Corrigendum to "Core equivalence theorem with production" [J. Econ. Theory 137 (1) (2007) 246-270]

David Turchick ${ }^{\text {a }}$, Siyang Xiong ${ }^{\text {b }}$, Charles Z. Zheng ${ }^{\text {c,*, }}{ }^{\text {1 }}$

${ }^{\text {a }}$ Department of Economics, University of São Paulo, São Paulo, SP, Brazil
${ }^{\text {b }}$ Department of Economics, University of California, Riverside, CA, United States 15
${ }^{\text {c }}$ Department of Economics, University of Western Ontario, London, ON, Canada 16
Received 1 April 2022; accepted 1 May $2022 \quad 17$
Abstract
One of the proofs in Xiong and Zheng (2007) has a subtle mistake. This note provides a simple correction
without changing the structure of the proof or altering any assumption in the said paper.

© 2022 Elsevier Inc. All rights reserved.	22
	25
JEL classification: ???	26

The Core Equivalence Theorem has been established for private ownership productive economies by Xiong and Zheng (2007, Theorem 11). A step in its proof is to show core equivalence for cores defined by a preliminary notion of blocking, wishful blocking (Proposition 6). However, this step contains a subtle mistake. Starting with any type-symmetric allocation $\left(\left(x_{i_{1}}\right)_{i_{1} \in I_{1}},\left(y_{j_{1}}\right)_{j_{1} \in J_{1}}\right)$ that is not wishfully blocked in any replica economy, the step (Appendix C, p. 265) defines

DOI of original article: https://doi.org/10.1016/j.jet.2007.01.009.

* Corresponding author.

E-mail addresses: dturchick@usp.br (D. Turchick), siyang.xiong @ucr.edu (S. Xiong), charles.zheng @uwo.ca (C.Z. Zheng).
${ }^{1}$ Zheng acknowledges financial support from the Social Science and Humanities Research Council of Canada, Insight Grant R4809A04.
https://doi.org/10.1016/j.jet.2022.105476
0022-0531/© 2022 Elsevier Inc. All rights reserved.

$$
\Gamma_{i_{1}}:=\left\{z_{i_{1}} \in \mathbb{R}^{l}: x_{i_{1}} \prec_{i_{1}} z_{i_{1}}+e_{i_{1}}+\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime} \text { for some }\left(y_{j_{1}}^{\prime}\right)_{j_{1} \in J_{1}} \in \prod_{j_{1} \in J_{1}} Y_{j_{1}}\right\}
$$

for any type $i_{1} \in I_{1}$ and claims that the zero vector $\mathbf{0}$ does not belong to the convex hull Γ of $\bigcup_{i_{1} \in I_{1}} \Gamma_{i_{1}}$, so that a hyperplane separating $\mathbf{0}$ from Γ and passing through $\mathbf{0}$ exists and the rest of the proof follows.

Xiong and Zheng's (2007) argument for this claim is based on an assertion that, given any $z_{i_{1}} \in$ $\Gamma_{i_{1}}$ and a $\left(y_{j_{1}}^{\prime}\right)_{j_{1} \in J_{1}} \in \prod_{j_{1} \in J_{1}} Y_{j_{1}}$ that justifies $z_{i_{1}} \in \Gamma_{i_{1}}$ (i.e., $x_{i_{1}} \prec_{i_{1}} z_{i_{1}}+e_{i_{1}}+\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime}$), if $\left(z_{i_{1}}^{k}\right)_{k=1}^{\infty}$ is a sequence converging to $z_{i_{1}}$ as $k \rightarrow \infty$, then $x_{i_{1}} \prec_{i_{1}} z_{i_{1}}^{k}+e_{i_{1}}+\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime}$ for all sufficiently large k. However, the assertion is not necessarily true. That is because $z_{i_{1}}+$ $e_{i_{1}}+\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime}$ can be on the boundary of the consumption set \mathbb{R}_{+}^{l} so that $z_{i_{1}}^{k}+e_{i_{1}}+$ $\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime}$ is not necessarily an element of \mathbb{R}_{+}^{l}, and hence not necessarily comparable to the bona fide consumption bundle $x_{i_{1}}$ via the preference relation $\succ_{i_{1}}$, however large is k.

Note that the boundary possibility pointed out above cannot be ruled out by adding to Prop. 6 the assumption of boundary aversion (Assumption 9, Xiong and Zheng, 2007). That is because preferences with boundary aversion still allow for the case where both $x_{i_{1}}$ and $z_{i_{1}}+e_{i_{1}}+$ $\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime}$ have zero coordinates, thereby making it possible for $z_{i_{1}}^{k}+e_{i_{1}}+\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime}$ to have negative coordinates. ${ }^{2}$

