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This paper analyzes auctions where budget-constrained bidders have options to
declare bankruptcy. It predicts a bidding equilibrium that changes discontinuously
in a borrowing rate available to bidders. When the borrowing rate is above a
threshold, high-budget bidders win, and the likelihood of bankruptcy is low. When
the borrowing rate is below the threshold, the winner is the most budget-constrained
bidder and is most likely to declare bankruptcy. This result explains the ``high bids and
broke winners'' anomaly in the C-Block FCC spectrum auction. Based on its equi-
librium analysis, the paper proves that a seller can profit from offering to finance the
highest bidder at a below-market interest rate, even with default risk. Journal of
Economic Literature Classification Numbers: D44, D45, D82, G33, L96. � 2001
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1. INTRODUCTION

Auction theory is mostly confined to cash-only auctions with ``deep-pocket''
bidders who cannot default. Such a restriction makes it difficult to analyze
auctions of high-stake objects. In these auctions, the worth of a good is large
compared to the wealth of a bidder, so paying bids through financing is
prevalent, and defaults often occur. Shortly after the 819 billion self-off of
Brazil's telecommunication giant Telebras (July 29, 1998, Mehta [21]),
one of its winners has already begun renegotiating about the down-pay-
ment (August 4, 1998, Bloomberg [4]). The C-block disaster, where the
U.S. government sold a block of radio frequencies for 810 billion (Spring
1996) to firms who later defaulted, has yet to close its final chapter in
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bankruptcy courts (detailed later). In auctions of high-stake projects, bidders'
liquidity constraints cannot be ignored. This aspect, however, is what most
of auction theory has neglected.

This paper therefore analyzes a first-price sealed-bid auction where budget-
constrained bidders can default on their bids. The equilibrium analysis
shows that budget constraints and default risk together have a deep impact
on bidding behavior, seller's profit, and the likelihood of bankruptcy.

Disasters in spectrum auctions. This paper was inspired by the 1996
C-block radio frequency spectrum auction conducted by the United States
Federal Communications Commission (FCC). In this auction, the FCC
auctioned off the licenses for using the radio frequencies within a C-block
spectrum. Unlike in previous spectrum auctions, the FCC in this auction
allowed winning bidders to delay their payments at a below-market borrowing
rate. The winning bids of the C-block auctions thus totaled 810.2 billion.
On a per-consumer basis, this was almost three times as high as the prices
in previous spectrum auctions of frequencies in the A- and B-blocks. While
Congress, occupied by the balanced budget issue at that time, quickly
counted that amount as a source of income, few of the winners of the
C-block auction made their payments. Many of them declared bankruptcy,
including NextWave, Pocket Communications, General Wireless, and Airadigm
Communications. Others lobbied for lighter payment terms. The FCC has
collected almost none of the payment pledged by the C-block bidders. In
March 1999, the FCC raised only about 8400 million in a re-auction of the
licenses returned by the C-block licensees. However, most licenses of the
defaulted firms remain wrapped up in the litigation of bankruptcy and
appeals. Frustrated, the FCC has lobbied Congress to change bankruptcy
laws.2

Point of departure. It is clear from the above example that financial
constraints and default risk are important in major privatization auctions.
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2 Up to April 1998, the FCC had offered four options to the failing C-block licensees to
partially or fully return the licenses to FCC for re-auction. These options, however, attracted
criticisms from both failing licensees and bidders who dropped out of the auction. In early
1999, several bankruptcy courts reduced some defaulters' payment obligations. NextWave's
obligation, for example, was cut from its bid of 84.74 billion to 81.02 billion. This ruling
regarding NextWave, however, was overturned by an appeals court in December 1999. In
January 2000, the FCC revoked the licenses won by NextWave and planned to re-auction
them in July 2000, but afterwards a bankruptcy court ruled to nullify the revocation. A new
round of appeals is inevitable.

See Atlas [1] for the C-block events up to the fall of 1997. For events up to the fall of 1999,
see Cunard [11], Harbert [14], Pitch [23], and Communications Today [12]. For the 1999
re-auction, see Chen [9]. For the FCC's attempts to affect bankruptcy legislation, see Silva
[27] and Weaver [29]. For the ups and downs in the bankruptcy proceedings up to the
spring of 2000, see Luna [18] and Sill and Lin [26].



In order to focus on the impact of these two elements, we formulate bidder-
heterogeneity in terms of wealth instead of value.3 Thus, we consider a
single-object common-value auction environment. Each bidder has his own
budget, which can be viewed as an amount of funds already available to
him. If the bidder makes a payment p, then his's cost is equal to p plus a
cost of outside financing, and this cost of outside financing is equal to a
constant r times the amount by which the payment p exceeds his budget.
This constant r we shall call borrowing rate, and we assume that it is the
same to all bidders. A bidder's budget is private information to the bidder
and is assumed to be independently and identically distributed across
bidders.

Default risk enters as follows. The object being auctioned has uncertain
value. After winning the object, the winning bidder gets to know its true
value. If the bidder makes the payment, then he pays the bid and bears the
cost of outside financing if the bid exceeds his budget. But the bidder may
avoid the payment by declaring bankruptcy. If the winner chooses to do so,
then his entire budget is taken away. For tractability, this paper assumes
that the value of the auctioned object is either zero with probability %, or
a positive number v, and that both % and v are common knowledge to the
bidders and the seller.

The solution of the auction game. This paper obtains a closed-form
solution of the above auction game. One novel result is that bidders with
the lowest budgets may bid the most. More precisely, the symmetric Bayes�
Nash equilibrium bidding strategy ``flips'' (Theorems 3.1 and 3.2). That is,
a bid, as a function of the bidder's budget, is upward-sloping when the
borrowing rate is above a threshold (curve ABCD in Fig. 1), and is down-
ward-sloping when the borrowing rate is below the threshold (curve EFG
in Fig. 1). In the downward-sloping case, low-budget bidders bid high and
high-budget bidders bid low, the winning bid is higher than the expected
value of the object, and the winner is the most budget-constrained bidder,
who is most likely to declare bankruptcy. Looking at this equilibrium of
``high bids and broke winners,'' one cannot help recalling the C-block
disaster in the FCC spectrum auctions.

The intuition of this equilibrium is the following. Due to the default
option, the bidders are in fact bidding an option instead of a cash payment.
That is why bids may go beyond the expected value of the auctioned item.
Because the penalty of bankruptcy is assumed to be proportional to a bid-
der's budget, low-budget bidders have less to lose from bankruptcy than
high-budget bidders. That is why bidders with the lowest budgets may
bid the highest. Specifically, imagine a bidder who wins by submitting a bid
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FIG. 1. The ``flipping'' equilibrium bidding strategy.

above his budget. The object the bidder wins has value either v or zero. In
the former case, the winner may honor his bid, bearing the cost of outside
financing at the borrowing rate r. In the latter case, the winner may declare
bankruptcy, losing his budget. The expected cost of such a contingency
plan is therefore a weighted average of the financing cost and the
bankruptcy penalty. When the borrowing rate r is sufficiently low, one may
neglect the financing cost and consider only the bankruptcy penalty, which
is proportional to a bidder's budget by assumption. Consequently, with the
borrowing rate r sufficiently low, low-budget bidders bid high while high-
budget bidders bid low.

The main driving force behind this equilibrium is the dual role of the
notion of budget formulated in this paper. On one hand, a bidder's budget
represents his ``money in the pocket''; on the other hand, the budget
represents his liability. As will be clear in Sections 4.1 and 4.2, such a
notion can be generated by a model that incorporates imperfect capital
markets and immediate bankruptcy liquidation.
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The equilibrium outcome in the other case, with borrowing rates above
the threshold, is also new. It turns out that there are multiple equilibria
where bids are non-monotone in budgets. In such an equilibrium, bids rise
with budgets along the curve ABC in Fig. 1 and then go up and down
instead of moving along the curve CD. These non-monotone bids are bounded
between the bids at points C and G (Proposition 3.1 and Remark 3.2). The
reason for such non-monotonicity is that the private information is a
budget constraint instead of a valuation or cost. If one bids below his
budget, then the constraint is non-binding and hence unable to determine
the bid.

Can the seller profit from offering subsidies? The seller could alleviate
bidders' financing costs, thereby intensifying their competition and raising
bids. The question is whether such a manipulation is profitable to the seller.
More precisely, assume that there is an exogenous borrowing rate q; the
borrowing rate r described above is chosen by the seller. Before the auction
begins, the seller commits to financing the extra fund for the highest bidder
at the borrowing rate r lower than the exogenous rate q. The question is:
can such a subsidy raise the seller's expected profit?

This paper proves that the answer is ``yes'' in some cases (Proposi-
tion 4.2). The intuition is that a lower borrowing rate makes it less costly
to bid above budgets, so low-budget bidders would bid higher; to keep up
with the competition, high-budget bidders have to bid higher. As long as
the winner is the bidder with the highest budget, the seller bears little cost
from offering such an interest subsidy. To guarantee that the winner is such
a bidder, the seller needs only to offer a borrowing rate above the threshold,
so that the equilibrium bidding strategy is upward-sloping (curve ABCD
in Fig. 1).

Although the seller may profit from offering subsidies, an excessive subsidy
can hurt her (Proposition 4.1). The reason is that an excessively low
borrowing rate leads to the equilibrium of ``high bids and broke winners.''
At that equilibrium, high bidders have low budgets. The winner would
either declare bankruptcy (if the object is valueless) or would burden the
seller with a large amount of borrowing.

Although this paper focuses on first-price sealed-bid auctions, the above
result of ``flipping equilibrium'' (Fig. 1) also holds for second-price sealed-bid
auctions. Indeed, one can easily prove that the dominant-strategy equilibrium
of a second-price auction has a graph similar to that in Fig. 1. This paper
focuses on first-price auctions because of their analytical challenge and their
prevalence in both literature and practice. Even within the class of first-price
auctions, financial constraints and default risk bring into light a rich set of
auction-design problems, such as financing packages, security deposits, and
bankruptcy arrangements.
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Related literature. An early paper about budget-constrained bidders is
by Pitchik and Schotter [22], who provide an experimental study of budget
constraints in sequential auctions with perfect information. More papers
on the impact of financial constraints emerged with the FCC spectrum
auctions, where bids could be too large for the perfect-capital-market
assumption to apply.4 Analytical works in this field include Che and Gale
[6�8], Laffont and Robert [17], and Beno@̂t and Krishna [3]. Che and
Gale [7] are the first who outline a framework with costly outside financ-
ing, from which this paper develops. Beno@̂t and Krishna, expanding upon
the multi-unit complete-information framework of Pitchik and Schotter,
study bidders' strategic choice of budget constraints. Default risk is not
addressed in these papers.

The impact of default risk on auctions was first noticed when researchers
conducting auction experiments debated the effects of limited liability on
their results (Hansen and Lott [13] and Kagel and Levin [16]). Consider-
ing a two-bidder and two-type model, Hansen and Lott [13] have noticed
that overbidding can be an equilibrium behavior due to bidders' limited
liability. This idea is formalized and proved in Section 3.3 of this paper. Waehrer
[28] analyzes the effect of default risk, here bidders' limited liabilities are
identically a security deposit chosen by the seller. In that paper, Waehrer
shows that a lower deposit makes bidders more aggressive. Waehrer's
model also treats the case of affiliated values, and he considers renegotia-
tion. Another paper related to default risk is by Harstad and Rothkopf
[15]. They analyze a common-value auction where the winning bidder can
withdraw his bid after learning about the bids of others. Financial con-
straints are not addressed in these papers.

