ∈ [0, 1]. We shall show that the vector (Wi)
n
i=1 defined by

Wi := γW 1
i + (1− γ)W 2

i

for each i belongs to U. To that end, define, for any i, any t ∈ T , and any ti ∈ Ti,

qi(t) := γq1i (t) + (1− γ)q2i (t), (14)

pi(t) := γp1i (t) + (1− γ)p2i (t), (15)

Qi(ti) :=

∫
T−i

qi(ti, t−i)dF−i(t−i),

Pi(ti) :=

∫
T−i

pi(ti, t−i)dF−i(t−i),

Ui(ti|Q,P ) := ti ·Qi(ti)− Pi(ti). (16)

By these definitions, for each i we have

Qi = γQ1
i + (1− γ)Q2

i , (17)

Pi = γP 1
i + (1− γ)P 2

i , (18)

Ui(·|Q,P ) = γU1
i + (1− γ)U2

i . (19)

It suffices to prove that the reduced form (Q,P ) := (Qi, Pi)
n
i=1 is IC, IR and XF, for then

Wi = γW 1
i + (1− γ)W 2

i ≤ γU1
i + (1− γ)U2

i = Ui(·|Q,P )

for all i. This, coupled with the fact that Wi is continuous on Ti (since W 1
i and W 2

i are each

continuous by definition of U), implies that (Wi)
n
i=1 ∈ U.

Thus we shall complete the proof by showing that (Qi, Pi)
n
i=1 is IC, IR and XF. First,

IR follows directly from (8) and (19). Second, we show XF. Since X is assumed convex, (10)

and (14) together imply (qi(t))
n
i=1 ∈ X for any t ∈ T . By the assumption (2) of Y , (10)

implies that, for any t ∈ T ,

γY
(
(q1i (t))

n
i=1

)
+ (1− γ)Y

(
(q2i (t))

n
i=1

)
⊆ Y

(
γ(q1i (t))

n
i=1 + (1− γ)(q2i (t))

n
i=1

)
= Y ((qi(t))

n
i=1) ,

with the second line due to (14). It then follows from (11) and (15) that∑
i

pi(t) = γ
∑
i

p1i (t) + (1− γ)
∑
i

p2i (t) ∈ γY
(
(q1i (t))

n
i=1

)
+ (1− γ)Y

(
(q2i (t))

n
i=1

)
⊆ Y ((qi(t))

n
i=1)

for all t ∈ T . Thus, by the above definition of (Qi, Pi), the reduced form is XF.
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Third, we verify that (Q,P ) is IC. By Lemma 1, it suffices to verify that, for any i,

Ui(·|Q,P ) is convex and (6) is satisfied. By (9), (17) and (19), (6) is satisfied. To show

that Ui(·|Q,P ) is convex, pick any t′i, t
′′
i ∈ Ti and any α ∈ [0, 1]. Let ti := αt′i + (1 − α)t′′i

and denote Ui(·) := Ui(·|Q,P ). We need only to show Ui(ti) ≤ αUi(t
′
i) + (1− α)Ui(t

′′
i ):

Ui(ti) = ti ·
(
γQ1

i (ti) + (1− γ)Q2
i (ti)

)
− γP 1

i (ti)− (1− γ)P 2
i (ti)

= γ
(
ti ·Q1

i (ti)− P 1
i (ti)

)
+ (1− γ)

(
ti ·Q2

i (ti)− P 2
i (ti)

)
= γU1

i (αt′i + (1− α)t′′i ) + (1− γ)U2
i (αt′i + (1− α)t′′i )

≤ γ
(
αU1

i (t′i) + (1− α)U1
i (t′′i )

)
+ (1− γ)

(
αU2

i (t′i) + (1− α)U2
i (t′′i )

)
= α

(
γU1

i (t′i) + (1− γ)U2
i (t′i)

)
+ (1− α)

(
γU1

i (t′′i ) + (1− γ)U2
i (t′′i )

)
= αUi(t

′
i) + (1− α)Ui(t

′′
i ),

where the first line follows from (16), (17) and (18), the fourth line (inequality) from the

fact that U1
i and U2

i are each convex, and the last line from (19). Thus, Ui is convex.

Separating Hyperplane Pick any IIE reduced form (Q∗, P ∗). Denote u∗i := Ui(· | Q∗, P ∗)
for each i. Then (u∗i )

n
i=1 ∈ U. Let

V((u∗i )
n
i=1) :=

{
(ui)

n
i=1 ∈ C

∣∣∣∣∣ ∀i [ui ≥ u∗i a.e. [Fi] on Ti] ;

∃i [ui > u∗i on Si ⊆ Ti;Fi-measure of Si is > 0]

}
.