Nonetheless, the above mistake can be corrected without changing the main structure of the proof of Prop. 6, so that both the proposition and Xiong and Zheng's (2007) core equivalence theorem remain intact. We need only to amend the definition of $\Gamma_{i_{1}}$ as follows:

$$
\Gamma_{i_{1}}:=\left\{z_{i_{1}} \in \mathbb{R}^{l}: x_{i_{1}} \prec_{i_{1}} z_{i_{1}}+e_{i_{1}}+\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime} \in \mathbb{R}_{++}^{l} \text { for some }\left(y_{j_{1}}^{\prime}\right)_{j_{1} \in J_{1}} \in \prod_{j_{1} \in J_{1}} Y_{j_{1}}\right\}
$$

The interior condition " $\in \mathbb{R}_{++}^{l}$ " in the amended definition rules out the boundary issue pointed out above. Since $\Gamma_{i_{1}}$ by the amended definition is nonempty $\left(x_{i_{1}}+\mathbf{1} \in \Gamma_{i_{1}}\right.$, with $\mathbf{1}:=(1, \ldots, 1) \in$ \mathbb{R}^{l}, due to the strong monotonicity of preferences and the possibility of inaction on the part of the firms) and convex (due to the convexity of preferences and production sets), the convex hull of $\bigcup_{i_{1} \in I_{1}} \Gamma_{i_{1}}$ is given by Γ described exactly as in the proof in Xiong and Zheng (2007), and the argument for $\mathbf{0} \notin \Gamma$ therein follows. Thus, the Separating Hyperplane Theorem applies and guarantees existence of a nonnull l-dimensional vector p such that $p \cdot z \geq 0$ for all $z \in \Gamma$.

The only other adjustment needed is the derivation of (C.2) on p . 265, since the $x_{i_{1}}^{\prime}$ there (immediately below the definition $\pi_{j_{1}}^{*}:=\sup \left\{p \cdot y_{j_{1}}^{\prime}: y_{j_{1}}^{\prime} \in Y_{j_{1}}\right\}$) needs to be any arbitrarynot necessarily strictly positive-commodity bundle preferred by i_{1} to $x_{i_{1}}$. The adjustment is to note, for all $\alpha>0$, that $x_{i_{1}}^{\prime} \succ_{i_{1}} x_{i_{1}}$ implies $x_{i_{1}} \prec_{i_{1}} x_{i_{1}}^{\prime}+\alpha \mathbf{1} \in \mathbb{R}_{++}^{l}$ (due to the monotonicity of preferences). This implies that, for all $\left(y_{j_{1}}^{\prime}\right)_{j_{1} \in J_{1}} \in \prod_{j_{1} \in J_{1}} Y_{j_{1}}$, the vector $x_{i_{1}}^{\prime}+\alpha \mathbf{1}-e_{i_{1}}-$ $\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime}$ belongs to $\Gamma_{i_{1}} \subseteq \Gamma$. The separating hyperplane property of p then gives

[^0]\[

$$
\begin{equation*}
\forall\left(y_{j_{1}}^{\prime}\right)_{j_{1} \in J_{1}} \in \prod_{j_{1} \in J_{1}} Y_{j_{1}}: \quad p \cdot\left(x_{i_{1}}^{\prime}+\alpha \mathbf{1}\right) \geq p \cdot\left(e_{i_{1}}+\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime}\right) \tag{2}
\end{equation*}
$$

\]

1

3
so that

$$
p \cdot x_{i_{1}}^{\prime}+\alpha(p \cdot \mathbf{1}) \geq p \cdot e_{i_{1}}+\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} \pi_{j_{1}}^{*}
$$

$p \cdot x_{i_{1}}^{\prime}+\alpha(p \cdot \mathbf{1}) \geq p \cdot e_{i_{1}}+\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} \pi_{j_{1}}^{*}$

$$
5
$$

Since this inequality holds for all $\alpha>0$, (C.2) is true indeed, and the published proof can then be carried out to completion.

We thus conclude that, with the adjustment herein set forth, Proposition 6 in Xiong and Zheng (2007) remains valid in both its statement and the main structure of its proof.

References

Debreu, G., Scarf, H., 1963. A limit theorem on the core of an economy. Int. Econ. Rev. 4, 235-246. 15
Xiong, S., Zheng, C.Z., 2007. Core equivalence theorem with production. J. Econ. Theory 137, 246-270. 16

[^0]: 2 Assuming $e_{i_{1}} \in \mathbb{R}_{++}^{l}$ for all $i_{1} \in I_{1}$ (as in Debreu and Scarf, 1963) in addition to Assumption 9 would nevertheless be a valid alternative, since individual rationality of $\left(\left(x_{i_{1}}\right)_{i_{1} \in I_{1}},\left(y_{j_{1}}\right)_{j_{1} \in J_{1}}\right)$ and the possibility of inaction on the part of the firms would then imply $x_{i_{1}} \in \mathbb{R}_{++}^{l}$, so that $z_{i_{1}}+e_{i_{1}}+\sum_{j_{1} \in J_{1}} \theta_{i_{1} j_{1}} y_{j_{1}}^{\prime} \in \mathbb{R}_{++}^{l}$ as well. However, this additional assumption not only would lead to a weaker result, but would also be inconsistent with other parts of Xiong and Zheng (2007) (see Example 12 and the proof of Proposition 19).