The benefit of subsidizing disadvantaged bidders is discussed by Ayres
and Cramton [2]. They provide an empirical argument that the FCC sub-
stantially raised its revenue in the ``regional narrowband'' spectrum auction
in 1994 by subsidizing minority-owned firms. The work by Rothkopf,
Harstad, and Fu [24] and that by Corns and Schotter [10] show that a
seller can benefit from offering discounts to low-value bidders. Che and
Gale [7] notice that a seller in second-price auctions may benefit from
offering below-market interest rates. A paper by Sen [25], while not about
auctions, explains why sellers of consumer durables often provide below-
market interest rates. My paper focuses on the cost and benefit of subsidizing
financially constrained bidders, and it differs from the above papers by
allowing default.
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Organization. Section 2 spells out the model. Section 3 solves the auction
game. We split the solution into two cases. Section 3.3 solves the auction
game when the borrowing rate is below a threshold; Section 3.4 solves the
game when the borrowing rate is above that threshold. Section 3.5 compares
the probabilities of bankruptcy across borrowing rates. Section 4 uses those
results to analyze the seller's choice of interest subsidies.

2. A MODEL OF THE AUCTION GAME

Our analysis is based on the following auction game. One can view the
auction as a subgame generated by an environment of capital markets and
bankruptcy arrangements. We will delay the specification of such an
environment until Section 4.1.

A seller is to auction off an indivisible good to one of n competing
bidders (n�2) through a first-price sealed-bid auction without a reserve
price. Each bidder i (\i=1, ..., n) has a budget of mi�0. Here the notion
of budget has a two-fold meaning. First, it means a bidder's liquidity constraint:
if bidder i makes a payment greater than mi , then he must borrow the
extra amount at a borrowing rate r�0; in other words, the bidder's cost of
making a payment of p is

C( p, m i , r) :={ p
p+r( p&m i)

if p�mi

otherwise.
(1)

Second, a budget represents the penalty of default: if bidder i defaults after
winning the auction, then the budget mi is taken away from him. A bidder's
private information is his budget. Bidders' budgets are independently and
identically distributed according to a commonly known distribution func-
tion F, with density function f.

The good to be auctioned has zero value for the seller. For each bidder,
the good's value is either v with probability 1&% or zero with probability
%, where v and % are commonly known parameters such that v>0 and
% # [0, 1). The actual value of the good is not revealed until the good is
sold to a bidder. Knowing the realized value, the winner of the good
decides whether to default on his bid. Specifically, the auction game
proceeds as follows:

1. Each bidder submits a bid independently. The highest bidder
(``winner'') wins the good. Ties are resolved by a random draw
with equal probability. The other bidders get zero payoff.
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2. The value of the good is revealed.

3. The winner chooses whether to pay his bid bw or to default.

a. If he defaults, then the winner loses his entire budget mw and
gets zero in return, so his payoff is &mw .

b. Otherwise, the winner pays his bid bw to the seller for the object.
In doing so, the winner bears a cost C(bw , mw , r) defined by
Eq. (1). The winner's payoff is then v&C(bw , mw , r), where v is
the actual value of the auctioned item.

The auction game is then over.

For convenience, we assume that the support of the distribution function
F of budgets is [m

�
, m� ]. Here m� can be a nonnegative real number or

infinity. (When m� equals infinity, we abuse the notation [m
�
, m� ] to mean

[m
�
, �).) We further assume the following properties of the distribution.

Due to Assumption 1, a bidder's budget matters. Assumption 2 is a typical
technical assumption in auction literature. Assumption 3 is weaker than the
standard monotone-hazard-rate assumption in the auction literature. We
will use it to obtain the budget-revealing equilibrium of the auction game
(Section 3.4).

Assumption 1. m
�

<(1&%) v<m� .

Assumption 2. F has a probability density function f that is continuous
and positive at every point in [m

�
, m� ].

Assumption 3. For all x # (m
�
, m� ), d

dx [ F(x)
f (x) ]>1&n.

Assumption 3 is satisfied by any uniform or exponential distributions
(including any truncation of exponential distributions). Notice that this
assumption implies that every expression x+ (1&%)(1+r)

n&1
F(x)
f (x) , with % # [0, 1)

and r�0, is strictly increasing in x # (m
�
, m� ).

2.1. The Interpretation of the Model

The auction game modeled above roughly corresponds to the actual
timing of the C-block auction. Before the auction began, the FCC announced
a ten-year installment payment plan for winning bidders. The plan offered a
generous borrowing rate pegged to the 30-year Treasury bond. The auction
took place in the spring of 1996. Bidders were mainly start-ups planning to
launch their business in the digital wireless industry, an industry mostly
unprecedented at that time. After the auction, the firms that won licenses
signed contracts with the FCC according to the installment payment plan,
and they began to build up their projects by hiring labor and equipment.
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Afterwards, these firms began to realize the profitability of their projects.
Since the spring of 1997, bankruptcies occurred among many of these firms.

The most important concept in the model is the notion of budget, which
represents both a bidder's liquidity constraint and his liability. As will be
clear in Section 4.1, such a notion can be generated by a model that incor-
porates imperfect capital markets and immediate bankruptcy liquidation.
Before that section, we need only to notice that the imperfection of capital
markets is reflected by Eq. (1), which implies that a bidder's borrowing rate
r is greater than his lending rate, normalized to zero.

This paper treats budget as an exogenous variable to a bidder. Implicitly
ruled out are the cases where a bidder hides his assets from bankruptcy
courts or forms a subsidiary and has the subsidiary bid instead. However,
some results of this paper can be shown to be applicable to these cases, if
a bidder must commit to a chosen budget before bidding.

Section 4.1 will also model the destination of the good in case of default
and the payment arrangement of an insolvent bidder. Until that section, we
abstract away these aspects for the ease of exposition.

2.2. Solution Concept

A bidder's strategy is a mapping from budgets to bids. Given any
borrowing rate r�0, a (Bayes�Nash) equilibrium of the auction game
(induced by r) is a profile (;i)

n
i=1 , with ;i : [m

�
, m� ] � [0, �) being the

strategy of bidder i, such that, for each bidder i and each possible budget
mi # [m

�
, m� ], the bid ; i (mi) maximizes bidder i's (von Neumann�

Morgenstern) expected payoff given his budget mi and others bidding
according to ;&i . We restrict our attention to symmetric equilibria, those
equilibria whose bidding strategies ;i are identical across bidder i. We
further restrict our attention to those symmetric equilibria whose bidding
strategies are continuous functions of budgets. We will use ; to denote the
bidding function in such an equilibrium. For any A�[m

�
, m� ], the function

; restricted to the set A will be denoted by ;|A .

3. THE SOLUTION OF THE AUCTION GAME

This section solves the auction game for each level of the borrowing rate r.
Due to the option of default, a distinctive equilibrium result is that bids need
not increase with budgets. If the borrowing rate is below a threshold, low-
budget bidders would bid high and high-budget bidders would bid low, and
the winning bid would be higher than the expected value of the good being
auctioned.
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We shall begin the analysis at the winner's bankruptcy decision (Section 3.1).
Section 3.2 then proves that the bids which exceed budgets may increase or
decrease in budgets, depending on whether the borrowing rate is above or
below a threshold. Accordingly, Section 3.3 obtains the equilibrium for
borrowing rates below the threshold (curve EFG in Fig. 1), and Section 3.4
obtains the bidding equilibrium for those above the threshold (curve
ABCD in Fig. 1). The solution in this case is technical. Section 3.5 contrasts
the probabilities of bankruptcy between the two cases.

3.1. The Bankruptcy Decision

Assume from now on that a bidder does not take strictly dominated
actions. Let bw denote a winning bid and mw denote the winner's budget.
Notice that a winner does not declare bankruptcy unless the value of the
good is zero. The reason is that a winner would not have bid bw such that
C(bw , mw , r)>v; thus, if the good has value v, the winner would get &mw

if he goes bankrupt, while he could have received a nonnegative payoff if
he honors the bid. Consequently, a winner's expected payoff (before the
revelation of the value) is

(1&%)[v&C(bw , mw , r)]+% max[&mw , &C(bw , mw , r)],

and his bankruptcy decision results from the comparison between the two
arguments within the max[ } } } ]. Rewriting the above expression according
to the definition of the cost function (Eq. (1)), we derive that a winner's
expected payoff (before the revelation of the value) is (1&%) u(bw , mw , r),
where

u(bw , mw , r)={
v&

1
1&%

bw

v&(1+r) bw+\r&
%

1&%+ mw

if bw�mw

otherwise.
(2)

Since bw<mw is equivalent to C(bw , mw , r)<mw (by Eq. (1)), a winner who
gets a valueless good declares bankruptcy if bw>mw , does not declare
bankruptcy if bw<mw , and is indifferent about the decision if bw=mw .

Let Probs[win | b] denote the probability that a bid b is the winning bid,
provided that others bid according to a bidding strategy s. Define

Vs(b, m, r) :=u(b, m, r) Probs[win | b],

\b�0, \m # [m
�
, m� ], \r�0. (3)

By Eq. (2), a bidder gets an expected payoff (1&%) Vs(b, m, r) from
bidding b, if he has budget m and others play the strategy s.
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Because the penalty for bankruptcy is proportional to one's budget, a
winner with a sufficiently high budget would not declare bankruptcy in any
event:

Lemma 3.1. For a bidder with a budget above (1&%) v, it is a dominated
strategy to bid strictly above (1&%) v or to declare bankruptcy if the bidder
wins.

Proof. Consider a bidder with budget m>(1&%) v. Let E[v] denote
the expected value of the auctioned item, which is equal to (1&%) v. If this
bidder declares bankruptcy, with such a high budget m>E[v], his payoff
will fall below &E[v]. We first claim that the bidder would not declare
bankruptcy if he wins. To see that, suppose to the contrary that the bidder
did declare bankruptcy. Then by the statement below Eq. (2), the bidder
must have bid b�m, so

u(b, m, r)<%(&E[v])+(1&%)(v&b)�&%E[v]+(1&%)(v&E[v])=0

and the bid b is dominated. Thus, the bidder would not declare bankruptcy
in any event, and so his gain conditional on winning the auction is either
v with probability 1&% or 0 with probability %. Therefore, the bidder
would not bid more than E[v], which is (1&%) v. Q.E.D

3.2. Why the Poor Might Bid Higher Than the Rich

Because the penalty of bankruptcy is assumed to be proportional to
a bidder's budget, low-budget bidders have less to lose from bankruptcy
than high-budget bidders. Thus, bidders with the lowest budgets may
bid the highest. Specifically, consider a bidder's plan of bidding above his
budget, honoring the bid if the good has the positive value, and declaring
bankruptcy if otherwise. The ex ante cost of this contingency plan is a
convex combination of financing cost and bankruptcy penalty. While the
first part is high for low-budget bidders, the second part is low for them.
When the borrowing rate r is sufficiently low, the first part may become
negligible, so the contingency plan would be more costly to high-budget
bidders than to low-budget ones. Thus, bids may increase or decrease in
budgets, depending on the level of the borrowing rate. The following
lemma obtains the threshold at which the equilibrium bidding strategy
``flips.''