Lemma 3 There exists a continuous linear functional φ on C , not identically zero, such

that for all (ui)
n
i=1 ∈ U,

φ ((ui)
n
i=1) ≤ φ ((u∗i )

n
i=1) . (20)

Proof First, U is convex by Lemma 2, and V((u∗i )
n
i=1) convex by its definition. Second, U

contains an interior point: Consider a mechanism A whose outcome is always to have xi = 0

and yi = 0 for all i and all j. By Assumption 1, this mechanism is ex post feasible. It is

obviously IC and IR and it gives every type of every player zero payoff. This payoff profile is

an interior point of U. To see that, consider another mechanism B whose outcome is always

the (x0i , y
0
i )
n
i=1 specified in Assumption 2. By that assumption, this mechanism is XF and

gives every type of every player strictly positive payoff. Clearly, it is also IC and IR. For

each player i, with Ti compact,

u0i := min
ti∈Ti

x0i · ti − y0i > 0.

Now consider a third mechanism C that, for any profile of messages from the players, carries

out mechanism A with probability 1− ε, and mechanism B with probability ε (0 < ε < 1).

Clearly mechanism C is also IC, IR and XF, and the profile of expected payoff functions it
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generates is larger than that generated by mechanism A in every dimension by at least εu0i .

Since this is true for all ε ∈ (0, 1), the zero payoff profile generated by the mechanism A is

an interior point of U with respect to the max norm.

Third, V ((u∗i )
n
i=1) contain no interior point of U. Otherwise, there exists an IC, IR

and XF reduced form that generates a payoff vector that is at least as large as this interior

point in all dimensions. Then, by definition of V ((u∗i )
n
i=1), this reduced form interim Pareto

dominates (u∗i )
n
i=1, contradicting the premise that the latter is IIE.

Thus, by the Hahn-Banach theorem, there exists a continuous linear functional φ on C ,

not identically zero, such that, for some constant w, for any (ui)
n
i=1 ∈ U and any (ûi)

n
i=1 ∈

V((u∗i )
n
i=1),

φ ((ui)
n
i=1) ≤ w ≤ φ ((ûi)

n
i=1) . (21)

For any ε > 0, the profile (u∗i + ε)ni=1 ∈ V((u∗i )
n
i=1). Thus

w ≤ φ ((u∗i + ε)ni=1) = φ ((u∗i )
n
i=1) + εφ(1),

with the equality due to linearity of φ, and 1 denoting the unit vector of C . Since continuous

linear functionals are bounded, εφ(1) → 0 as ε → 0. Hence w ≤ φ ((u∗i )
n
i=1). This coupled

with the fact (u∗i )
n
i=1 ∈ U implies φ ((u∗i )

n
i=1) ≤ w ≤ φ ((u∗i )

n
i=1), hence φ ((u∗i )

n
i=1) = w. Plug

this into (21) to obtain (20).

Representation For each i ∈ {1, . . . , n} and any ui ∈ C(Ti) let

φi(ui) := φ (0, . . . , 0, ui, 0, . . . , 0) .

That is, φi is the action of φ on the profile of payoff functions whose components are con-

stantly zero except the one corresponding to player i’s payoff function. By linearity of φ,

φ ((ui)
n
i=1) =

n∑
i=1

φi(ui) (22)

for all (ui)
n
i=1 ∈ C . Obviously, for each i, φi is a continuous linear functional on C(Ti).

Thus φi is also a bounded functional on C(Ti).

Lemma 4 For each i ∈ {1, . . . , n}, φi is positive.4

Proof Suppose, to the contrary, that φi(ui) < 0 for some ui ∈ C(Ti) such that ui ≥ 0 on Ti.

Then
(
u∗i − ui, (u∗j)j 6=i

)
∈ U by definition of U, and by Lemma 3 we derive a contradiction:

φ
(
(u∗j)

n
j=1

)
≥ φ

((
u∗i − ui, (u∗j)j 6=i

))
=

n∑
j=1

φj(u
∗
j)− φi(ui) >

n∑
j=1

φj(u
∗
j) = φ

(
(u∗j)

n
j=1

)
. �

4A functional φi on C(Ti) is positive iff φi(ui) ≥ 0 for any ui ∈ C(Ti) such that ui ≥ 0 on Ti.
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For any i, since φi is a positive linear functional on C(Ti), with Ti =
∏m

j=1[aij, bij] a

compact Hausdorff space, the Riesz-Markov theorem (Royden and Fitzpatrick [13, p458])

implies that there exists a unique Radon measure Λi on the Borel σ-algebra B(Ti) associated

with the Euclidean topology on Ti such that

φi(ui) =

∫
Ti

uidΛi

for all ui ∈ C(Ti). By definition of Radon measures, Λi ≥ 0. It follows that Λi(S) > 0

for some measurable subset S of Ti and some i: Otherwise Λi = 0 for all i, hence φ is

identically zero on C , contradicting Lemma 3. This, combined with (20) and (22), delivers

the representation theorem.

5 Conclusion

Proving the representation theorem in a general model, this note provides a foundation for

the application of the mechanism design techniques to IIE on a wide variety of environments,

including multidimensional types and countervailing incentives. The theorem is still relevant

if one cares only about the positive analysis on such environments, because, as explained

by Ledyard and Palfrey [7], the theorem implies that there is no loss of generality from

the positive perspective to consider the normative notion of a social planner designing an

optimal mechanism given some welfare distribution across player-types.

An open question is whether the converse of the representation is true in general.

Pérez-Nievas [10] provides an argument for the converse based on one-dimensional types.

An argument for any multidimensional-type case has yet to be found.
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