Lemma 3.2 (Strict Monotonicity). Let r�0 and let ;: [m
�
, m� ] � R be

the bidding strategy of a symmetric equilibrium of the auction game induced
by r. Suppose that ; is continuous over some open interval N/[m

�
, m� ] and
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;(m)>m for each m # N. Then ;|N is strictly decreasing if r< %
1&% and

strictly increasing if r> %
1&% .

Proof. Let us temporarily assume the following:

1. (Weak Monotonicity) Assume all the hypotheses of Lemma 3.2.
Then ;|N is weakly decreasing if r< %

1&% and weakly increasing if
r> %

1&% .

2. (Atomless Bids) If ;: [m
�
, m� ] � R is the bidding strategy of a

symmetric equilibrium of the auction game induced by r, then
there is no subset E�[m

�
, m� ] of positive probability measure such

that ;|E #b for some b and u(b, m, r)>0 for some m # E.

Let r< %
1&% . We shall prove that ;| N is strictly decreasing. (The proof for

the case r> %
1&% is analogous.) Suppose that ;| N is not strictly decreasing.

Then by the claim of weak monotonicity there is a nondegenerate interval
[c, d]�N on which ; is constant. This, by the claim of atomless bids and
the fact that [c, d] has a positive probability measure (the distribution
function F is strictly increasing), would be impossible unless u(;(t), t, r)�0
for all t # [c, d]. With ; being an equilibrium strategy, u(;(t), t, r)<0 is
impossible. Neither can u(;(t), t, r)#0, because that would imply, by Eq. (2)
and ;(t)>t, that ;(t) is strictly decreasing in t for all t # [c, d], while ; is
supposed to be constant on [c, d] if it is not strictly decreasing. Thus, the
supposition that ;|N is not strictly decreasing has led to a contradiction.
Therefore, the proposition will be proved if the above two claims are
proved. We hence prove them in the following.

Proof of weak monotonicity. Pick any x, x$ # N. Since ; is an equi-
librium strategy, the expected payoff for a bidder with budget x from
bidding ;(x) cannot be lower than the bidder's expected payoff if he bids
;(x$) instead. A similar relation holds for a bidder with budget x$. If x and
x$ are sufficiently close to each other so that ;(x)>x$ and ;(x$)>x, then
the two previous relations imply that

\r&
%

1&%+ (x&x$)(Prob;[win | ;(x)]&Prob;[win | ;(x$)])�0. (4)

This inequality shows why the equilibrium bidding strategy ``flips'': If r>
%

1&% , then x>x$ implies that Prob;[win | ;(x)]�Prob;[win | ;(x$)]; with
Prob;[win | } ] strictly increasing on the range of ; (because F is strictly
increasing and ; continuous), we then have ;(x)�;(x$). In contrast, if
r< %

1&% , then x>x$ implies that Prob;[win | ;(x)]�Prob;[win | ;(x$)]
and hence ;(x)�;(x$)! A standard compactness argument extends this
local result to cover those x and x$ that are not sufficiently near each
other. K
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Proof of atomless bids. Recall that u(b, m, r) is equivalent to the payoff
to the winner of the auction (up to a positive constant). This payoff is
continuous in bids b. Thus, if u(b, m, r) is positive, then bidding slightly
higher than b would still give a positive payoff conditional on winning. At
such a position, a bidder with budget m would not bid b if he or she
believes that there is a positive probability for the event ``others bid b.'' The
reason is that bidding slightly higher than b would improve his or her
chance to win by a positive number, while the sacrifice due to the slightly
higher bid is negligible. The formal proof is merely an =&$ version of the
reasoning here. K

Thus, we have completed the proof for the proposition. Q.E.D

As a consequence of the above lemma, there is no symmetric Bayes�Nash
equilibrium whose bidding function is continuous and strictly increasing
when the borrowing rate is below the threshold %

1&% . The rest of this
section therefore separately solves the auction game for two kinds of
borrowing rates: those above the threshold and those below it. (The equi-
librium at the threshold rate is trivial and will be discussed in Section 3.5.)

3.3. High Bids and Broke Winners: The Equilibrium for r< %
1&%

When the borrowing rate is r<%�(1&%), Lemma 3.2 says that there is
no hope to find a symmetric equilibrium with continuous and strictly
increasing bidding strategy. Instead, the equilibrium obtained here exhibits
the novel property that high-budget bidders bid low and low-budget bidders
bid high, indeed, higher than the expected value of the good being auctioned.
Furthermore, this equilibrium is the only solution when borrowing rates are
below the threshold.

The Introduction has given the intuition behind this result. The main
step in the derivation of this result is to find out who submits the lowest
bid. First, recall the fact that bidders with sufficiently high budgets would
not declare bankruptcy, since the penalty for bankruptcy is proportional to
budgets. Consequently, these bidders would never bid above their budgets
(Lemma 3.1). Bidders with low budgets, in contrast, would bid above their
budgets due to the low borrowing rate and light bankruptcy penalty.
Lemma 3.2 then implies that bids from these bidders strictly decrease in
budgets. Thus, the lowest bid, which exists by the continuity of the bidding
strategy, can only be submitted by high-budget bidders who bid below their
budgets. Consequently, a zero-payoff argument deduces that the lowest bid
is the expected value of the good. The rest of the derivation then becomes
a simple task of solving differential equations.
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If it is indeed true that bids decrease in budgets, then a bidder wins if his
budget is the lowest among all bidders. Thus, let mL

&i denote the lowest
budget among a bidder's rivals, and let EmL

&i
denote the expected-value

operator on functions of the random variable mL
&i . We now state the result.

Theorem 3.1. Let r # [0, %
1&%) be the borrowing rate given to the bidders.

1. (Existence) It is an equilibrium of the auction game induced by r
that each bidder bids according to the strategy ;: [m

�
, m� ] � R given by

;(m) :={EmL
&i _v+r$mL

&i

1+r } mL
&i�m&

(1&%) v

if m
�

�m�(1&%) v

otherwise,
(5)

where r$ :=r& %
1&% .

2. (Uniqueness) If m� <�, then ``every bidder plays ;'' is the only
symmetric equilibrium of the auction game whose bidding strategy is continuous.

Theorem 3.1 will be proved in Sections 3.3.1 (uniqueness) and 3.3.2
(existence). One readily sees from Eq. (5) that the equilibrium bidding
strategy looks like the downward-sloping curve EFG in Fig. 1. It is bounded
between the expected value (1&%) v and the maximum value v of the good,
strictly decreasing for all budgets in [m

�
, (1&%) v), and constantly equal to

(1&%) v for all budgets greater than (1&%) v. The equilibrium bidding
strategy is differentiable, with derivative

r$
1+r

(n&1) f (m)
(1&F(m))n |

(1&%) v

m
(1&F(t))n&1 dt

;$(m)={ if m
�

<m<(1&%) v
(6)

0 if (1&%) v�m<m� .

One can easily prove that the bid ;(m) rises as r falls, for each budget
m # [m

�
, (1&%) v).

3.3.1. Deriving the ``high bid '' equilibrium (uniqueness proof ). Take any
r # [0, %

1&%) and let ; be a symmetric equilibrium bidding strategy that is
continuous. We will prove that ; satisfies Eq. (5). That will accomplish the
uniqueness proof.

Lemma 3.3. If m� <� then min ;=(1&%) v and ;|[(1&%) v, m� ] #(1&%) v.

Proof. Let m� <�. With ; a continuous function on the compact space
[m

�
, m� ], there is a z # [m

�
, m� ] such that ;(z)=min ;. We first claim that
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;(z)�z. To prove that, we need only consider two cases: either (i) z=m�
or (ii) z<m� . Lemma 3.1 has covered case (i), since m� >(1&%) v by
Assumption 1. In case (ii), ;(z)�z follows from Lemma 3.2 (recall that r is
below the threshold) and the fact ;(z)=min ;. Thus, ;(z)�z. Since ;(z)
is the lowest bid at equilibrium, a standard zero-payoff argument implies
that u(;(z), z, r)=0. (The argument uses the continuity of the functions
u( } , } , r) and ;.) This, coupled with ;(z)�z, implies that ;(z)=(1&%) v
(Eq. (2)). Consequently, Lemma 3.1 implies that ;|[(1&%) v, m� ] #(1&%) v.
The lemma is therefore proved. K

Lemma 3.4. The bidding strategy ; is strictly decreasing over the interval
[m

�
, (1&%) v) and ;(m)>(1&%) v for any budget m in the interval.

Proof. Since, at equilibrium, bidders with budgets m<(1&%) v bid at
least (1&%) v (Lemma 3.3), they bid above their budgets. Consequently,
Lemma 3.2 implies that the bidding strategy ; is strictly decreasing over
the interval [m

�
, (1&%) v). Therefore, with ; continuous, we have ;(m)>

;((1&%) v)=(1&%) v for all m # [m
�
, (1&%) v). This proves the lemma. K

Lemma 3.5. For any m # [m, (1&%) v),

;(m)=
1

1+r _v+r$m+r$ |
(1&%) v

m \ 1&F(t)
1&F(m)+

n&1

dt& .

Proof. Define ;1 :=;| [m
�
, (1&%) v) . By Lemma 3.4, ;1 is strictly decreas-

ing. Thus, for any b in the range of ;1 , the event ``b is the highest bid'' is
equivalent to ``;&1

1 (b) is lower than the lowed budget mL
&i among other

bidders.'' Let G(;&1
1 (b)) denote the probability of this event. Note that

G=(1&F )n&1. A bidder's objective (Eq. (3)) is thus

V;1
(b, m, r)=(v&(1+r) b+r$m) G(;&1

1 (b)),

\b # Range ;1 , \m # [m
�
, (1&%) v). (8)

To find the functional form of the bidding strategy ;1 , we use a technique
in Matthews [19]. For all m and m$ in the range of ;1 , the equilibrium
condition implies that V;1

(;1(m), m, r)�V;1
(;1(m$), m, r) and V;1

(;1(m$),
m$, r)�V;1

(;1(m), m$, r). It follows from (8) that

v+r$m$
1+r

(G(m)&G(m$))�
;1(m) G(m)&;1(m$) G(m$)

m&m$

�
v+r$m
1+r

(G(m)&G(m$)).
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Thus, G(x) ;1(x) is a differentiable function of x for all x # (m
�
, (1&%) v),

and

d
dm

(G(m) ;1(m))=&
v+r$m
1+r

G$(m).

This being true for all m # (m
�
, (1&%) v), we can solve this differential equation

of ;1 with the boundary condition ;1((1&%) v)=(1&%) v (Lemma 3.3).
The lemma then follows. K

Note that Eq. (7) is equivalent to the upper branch of Eq. (5). Combin-
ing Lemmas 3.3 and 3.5, we have proved that the equilibrium bidding
strategy ; necessarily satisfies Eq. (5). This completes the uniqueness proof.

Q.E.D

3.3.2. Verifying the ``high bid '' equilibrium (existence proof ). This
section verifies that it is an equilibrium of the auction game for each bidder
to bid according to the function ; defined in (5) when r< %

1&% . This proves
the existence part of Theorem 3.1.

We first claim that bidding (1&%) v is optimal for any m�(1&%) v
given that others play the strategy ;. The reason for the claim is that
bidding below (1&%) v, thereby getting zero probability of winning, is not
better than bidding exactly (1&%) v, and bidding above (1&%) v is strictly
dominated by the zero bid, as Lemma 3.1 shows.

We next prove that ;(m) is optimal for each m<(1&%) v. Thus, pick
any such m. First, any bid b�(1&%) v is dominated for such an m. The
reason is that (i) bidding below (1&%) v is strictly dominated by bidding
(1&%) v and (ii) bidding (1&%) v is in turn strictly dominated. The reason
for claim (i) is that bidding b<(1&%) v gives zero expected payoff since
(1&%) v=min ;, while bidding (1&%) v yields a positive expected payoff,
because

u((1&%) v, m, r)=v&(1+r)(1&%) v+r$m=&r$[(1&%) v&m]>0

by Assumption 1. The reason for claim (ii) is that the bid (1&%) v is sub-
mitted by the rivals with positive probability; thus, the bidder with budget
m < (1&%) v does better by bidding slightly above (1&%) v, since
u((1&%) v, m, r)>0 as calculated above. Thus, an optimal bid for m, if it
exists, must be greater than (1&%) v.

To complete the proof for the claim that ;(m) is optimal for m, therefore,
we need only to prove that ;(m) maximizes V;1( } , m, r) (Eq. (8)) over
((1&%) v, ;(m

�
)], which is the range of ;1 . At any interior point b of this
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range, the objective V;1
( } , m, r) is differentiable. Letting x :=;&1

1 (b) (x is
well defined since ;1 is strictly monotone), we have

D1 V;1
(b, m, r)=&(1+r) G(x)+[v&(1+r) ;(x)+r$m] G$(x)�;$1(x),

where the notation G is from the proof of Lemma 3.5. By Eqs. (6) and (7)
and the fact ;$1(x)<0, we obtain

>0 if b<;1(m)

D1V;1(b, m, r)=(a positive term)_r$(m&x) {=0 if b=;1(m)

<0 if b>;1(m),

since r$=r& %
1&%<0 and ;1 is strictly decreasing. It follows that ;1(m) is

the maximum of V;1
( } , m, r) over the range of ;1 . Thus, ;1(m) is optimal

for m, provided that others bid according to ;. We have hence verified that
; is an equilibrium bidding strategy. Q.E.D

3.4. The Budget-Revealing Equilibrium for r> %
1&%

We now turn to solve the auction game when the borrowing rate r is
above the threshold %�(1&%). It turns out that in this case there is a sym-
metric equilibrium where bids are continuous in budgets. Different from the
case of ``high bids and broke winners,'' bids at this equilibrium strictly
increase with budgets. Furthermore, this is the only symmetric equilibrium
where bids are strictly increasing and continuous in budgets. The techni-
calities in this case are more complicated than in the previous case. In par-
ticular, there are other symmetric equilibria where bids are non-monotone
in budgets. Interestingly, the difference between these equilibria and the one
with monotone bids shrinks when the number of bidders increases.

Let us start with a heuristic derivation of the solution. Imagine that all
bidders use an equilibrium bidding strategy that is continuous, but not
necessarily monotone, in budgets. By Lemma 3.1, bidders with sufficiently
high budgets bid below their budgets. On the other hand, bidders with
sufficiently low budgets bid above theirs, for otherwise the large difference
between the expected value of the good and their budgets would attract
such a bidder to bid slightly higher. Consequently, with bids continuous in
budgets, the graph of the bidding function must cross the 45% line in the
budget-bid plane (Fig. 1). Let m

*
(r) denote the lowest budget for such a

crossing point. By Lemma 3.2, we know that bids go up on the interval
[m

�
, m

*
(r)] and reach m

*
(r) at budget m

*
(r).

Let us move on to find out the bids for budgets above m
*

(r). Since
we have not assumed monotonicity, such a bid could be as low as a bid
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FIG. 2. The graphs of (a) gr and (b) h$.

for budgets below m
*

(r). That is impossible, however, due to the financing
cost. Specifically, if a bidder with budget above m

*
(r) bids the same as a

bidder with budget below m
*

(r), then the former would be bidding below
his budget and the latter bidding above hers. Not burdened by financing
cost, the former would have less marginal cost in raising bids than the
latter. Thus, one can prove that bidders with budgets above m

*
(r) would

bid at least m
*

(r).
It then follows that a bidder with a budget below m

*
(r) wins if his

budget exceeds the highest budget among his rivals, whether bids beyond
m

*
(r) are monotone or not. Consequently, pinning down the bids for the

budgets in [m
�
, m

*
(r)] becomes a relatively easy task of solving a differen-

tial equation. The solution of this equation also locates the crossing point
m

*
(r). It turns out that m

*
(r) is a root of an equation gr(x)=0, with gr

defined by:

gr(x) :=\v&
x

1&%+ F(x)n&1&\r&
%

1&%+ |
x

m
�

F(t)n&1 dt, \x # [m
�
, m� ].

(9)

From Assumption 3 and the fact r> %
1&% , one can easily prove that (i) gr

is positive over (m
�
, m

*
(r)), zero at m

*
(r), and negative for m>m

*
(r) and

(ii) gr strictly increases up to a point m$ # (m
�
, m

*
(r)) and then strictly

decreases. Part (a) of Fig. 2 illustrates these facts.
Due to these properties of the function gr , it turns out that bidders with

budgets above m
*

(r) would never bid above their budgets. The next ques-
tion is whether these bidders bid below their budgets. This question leads
us to a function h:

h(x) :=\v&
x

1&%+ F(x)n&1, \x # [m
�
, m� ]. (10)
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Notice from Eq. (2) that (1&%) h(x) is the expected payoff for a bidder
from bidding x within his budget, if exactly those bidders with budgets
below x bid below x. From Assumption 3 and the intermediate- value
theorem, one can easily prove that h has a unique maximum m̂ strictly
between m

�
and (1&%) v. Furthermore, h is strictly increasing over (m

�
, m̂)

and strictly decreasing for m>m̂. Part (b) of Fig. 2 illustrates these facts.
Owing to the properties of the function h, it turns out that, for budgets

above m
*

(r), bids are equal to budgets at least up to the budget max[m̂, m
*

(r)].
The proof for this fact is complicated. Roughly speaking, since the function
h is increasing up to the budget m̂, it is better for a bidder with a budget
below m̂ to bid his budget than bid below it.

We will then obtain a picture of any symmetric equilibrium whose
bidding function is continuous: bidders with budgets below m

*
(r) bid above

their budgets, those with budgets between m
*

(r) and max[m̂, m
*

(r)] bid
their budgets, and those with budgets above max[m̂, m

*
(r)] bid between

max[m̂, m
*

(r)] and their budgets.
That is the farthest we can go without any additional assumption about

the bidding function. It turns out that the bidding function need not be
monotone for budgets above max[m̂, m

*
(r)] (Remark 3.2). In particular,

there is a continuum of symmetric equilibria whose bidding functions are
non-monotone at the budgets above max[m̂, m

*
(r)]. The reason for such

non-monotonicity is that the bidder-type ``budget'' is a constraint instead
of a valuation or cost. If bids are below budgets, the budget constraint is
non-binding and hence unable to determine the bid.

If we add the restriction that a bidding function is strictly increasing,
then the number of solutions shrinks to exactly one. We present this unique
solution now. Denote mH

&i for the highest budget among a bidder's rivals
and EmH

&i
for the corresponding expected-value operator. Recall the notations

gr and h defined above.

Theorem 3.2. Let r> %
1&% be a borrowing rate given to the bidders.

1. (Existence) It is an equilibrium of the auction game induced by r
that each bidder bids according to the strategy ;: [m

�
, m� ] � R defined by

Em H
&i _v+r$mH

&i

1+r } mH
&i�m& if m

�
�m<m

*
(r)

;(m)={m if m
*

(r)�m�m*(r) (11)

(1&%) _v&
h(m*(r))
F(m)n&1& otherwise,
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where r$ :=r& %
1&% , m

*
(r) is the unique non-m

�
root of the equation gr(x)=0,

and m*(r)=max[m
*

(r), m̂], with m̂ being the unique maximum of the
function h.

2. (Uniqueness) ``Every bidder plays ;'' is the only symmetric equi-
librium such that bids are strictly increasing and continuous in budgets.

Theorem 3.2 will be proved in Sections 3.4.1 (uniqueness) and 3.4.2.
(existence). The following remark highlights the properties of the equi-
librium bidding strategy, whose graph looks like the upward-sloping curve
ABCD in Fig. 1. Specifically, bidders with low budgets bid above their
budgets, those in the middle bid their budgets, while those with higher
budgets bid below theirs.

Remark 3.1. Given any borrowing rate r> %
1&% , the equilibrium

bidding strategy ; of the auction game induced by r has the following
properties:

(a) The function is strictly increasing, continuous, and bounded from
above by (1&%) v.

(b) ;(m)>m if m<m
*

(r), ;(m)=m if m
*

(r)�m�m*(r), and
;(m)<m otherwise.

(c) m
*

( } ) is a one-to-one function over the domain ( %
1&% , �), and its

derivative is negative.

(d) ; is piecewise differentiable and

r$
1+r

(n&1) f (m)
F(m)n |

m

m
�

F(t)n&1 dt

if m
�

<m<m
*

(r)
;$(m)={1 if m

*
(r)<m<m*(r) (12)

(1&%) \v&
m*(r)
1&% + F(m*(r))n&1 (n&1) f (m)

F(m)n

if m*(r)<m<m� .

(e) As r � %
1&% , the function ; increases and uniformly converges to

(1&%) v.

(f) m
*

(r) � (1&%) v as n � �.

Proof. Parts (a), (d), and (e) are trivial. To prove Part (f), recall from
the definition of m

*
(r) that gr(m*

(r))=0, so

v&
m

*
(r)

1&%
=r$ |

m*(r)

m
�

\ F(t)
F(m

*
(r))+

n&1

dt.
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This equation, together with the assumption (1&%) v>m
�

and the fact
m

*
(r)<(1&%) v, gives Part (f). To prove the other parts, (b) and (c),

recall the geometric shapes of functions gr and h illustrated in Fig. 2.
Part (b) follows from the fact that ``;(m)>m for m<m

*
(r)'' is equivalent

to ``gr(m)>0 for m<m
*

(r)'' and that ``;(m)<m for m>m*(r)'' is equiv-
alent to ``h(m)<h(m*(r)) for m>m*(r).'' For part (c), one easily calculates
that

m$
*

(r)=
|

m*(r)

m
�

F(t)n&1 dt

g$r(m
*

(r))
, \r # \ %

1&%
, �+ , (13)

and the derivative is negative due to fact (ii) of function gr . Thus, all parts
of this remark are proved. Q.E.D

Let us remark on a bidder's expected payoff at this equilibrium. From
Eqs. (2) and (11), and the strict monotonicity of the equilibrium bidding
strategy ;, one can easily calculate the equilibrium expected payoff U(m, r)
of a bidder with budget m as

(1&%)[h(m)& gr(m)] if m
�

�m�m
*

(r)

U(m, r)={(1&%) h(m) if m
*

(r)�m�m*(r)

(1&%) h(m*(r)) if m*(r)�m�m� ,

where functions gr and h are defined in Eqs. (9) and (10). Figure 3 depicts
the graph of U( } , r). In this figure, the graph over the interval [m

�
, m

*
(r)] is

convex because the second derivative of h(m)& gr(m) is r$(n&1) F(m)n&2 f (m)
>0; the graph over [m

*
(r), m*(r)] is concave because the derivative h$ is

positive and decreasing over that interval (Fig. 2b).

FIG. 3. Bidders' equilibrium expected payoffs.

149HIGH BIDS AND BROKE WINNERS



3.4.1. Deriving the budget-revealing equilibrium (uniqueness proof ).
Take any r> %

1&% . Let ; be a symmetric equilibrium bidding strategy of the
auction game induced by the borrowing rate r. We will derive the solution
for ; in two steps. Assuming that the bidding function ; is continuous,
Step 1 (Proposition 3.1) proves that the graph of ; for low and middle
budgets looks like the curve ABC in Fig. 1. Adding the assumption that ;
is strictly increasing, Step 2 (Lemma 3.6) proves that the graph of ; for
high budgets looks like the curve CD in the same figure, i.e., ; satisfies
Eq. (11). That will accomplish the uniqueness proof.

Proposition 3.1. Suppose m� <� and ; is continuous. Then, (i) for each
m # [m

�
, m

*
(r)), the bid ;(m) is above budget m and equal to the first branch

of the right-hand side of Eq. (11), (ii) for each m # [m
*

(r), max[m
*

(r), m̂]],
the bid ;(m)=m, and (iii) for each m>max[m

*
(r), m̂], the bid ;(m) #

[max[m
*

(r), m̂], m].

Proof. We first establish that ;(m
�
) is the lowest bid. To prove that,

note that the lowest bid exists, since ; is continuous on the compact space
[m

�
, m� ]. Let z be a budget such that ;(z) is the lowest bid. By a standard

zero-payoff argument, which uses the continuity of u(;( } ), } , r), a bidder
with budget z would get zero expected payoff conditional on winning, i.e.,
u(;(z), z, r)=0. We claim that ;(z)>z. Suppose not; then the fact
u(;(z), z, r)=0 would imply that the lowest bid is (1&%) v (Eq. (2));
consequently, ;(m

�
)�(1&%) v, so u(;(m

�
), m

�
, r)<0, and a type-m

�
bidder

would rather bid zero: a contradiction. Thus, the bidder submitting the
lowest bid must bidding above his budget, i.e., ;(z)>z. Since the equi-
librium bidding function must be strictly increasing over the regions where
bids exceed budgets (Lemma 3.2), z=m

�
, i.e., ;(m

�
) is the lowest bid.

As ;(m
�
)=min ;, we have u(;(m

�
), m

�
, r)=0. By Eq. (2) and Assumption 1,

;(m
�
)=

(1&%) v+r$m
�1+r
>m

�
. (14)

Consequently, with ; continuous, we have established the fact that bidders
with sufficiently low budgets bid above their budgets. Since bidders with
sufficiently high budgets bid below their budgets (Lemma 3.1), there is a
unique m

*
(r) # (m

�
, (1&%) v] such that the bid function ; is strictly increas-

ing and ;(m)>m for all m # [m
�
, m

*
(r)), and ;(m

*
(r))=m

*
(r).

We next derive the behavior of ; beyond the point m
*

(r). We first claim
that

;(m)�m
*

(r), \m>m
*

(r). (15)
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Suppose not; then, without loss of generality and by the continuity of ;, we
can pick some m and m$ such that m>m

*
(r)>m$, ;(m)=;(m$)>min ;.

Since the monotone function Prob;[win | } ] is differentiable almost
everywhere, we can choose m and m$ such that prob;[win | } ] is differen-
tiable at ;(m). We then know that ;(m$)>m$ (since m

*
(r)>m$) and

;(m)<m (since ; is strictly increasing up to m
*

(r)). With ; continuous, we
can choose an open interval N of ;(m) such that m>b>m$ for all b # N.
Thus, the objective (Eq. (3)) of a bidder with budget m and that with
budget m$ are, respectively,

V;(b, m, r)=\v&
b

1&%+ Prob;[win | b] and

V;(b, m$, r)=(v&(1&r) b+r$m$) Prob;[win | b]

for all b # N. Since ;(m) maximizes both objectives and Prob;[win | } ] is
differentiable at ;(m), we have the first-order necessary condition

D1 V;(;(m), m, r)=0=D1 V;(;(m), m$, r).

But then one can easily deduce from this equation that (1&%) v=m$,
which is a contradiction because m$<m

*
(r)<(1&%) v. Thus, Eq. (15) is

true.
We are now ready to find the functional form of ; over the interval

[m
�
, m

*
(r)]. Let ;1 :=;| [m

�
, m*(r)] . Pick any m # (m

�
, m

*
(r)). From the stand-

point of a bidder with budget m, by Eq. (15) and the fact that ;1 is strictly
increasing, the bidder wins if m exceeds the highest budget mH

&i among his
rivals. Note that the cumulative distribution function of mH

&i if F( } )n&1, so
the bidder's objective V;1

(b, m, r) is (v&(1+r) b+r$m) F(;&1
1 (b))n&1 for

those b in the range of ;1 . By the same technique in the proof of
Lemma 3.5, one can find the derivative of the function F(x)n&1 ;1(x) for all
x # (m

�
, m

*
(r)). As in that proof, this gives a linear differential equation of

;1 . Coupled with the boundary condition Eq. (14), this equation gives

;(m)=
1

1+r _v+r$m&r$ |
m

m
�
\ F(t)

F(m)+
n&1

dt& , \m # [m
�
, m

*
(r)].

(16)

One can easily show that this equation is the same as the first branch of
Eq. (11).

By Eq. (16), ``;(x)=x'' is equivalent to gr(x)=0. Thus, we have obtained
m

*
(r) as the root of the equation gr(x)=0 other than m

�
.

We next claim that

;(m)�m, \m>m
*

(r). (17)
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Suppose not; then by the continuity of ; there would be a nondegenerate
interval [m1 , m2] contained in [m

*
(r), m� ] such that ;(m)>m for all

m # (m1 , m2) and ;(m)=m for m=m1 and m2 . By the same proof as
Eq. (15), we would have ;(m)�m2 if m # [m1 , m2]. Consequently, mimick-
ing the derivation of Eq. (16), we get, for each m # (m1 , m2), the bid ;(m)
is equal to the right-hand side of that equation plus c�F(m)n&1 for some
constant c. Since ;(m1)=m1 and ;(m2)=m2 , we then have gr(m1)=&c=
gr(m2); but that is impossible because gr is strictly decreasing on [m

*
(r), m� ]

(Fig. 2a) and m2>m1�m
*

(r). Thus, Eq. (17) is true.
For the rest of the proof, define

` :=sup[x # [m
�
, m� ] : m$ # [m

�
, x] O ;(m$)�m$].

One readily sees that ` exists, ;(`)=`, and `�m
*

(r). We first claim that

x�min[`, m̂] O ;(x)�min[`, m̂]. (18)

To prove Eq. (18), suppose to the contrary that ! :=minx�` ;(x)<
min[`, m̂]. By Eq. (17), we have m

*
(r)�!<min[`, m̂] and !=;( y) for

some y>min[!, m̂]. By the definition of `, we have ;(!)=!. By the choice
of !, bidders with budgets above ! do not bid below !, so F(!)n&1=
Prob;[win | !]. Thus,

V;(!, !, r)=h(!)<h(min[`, m̂]),

where the inequality holds because h is strictly increasing up to m̂. By
Eq. (17) and the fact that ; is strictly increasing up to m

*
(r),

F(x)n&1�Prob;[win | x], \x # [m
*

(r), m� ]. (19)

Consequently,

h(min[`, m̂])�V;(min[`, m̂], min[`, m̂], r)�V;(;( y), y, r)=V(!, !, r),

where the second inequality follows from the fact that y�min[`, m̂], so a
bid of min[`, m̂] is available to a bidder with budget y. But then we reach
a contradiction that V(!, !, r) is less than itself. Thus, Eq. (18) is true.

To complete the proof of the proposition, we need only to prove that

;(m){=m
�max[m

*
(r), m̂]

if m # [m
*

(r), max[m
*

(r), m̂]]
if m>max[m

*
(r), m̂].

(20)

By the definition of ` and Eqs. (17) and (18), it suffices to show `�m̂.
Thus, suppose to the contrary that `<m̂. Then m

*
(r)�`<m̂ and there

would be an m # (`, m̂] such that ;(m$)<m$ for all m$ # (`, m]. By
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Lemma 3.7 to be proved at the end of this Section, this implies that
V;(;(m), m, r)=V;(;(`), `, r). By Eq. (18), we have Prob;[win | `]=
F(`)n&1, since the bid ` is atomless. The definition of h in Eq. (10) then
implies

V;(;(m), m, r)=V;(;(`), `, r)=V;(`, `, r)=h(`)<h(m),

where the inequality holds because h is strictly increasing up to m̂ and
`<m�m̂. By (19),

h(m)�V;(m, m, r)�V;(;(m), m, r).

But then we reach a contradiction that V;(;(m), m, r) is less than itself.
Therefore, the claim `�m̂, and hence Eq. (20), is proved.

Combining Eqs. (16), (17), and (20), we have proved the proposition.
Q.E.D

The above proposition gives us the unique functional form of the bidding
strategy ; up to max[m

*
(r), m̂]. In order to obtain the functional form of

; for higher budgets, we need to add the assumption that ; is strictly
increasing.

Lemma 3.6. If ; is strictly increasing, as well as continuous, then ;
satisfies Eq. (11).

Proof. Although this lemma does not assume m� <�, the conclusion of
Proposition 3.1 still follows. The reason is that the only role played by
m� <� is to ensure that a lowest bid exists; here its existence is guaranteed
since ; is now strictly increasing. Thus, we need only to prove that ;
satisfies the third branch of Eq. (11) for budgets above max[m

*
(r), m̂].

Since bidders with budgets sufficiently large bid below their budgets
(Lemma 3.1), there is an m*(r) # [max[m

*
(r), m̂], (1&%) v] such that

;(m)<m for all m>m*(r) and ;(m*(r))=m*(r). We claim that

m*(r)=max[m
*

(r), m̂]. (21)

Suppose not; then m*(r)>max[m
*

(r), m̂]. (The reverse ``<'' cannot hold,
by the conclusion (ii) of Proposition 3.1.) Consequently, a bidder with
budget m*(r) would rather bid max[m

*
(r), m̂] instead of m*(r). To see

that, note that F(x)n&1 is equal to Prob;[win | x] for each budget x such
that ;(x)=x, since ; is strictly increasing. Thus, bidding max[m

*
(r), m̂]

gives the type-m*(r) bidder an expected payoff (1&%) h(max[m
*

(r), m̂]),
while bidding m*(r) gives only (1&%) h(m*(r)). The former is greater than
the latter because the function h is strictly decreasing over [m̂, m� ]. Thus,
Eq. (21) is proved.
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We are therefore ready to pin down the behavior of ; over its entire
domain. Let ;2 :=;| [m*(r), m� ] . If a bidder has budget m # [m*(r), m� ], with
;2 strictly increasing, his objective V;2

(b, m, r) is (v&b�(1&%)) F(;&1
2 (b))n&1

for those b in the range of ;2 . Mimicking the derivation of Eq. (16), one
can derive a differential equation of ;2 from the symmetric equilibrium
condition. Coupled with the boundary condition ;2(m*(r))=m*(r), this
differential equation gives

;(m)=(1&%) _v&\v&
m*(r)
1&% +\

F(m*(r))
F(m) +

n&1

& , \m # [m*(r), m� ].

(22)

This equation is obviously the same as the third branch of Eq. (11). Combined
with the conclusion of Proposition 3.1, this proves that ; satisfies Eq. (11).
We have hence proved the lemma. Q.E.D

To complete the uniqueness proof, we prove a lemma used in the proof
of Eq. (20):

Lemma 3.7. Let ; be a symmetric equilibrium bidding strategy that is
continuous in budgets and let N be a bounded open interval of [m

�
, m� ]. If

;(m)<m for all m # N then there is a constant c such that V;(;(m), m, r)=c
for all m # N.

Proof. For each x # N, the continuity of ; allows us to choose a suf-
ficiently small neighborhood N(x)�N of x such that ``;(x$)<x$, ;(x$)<x,
and ;(x)<x$'' holds for all x$ # N(x). Since ; is an equilibrium strategy, we
have

V;(;(x), x, r)=V;(;(x$), x$, r), \x$ # N(x).

Suppose not; say ``>'' holds instead. Then a bidder with budget x$ would
do better by bidding ;(x) rather than ;(x$). A standard compactness argument
extends this local result of identical equilibrium payoff to the entire interval N:
For any m, m$ # N with m<m$, the open cover [N(x): x # [m, m$]] of the
compact set [m, m$] has a finite subcover; one can then easily prove that
V;(;(m), m, r)=V;(;(m$), m$, r). This proves the lemma. Q.E.D

The above lemmas imply that the bidding strategy ; must obey Eq. (11).
Thus, we have completed the uniqueness proof.

3.4.2. Verifying the budget-revealing equilibrium (existence proof ). Let
r>0 and let ; be the corresponding function given by Eq. (11). With ;
strictly increasing, a bidder's objective is

V;(b, m, r)=u(b, m, r)[F(;&1(b))]n&1, \b # Range ;, \m # [m
�
, m� ].

(23)
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FIG. 4. The function V;( } , m, r).

Pick any m # [m
�
, m� ]. We shall prove that the bid ;(m) maximizes

V;( } , m, r). Since the function V;( } , m, r) is not differentiable at points
m

*
(r), m*(r), and m, we cannot check some second-order condition once

and for all. Instead, we need to partition the range of possible bids and
verify optimal bids interval-by-interval. The analysis amounts to proving
that the graph of the function V;( } , m, r) is one of the three in Fig. 4,
depending on the position of m relative to m

*
(r) and m*(r). Denote ;1 :=

;| [m
�
, m*(r)] , ;2 :=;| [m*(r), m� ] , and ;3 :=;| [m*(r), m*(r)] .

Case 1. m<m
*

(r). We partition the range of bids into the intervals
(&�, m), [m, m

*
(r)], (m

*
(r), m*(r)], and (m*(r), �). We shall compare

the bid ;(m) with the bids in each interval.

Step (a). ;(m) maximizes V;( } , m, r) over [m, m
*

(r)]. Take any
b # (m, m

*
(r)). Then b belongs to the range ;1 , and V;(b, m, r)=(v&

(1+r) b+r$m) F(;&1
1 (b))n&1. By Eqs. (11) and (12), the derivative is

>0 if b<;1(m)

D1V;(b, m, r)=(a positive term)_r$(m&x) {=0 if b=;1(m)

<0 if b>;1(m),

since r$=r& %
1&%>0. It follows that ;1(m) maximizes V;( } , m, r) over

(m, m
*

(r)). By the continuity of V;( } , } , r), this result extends to the end
points m and m

*
(r).
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Step (b). ;(m) strictly dominates any bid b # (m
*

(r), m*(r)]. Take
any b # (m

*
(r), m*(r)]. Then b belongs to the range of ;3 , so ;&1(b)=b.

Thus,

V;(b, m, r)=_v&
b

1&%
&r$(b&m)& F(b)n&1

=\v&
b

1&%+ F(b)n&1&r$(b&m) F(b)n&1

<r$ |
b

m
�

F(t)n&1 dt&r$(b&m) F(b)n&1

<r$ |
m

m
�

F(t)n&1 dt

=V;(;(m), m, r),

where the first inequality comes from the fact that gr(b)<0 (b>m
*

(r)), and
the second inequality from the fact that �b

m F(t)n&1 dt<(b&m) F(b)n&1,
which is true since F is strictly increasing (Assumption 2). (Again r$>0 is
used.) We have hence shown that V;(b, m, r)<V;(;(m), m, r).

Step (c). ;(m) strictly dominates any bid b>m*(r). It suffices to show
that V;( } , m, r) is strictly decreasing on [m*(r), (1&%) v]. Hence we need
only to prove that the derivative D1V;( } , m, r)<0 over (m*(r), (1&%) v).
Thus, take any b # (m*(r), (1&%) v). In a manner similar to Step (a), one
can easily derive that D1 V;( } , m, r) equals a positive term multiplied by
r$(m&(1&%) v), which is negative because r$>0 and m<m

*
(r)<(1&%) v

(the function ; is bounded from above by (1&%) v). The step is hence achieved.
Step (d). ;(m) strictly dominates any bid b<m. One needs only to

prove that V;( } , m, r) is strictly increasing over [;(m
�
), m), which can be

done by mimicking Step (c).

Case 2. m>m*(r). We partition the range of possible bids as in
Case 1. Mimicking Step (a) of that case, one can prove that V;( } , m, r) is
constant on [m*(r), m] and that the bids in this interval (;(m) is one of
them) strictly dominate any bid b<m

*
(r) and any bid b>m. The only

case different from Case 1 is the claim that any bid b # [m
*

(r), m*(r)) is
strictly dominated by m*(r). This claim is vacuously true if m

*
(r)=m*(r).

Thus, to prove this claim, suppose that m
*

(r){m*(r). Then by the defini-
tion of m*(r) we have m*(r)=m̂>m

*
(r). The function h is hence strictly

increasing on [m
�
, m*(r)] (Fig. 2b). Thus, for any b # [m

*
(r), m*(r)), with

b and m*(r) lying in the range of ;3 ,

V;(b, m, r)=h(b)<h(m*(r))=V;(m*(r), m),

as claimed.
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Case 3. m # [m
*

(r), m*(r)]. One can deal with this case in the same
way as Case 1, except for the claim that any bid b # (m, m*(r)] is strictly
dominated by m (=;(m)). To prove this claim, it suffices to show that
V;( } , m, r) is strictly decreasing over (m, m*(r)]. We hence need only to
prove that D1V;( } , m, r)<0 over (m, m*(r)). Take any b # (m, m*(r)). Then b
belongs to the range of ;3 and V;(b, m, r)=[v&(1+r) b+r$m] F(b)n&1.
Thus,

D1V;(b, m, r)
a positive term

=v+r$m&(1+r) _b+
F(b)

(n&1) f (b)&
<v+r$m&(1+r) _m+

F(m)
(n&1) f (m)&

=g$r(m)�((n&1) f (m))

�0,

where the first inequality comes from the fact b>m and Assumption 3, the
second equality comes from the definition of r$ and gr (Eq. (9)), and the
second inequality comes from the facts that g$r(x)�0 for all x�m

*
(r)

(Fig. 2a).

With all possibilities exhausted, we have verified that ; is a symmetric
equilibrium bidding strategy of the auction game induced by r. Q.E.D

3.4.3. Multiple equilibria with non-monotone bids. With the borrowing
rate above the threshold, the previous sections have proved that there is
only one symmetric equilibrium with a continuous and strictly increasing
bidding strategy. If we allow a bidding strategy to be non-monotone,
however, there are multiple solutions, as the following remark asserts. As
mentioned before, the reason why there are multiple equilibria is that a
bidder's type is a constraint instead of a valuation or cost. Thus, a bid is
not determined if the budget constraint is non-binding.

Remark 3.2. If r>%�(1&%) and m� <�, then there is a continuum of
symmetric equilibria whose bidding strategies are continuous, piecewise
differentiable, and non-monotone over the interval (m*(r), m� ].

Proof. We will construct a continuum of symmetric equilibria from
the equilibrium given by Eq. (11). Recall the definition of m*(r) in
Theorem 3.2. Notice that m*(r)<m� and h(m*(r))>h(m� ) (since h is strictly
decreasing starting from m̂). Thus, there is a continuum of points x #
(m*(r), m� ) such that

(1&%)(v&h(m*(r)))�x<m� . (24)
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Pick such an x. Consider the mapping , that ``folds'' the interval [x, m� ]:
,(t) :=t if x�t�(x+m� )�2, and ,(t) :=x+m� &t if (x+m� )�2�t�m� .
We now construct a symmetric equilibrium where a bidder with budget
m # [(x+m� )�2, m� ] bids the same as the one with budget ,(m). Specifically,
we want to have a bidding strategy ;x to be the same as ; up to the budget
x, strictly increasing from x to (x+m� )�2, strictly decreasing from (x+m� )�2
to m� , and ;x(m)=;x(,(m)) for all m # [x, m� ].

From the viewpoint of a bidder, with his rivals expected to play the
strategy ;x , the situation is the same as the case where his rivals' bids
strictly increase in their budgets and their budgets are independent random
draws from a distribution 8x with support [m

�
, (x+m� )�2]:

8x(m) :={F(m)
F(m)+[1&F(m� &(m&x))]

if m�x
if x�m�(x+m� )�2.

Mimicking Eq. (22), one derives

;x(m)=(1&%) _v&\v&
;(x)
1&%+\

8x(x)
8x(m)+

n&1

&=(1&%) \v&
h(m*(r))

8x(m)n&1+ ,

for all m # [x, (x+m� )�2], where the second equality is due to the fact that

(v&;(x)�(1&%)) 8x(x)n&1=V;(;(x), x, r)=h(m*(r))

by Lemma 3.7. We now extend the bidding strategy ;x over the entire
domain [m

�
, m� ]:

;(m) if m�x
;x(m) :={;x |[x, (x+m� )�2](m) if x�m�(x+m� )�2

;x |[x, (x+m� )�2](,(m)) if (x+m� )�2�m�m� .

One can verify that this bidding strategy ;x comprises a symmetric equi-
librium of the auction game. The reason is that the graph of ;x | [x, m� ] ,
where ;x differs from ;, is bounded between the constants ;(x) and x, due
to the choice of x (Eq. (24)). Therefore, a bidder with budget below x is
unaffected by the switch from ; to ;x , and a bidder with budget above x
can view others' budgets as distributed according to 8x . Also notice that
;x is continuous (since ;x(x)=;(x)) and piecewise differentiable.

Thus, we have constructed a symmetric equilibrium with bidding strategy
;x non-monotone on the interval [x, m� ]. Since there is a continuum of
such x, we have proved the remark. Q.E.D
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A reader bothered by the multiple equilibria may find comfort from
Proposition 3.1, which implies that these equilibria all agree with Eq. (11)
up to the point m*(r) and that the non-monotone part of the bidding
strategies is bounded between m*(r) and (1&%) v. Consequently, when the
number n of bidders is large, the gap between m*(r) and (1&%) v shrinks
(Remark 3.1 (f)), so the non-monotonicity of a bidding strategy becomes
insignificant.

3.5. The Likelihood of Bankruptcy

From the solution of the auction game, we can calculate the probability
of bankruptcy as a function of the borrowing rate r. Recall from Section 3.1
a winner's bankruptcy decision. When the borrowing rate is blow the
threshold %�(1&%), the auction game has the ``high bids and broke winners''
equilibrium (Theorem 3.1), so bankruptcy occurs if and only if the lowest
budget among all bidders is less than (1&%) v and the auctioned item has
zero value. Thus, the probability of bankruptcy (i.e., a winner declaring bank-
ruptcy) with a borrowing rate below the threshold is %(1&(1&F((1&%) v))n).

When the borrowing rate r is above the threshold, the equilibria are
characterized by Theorem 3.2 and Proposition 3.1, so bidders with budget
above m

*
(r) bid within their budgets. For notational convenience, assume

that a winner would honor his bid when he is indifferent between whether
to default or not.5 Consequently, bankruptcy occurs if and only if the
highest budget among all bidders is less than m

*
(r) and the auctioned item

has zero value. Thus, the probability of bankruptcy with borrowing rate
r>%�(1&%) is %F(m

*
(r))n.

When the borrowing rate r=%�(1&%), any bidder's expected payoff
conditional on winning is (1&%) v&b (Eq. (2)). It is then obvious that at
equilibrium every bidder bids the expected value (1&%) v of the good.
With bid independent of budget, a winner's budget is a random draw
from F. Thus, the probability of bankruptcy with borrowing rate %�(1&%)
is %F((1&%) v).

Therefore, the probability of bankruptcy is the highest when the borrow-
ing rate r is below the threshold, drops discontinuously when r rises to the
threshold, and falls continuously as r rises. (The last part is due to the fact
that m

*
( } ) is strictly decreasing by Remark 3.1(c).) Furthermore, the gap

at the threshold rate widens as the number n of bidders increases. Figure 5
illustrates these facts.
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FIG. 5. The probability of bankruptcy determined by the borrowing rate.

4. HOW THE SELLER PROFITS FROM GIVING SUBSIDIES

From the solution of the auction game, comparative statics shows that
bids at equilibrium rise as the borrowing rate falls (Eqs. (5) and (11)).
Consequently, the seller can raise bids if she can lower the borrowing rate.
In particular, the seller may offer to finance the winning bidder at a lower
interest rate. The question is: can such a subsidy raise the seller's expected
profit? This section proves that the answer is ``yes'' in some cases (Proposi-
tion 4.2), but it also cautions that an excessive use of such a subsidy can
lead to the equilibrium of ``high bids and broke winners,'' thereby hurting
the seller (Proposition 4.1).

4.1. A Model of Seller-Provided Financing

Let us first specify the capital markets and bankruptcy arrangements.
We assume immediate liquidation for bankruptcy. Specifically, if a bidder
owes debts of the amount D and has assets of the amount A, and if he
declares bankruptcy or is insolvent (D>A), then all of that bidder's assets
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are transferred to the creditors up to the amount A; i.e., the bidder returns
min[A, D] and keeps only A&min[A, D] for himself. Implicitly assumed
here is that a bidder cannot hide his budget from a bankruptcy court.

For the capital markets, we assume that a bidder can borrow from only
two sources: either from the capital market at a given borrowing rate q�0,
common to all bidders, or from the seller at a rate r�0, publicly chosen
by the seller before the bidding. After a bidder wins the auction and before
the value of the good is realized, his financing proceeds as follows.

1. If the winner borrows from the capital market, then he first
borrows an amount d from a lender such that d plus the winner's budget
mw is sufficient to cover the bid bw . Then the winner pays bw to the seller
and gets the good in return. The value v of the good is realized. The win-
ner's total amount of assets is thus mw+d&bw+v, with liability (1+q) d.
He therefore must return min[mw+d&bw+v, (1+q) d] to the lender. The
winner's payoff is hence

d&bw+v&min[mw+d&bw+v, (1+q) d]. (25)

2. If the winner borrows from the seller, then the winner first delivers
an amount m̂w�mw to the seller, who allows him to delay the payment of
the rest bw&m̂w . We assume that the seller bears a financing cost q per
unit of the postponed amount. The winner receives the good from the
seller, and then the value of the good v is realized. The winner's total
amount of assets is thus mw&m̂w+v, with liability (1+r)(bw&m̂w). There-
fore, he must return min[mw&m̂w+v, (1+r)(bw&m̂w)] to the seller. The
winner's payoff is thus

&m̂w+v&min[mw&m̂w+v, (1+r)(bw&m̂w)], (26)

and the seller's profit is

m̂w&q(bw&m̂w)+min[mw&m̂w+v, (1+r)(bw&m̂w)]. (27)

Implicitly assumed above is that a bidder can lend only at an interest
rate of zero. We further assume that q>%�(1&%). As will be clear soon,
this reflects the assumption of imperfect capital markets.

4.2. The Seller's Expected Profit Function

The above model implies the following fact: If a bidder wins by bidding
above his budget, then he borrows exactly the amount by which the
bid exceeds the budget, whichever financing option the bidder takes.
Borrowing less than that amount is infeasible, since the bidder needs
sufficient funds to cover his bid. Borrowing more than that amount
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is dominated, because the bidder has to pay a non-negative interest on the
debt and, confined by a zero lending rate, cannot profit from lending what
he borrows.

Consequently, we can substitute bw&mw for the debt d in (25) and
substitute the winner's true budget mw for his reported budget m̂w in (26).
Since it is dominated for a bidder to bid at a cost higher than the maxi-
mum value v of the good, we know

v�(1+min[r, q])(bw&mw).

Thus, the winner's payoff becomes

v&bw if bw�mw{v&bw&min[r, q](bw&mw) if bw>mw and v=v (28)

&mw if bw>mw and v=0.

In other words, the winner declares bankruptcy if bw>mw and v=0 and
otherwise pays back the debt, including its interest. Thus, the winner's
bankruptcy decision is the same as that in the auction game analyzed in
Section 3. Specifically, a winner's payoff function here is the same as the
one in Eq. (2). Thus, the equilibrium analysis in previous sections applies.

Notice that a bankrupt winner has zero assets, since he has borrowed
just enough to cover his immediate payment to the seller. It follows that a
lender will receive from her loan neither principal nor interest if v=0, and
otherwise a net gain of interest. Thus, the borrowing rate where an outside
lender makes zero profit is %�(1&%). Our assumption that the borrowing
rate q>%�(1&%) hence reflects the imperfection of capital markets.

By (27) and (28), the seller's ex post profit from offering a loan to the
winner at a rate r<q is

bw if bw�mw

{bw&(q&r)(bw&mw) if bw>mw and v=v
mw&q(bw&mw) if bw>mw and v=0.

Denote /[bw�mw] for the indicator function of the event ``bw�mw ,'' and x+

for max[0, x]. By the above calculation, the seller's interim profit from
offering a loan at rate r, after the selection of the winner (hence knowing
bw and mw) and before the good reveals its value, is

(1&%) _bw&\ q
1&%

&r+ (bw&mw)+&
+%[/[bw�mw] bw+(1&/[bw�mw]) mw]. (29)
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For each borrowing rate r, let ;r denote the symmetric equilibrium
bidding strategy of the auction game induced by r, given by Eq. (5) if
r<%�(1&%) or Eq. (11) if r>%�(1&%). From now on, we select the bid
function ;r as the equilibrium played at each rate r. If the seller offers
lending to a winner at a rate r # [0, q), then her expected profit ?(r) (from
the viewpoint before the selection of the winner) is equal to the expected
value of (29), with mw being the random variable and bw=;r(mw).

If the seller does not offer any loan to the winner, then according to
Section 4.1 the seller receives the winner's bid without bearing any financ-
ing cost, so her expected profit ?0 is the expected value of the winning bid
bw=;q(mw).

4.3. Guideline 1: Offer Borrowing Rates above %
1&%

Does an interest subsidy raise the seller's expected profit? To answer this
question, we need to keep in mind the fact that the equilibrium outcome
of the auction game changes discontinuously at the threshold interest rate
%�(1&%).

Our first result (Proposition 4.1) is that the seller's expected profit is
higher with a borrowing rate above the threshold than with a rate below,
when the number of bidders is sufficiently large. The reason is that a winner
in the first case is the bidder with the highest budget, while a winner in the
second case has the lowest budget. The budget gap between the two cases
widens when the number of bidders is large, with the winning bidder near
the top of the budget support in one case and near the bottom in the other.
With a higher budget, a winner in the first case is less likely to default and
needs less interest subsidy from the seller.

Proposition 4.1. For any borrowing rates r1 , r2 # [0, q) such that r1>
%�(1&%)>r2 , the seller's expected profit ?(r1) at r1 is higher than the expected
profit ?(r2) at r2 when the number n of bidders is sufficiently large. Specifically,

lim
n � �

(?(r1)&?(r2))>q[(1&%) v&m
�
]>0.

Proof. We will calculate the limit of an expected profit ?(r) through the
limit of the corresponding equilibrium bidding strategy ;r . This is valid by
the Lebesgue convergence theorem and the fact that the equilibrium bidding
strategies are all bounded between zero and v.

Notice from Eqs. (5) and (11) that

lim
n � �

;r(m)={
v+r$m
1+r

(1&%) v

if m�(1&%) v

if m�(1&%) v.
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As n � �, the highest budget among all bidders converges in probability
to m� , and the lowest budget converges in probability to m

�
. Since a winner's

budget is the highest at the borrowing rate r1 and is the lowest at r2 , one
can easily calculate from the above equation and (29) that

lim
n � �

?(r1)=(1&%) v and

lim
n � �

?(r2)=\1&
q

(1&%)(1+r2)+ (1&%) v+
q

(1&%)(1+r2)
m
�
.

Therefore, one easily calculates that

lim
n � �

(?(r1)&?(r2))=
q

1+r2 _v&
m
�1&%&>q[(1&%) v&m

�
],

which is positive by Assumption 1. (The last inequality follows from r2<
%�(1&%) and Assumption 1.) We have hence proved the proposition.6

Q.E.D

If the seller insists on offering a borrowing rate below the threshold, she
can avoid the ``high bids and broke winners'' equilibrium by banning bids
above the expected value (1&%) v of the good. with such a ban, one can
show that an equilibrium is that bids are identically (1&%) v, so the winner
is randomly selected. Such a policy, however, is dominated by simply
offering a borrowing rate at the threshold; the latter induces the same
equilibrium bids and yet reduces the interest subsidy offered by the seller.

The threshold borrowing rate is also dominated. Raising the borrowing
rate from the threshold to a rate slightly above it, the seller can expect to
bear significantly less financing cost and still keep the winning bid almost
unchanged. That is due to the different ways of winner selection. While a
winner of the auction game at the threshold rate can be anywhere in the
budget support (Section 3.5), a winner at higher borrowing rates is likely
to be near the top of the budget support.

4.4. Guideline 2: Boost Bids through Suitable Subsidy

The previous Section has shown us the hazard of excessive subsidies.
Should the seller then stay away from offering below-market interest rates?
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This subsection shows that the seller indeed can raise expected profit by
offering below-market rates.

Our approach to this result is simple. By the solution of the auction
game, we know that bids at equilibrium rise as the borrowing rate falls.
Thus, a below-market interest rate would definitely raise the expected
winning bid. The drawback is that the seller would have to shoulder some
financing cost for the winner. The net benefit from the interest subsidy
therefore depends on a comparison between the two effects. To do that, we
will calculate the difference between the seller's expected profit ?(r) from
offering a loan at the interest rate r and her expected profit ?0 from offering
no loan at all.

The following lemma gives a sufficient condition for an interest subsidy
to raise the expected profit. As expected, this condition says that the effect
of higher bids (the first term on the right-hand side of (30)) dominates the
effect of financing cost (the second term on the right-hand side of (30)).

Lemma 4.1. For any interest rate r # (%�(1&%), q) such that r�q�(1&%)&1,

?(r)&?0 �|
m�

m*(r)
(;r(m)&;q(m)) dF(1)(m)

&|
m*(q)

m
�

[;q(m)&m] dF(1)(m), (30)

where F(1)( } ) :=F( } )n denotes the distribution function of the highest budget
among all bidders.

Proof. Pick any borrowing rate r # (%�(1&%), q). By (11) and (29), the
seller's expected profit from offering a rate r is

?(r)=|
m�

m*(r)
;r dF(1)

+|
m*(r)

m
�

_(1&%) \;r(m)&\ q
1&%

&r+ (;r(m)&m)++%m& dF(1)(m)

and that from offering no loan is

?0=|
m�

m
�

;q(m) dF(1)(m).
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Since r�q and the function m
*

( } ) is decreasing (Remark 3.1(c)), m
*

(r)�
m

*
(q). Partition the integral ?0 into the sum of the integrals �m*(q)

m
�

, �m*(r)
m*(q) ,

and �m�
m*(r) . Note that ;q(m)�m for all m�m

*
(q). Consequently,

?0 �|
m*(q)

m
�

[;q(m)&m] dF(1)(m)+|
m*(r)

m
�

m dF(1)(m)

+|
m�

m*(r)
;q(m) dF (1)(m).

Thus, the difference ?(r)&?0 is at least as large as the right-hand side of
Eq. (30) plus

|
m*(r)

m
�

_(1&%) \;r(m)&\ q
1&%

&r+ (;r(m)&m)++%m& dF(1)(m)

&|
m*(r)

m
�

m dF(1)(m).

Here the integrand of the first integral is greater than m if r�q�(1&%)&1,
since ;r(m)>m for all m<m

*
(r). The inequality (30) hence follows. Q.E.D

Based on Lemma 4.1, the next proposition finds a set of environments in
which offering a loan at a below-market rate yields a higher expected profit
for the seller than not offering any loan at all. The functions gq , h, and m*
in the proposition have been defined in (9), (10), and Theorem 3.2.

Proposition 4.2. If the exogenous rate q # (%�(1&%), 1] and

(1&%)(1&F((1&%) v))(1+q) h(m*(q))>|
m*(q)

m
�

gq dF, (31)

and if the equilibrium selected at each borrowing rate r is to play the bid
function ;r , then there exists an r # (%�(1&%), q) sufficiently close to %�(1&%)
such that offering a loan to a winner at the interest rate r yields more expected
profit than not offering any loan to the winner.

Proof. By Lemma 4.1, we need only to find an interest rate r # (%�(1&%), q)
such that r�q�(1&%)&1 and the right-hand side of (30) is positive. Recall the
points m̂, m

*
(r), and m*(r) from the equilibrium bidding function in

Theorem 3.2. Consider two cases:
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First, consider the case m
*

(q)�m̂. For any r # (%�(1&%), q), with the
function m

*
( } ) decreasing, m

*
(r)>m

*
(q)�m̂. Thus, m*(q)=m

*
(q) and

m*(r)=m
*

(r). By Eqs. (9), (11), and (16), we have:

|
m�

m*(r)
(;r&;q) dF(1)=n(1&%)(1&F(m*(r)))(h(m*(q))&h(m*(r)));

|
m*(q)

m
�

[;q(m)&m] dF(1)(m)=
n

1+q |
m*(q)

m
�

gq dF.

Since r>%�(1&%) and q�1, we have r>q�(1&%)&1. Thus, Lemma 4.1
applies. By the fact F(m*(r))<F((1&%) v), the profit difference ?(r)&?0 is
positive if

(1&%)(1&F((1&%) v))(1+q)(h(m*(q))&h(m*(r)))�|
m*(q)

m
�

gq dF.

(32)

Recall the fact that m*(r) � (1&%) v, and hence h(m*(r)) � 0, as r � %�(1&%)
(Remark 3.1(e)). Consequently, if (31) is satisfied, then (32) holds for r
sufficiently close to the threshold %�(1&%). The proposition hence follows
in the case m

*
(q)�m̂.

Second, consider the other case m
*

(q)<m̂. Then m*(q)=m̂. By the fact
that m̂<(1&%) v and m*(r) � (1&%) v as r � %�(1&%) (Remark 3.1(e)),
we can choose r>%�(1&%) sufficiently close to %�(1&%) such that m

*
(r)>m̂

and so m*(r)=m
*

(r). The same calculation in the previous case can therefore
be carried out here. Having exhausted all cases, we have proved the
proposition. Q.E.D

The above proposition provides a sufficiency test for whether it is
profitable to offer an interest subsidy. As the examples in Section 4.4.1 will
show, the set of parameter values satisfying the sufficient condition of the
proposition is nonempty. Thus, offering an interest subsidy can be profitable
in some cases.

In the context of the FCC spectrum auctions, Proposition 4.2 offers a partial
rationalization for the policy of subsidizing winners at a below-market interest
rate: If the rate is above the threshold %�(1&%), such an interest subsidy
may raise the seller's expected profits. The ``high bids and broke winners''
outcome in the C-block auction, however, indicates that the interest rate
offered by the government is below the threshold, thereby hurting the seller
(Proposition 4.1).

4.4.1. Numerical examples. Suppose that the budget of each bidder is
uniformly distributed on [0, 1]. The following remark says that an interest
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subsidy raises the seller's expected profit if the number of bidders is above
a lower bound.

Remark 4.1. When the budgets are uniformly distributed on [0, 1] and
q�1, Inequality (31) is satisfied if the number n of bidders is so large that

n>
v

(1+q)(1&(1&%) v)(q(1&%)&%)
&1. (33)

Proof. First, we calculate the functions h and gr (\r # ( %
1&% , q]) by

Eqs. (9) and (10):

h(x)=\v&
x

1&%+ xn&1;

gr(x)=xn&1 \v&\ 1
1&%

+
r
n

&
%

n(1&%)+ x+ .

Thus, we calculate m̂ and m
*

(r) by their definitions in Theorem 3.2:

m̂=
n&1

n
(1&%) v;

m
*

(r)=v \ 1
1&%

+
r
n

&
%

n(1&%)+
&1

.

Therefore, m
*

(r)>m̂ iff r<( n
n&1+%)�(1&%). Since q�1 by assumption,

we have m
*

(q)>m̂, so m*(q)=m
*

(q). One can then prove that (31) is
equivalent to (33). Q.E.D

Condition (33) has an obvious economic meaning. A sufficiently large
number of bidders shrinks the effect of an interest subsidy on the seller's
financing cost. As long as the interest rate is above the threshold so that
the winner is the richest bidder, a large number of bidders would ``push''
the winner toward the top of the budget support, making it probable that
the seller bears no financing cost at all.

Notice that Condition (33) does not mean that we are considering the
effects of an interest subsidy in the limit as the number n of bidders becomes
arbitrarily large. Instead, the explicit lower bound for n required by the condi-
tion can be quite small. For example, suppose that %=1�4, v=1�2, and
q=2�3. Then (33) becomes n�23�25, which is vacuously true.
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5. CONCLUDING COMMENTS

By considering bidders' budget constraints and default options, this
paper has obtained equilibrium results novel to auction theory. On one
hand, the equilibrium of ``high bids and broke winners,'' where the auction
is won by the most budget-constrained bidder who would most likely
declare bankruptcy, shows the impact of default options. On the other
hand, the multiple equilibria at above-threshold borrowing rates, where
high-budget bidders submit non-monotone bids, indicate that budget
constrains as private types lead to a mathematical structure different from
the one in standard auction theory, where bidders' types are preferences or
costs.

The paper also demonstrates the seller's incentive to provide financing.
This incentive arises because an interest subsidy to the highest bidder
would intensify bidders' competition. Even with default risk, the seller can
in some cases raise her expected profits by offering to finance the winning
bidder at a below-market interest rate. In doing so, the seller needs to
charge a rate above the threshold to avoid the equilibrium of ``high bids
and broke winners.''

As noted previously, this paper has made a few simplifying assumptions.
Further extensions may include other arrangements of default, bidding
through subsidiaries, and pre-bidding financing. A related challenging problem
is to design an optimal auction in our environment. Except for the work by
Che and Gale [5], who consider one-bidder no-default cases, little is
known about this problem.

APPENDIX: NOMENCLATURE

p Payment
r Borrowing rate
% Probability of zero value
v Maximum value of the good
q Exogenous borrowing rate
n Number of bidders
i Index for bidders
mi budget of bidder i
C Cost function
F (resp. f ) Distribution (resp. density) function of budgets
bw Winner's bid
mw Winner's budget
v The (random) value of the good
[m

�
, m� ] The support of F

169HIGH BIDS AND BROKE WINNERS



; Symmetric equilibrium bidding strategy
;|A Function ; restricted to a set A
u Bidder's payoff conditional on winning
s bidding strategy
Vs Expected payoff given others playing s
b A bid
Prob Probability
m A budget
E Expected-value operator
N A neighborhood
mL

&i The lowest budget among one's rivals
r$ %�(1&%)
G (1&F )n&1

;1 , ;2 , ;3 Function ; restricted to some intervals
D1 Partial derivative operator w.r.t. the first variable
m

*
(r) A cutoff point determined by r

gr A function determined by r
m̂ A cutoff point independent of r
h (resp. h$) A function (resp. its derivative) independent of r
mH

&i The highest budget among one's rivals
m*(r) A cutoff point determined by r
U A bidder's surplus
`, ! Temporary symbols
, A function
8x A distribution function determined by x
;x A bidding function indexed by x
d Debt
m̂w Winner's reported budget
x+ max[0, x]
/ Indicator function
;r The equilibrium bid function at borrowing rate r
?(r) The expected profit at borrowing rate r
?0 The expected profit without offering a loan
F(1) F n

:= Is defined as
# Is constantly equal to
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