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OPTIMAL AUCTION WITH RESALE 

BY CHARLESZHOUCHENGZHENG' 

This paper investigates the design of seller-optimal auctions when winning bidders can 
attempt to resell the good. In that case, the optimal allocation characterized by Myerson 
(1981) cannot be achieved without resale. I find a sufficient and necessary condition for 
sincere bidding given the possibility of resale. In two-bidder cases, I prove that the Myerson 
allocation can be achieved under standard conditions supplemented with two assumptions. 
With three or more bidders, achieving the Myerson allocation is more difficult. I prove that 
it can be implemented in special cases. In those cases, the Myerson allocation is generated 
through a sequence of resale auctions, each optimally chosen by a reseller. 

KEYWORDS: Auction, optimal auction, resale, mechanism design. 

1. INTRODUCTION 

MUCH O F  T H E  AUCTION DESIGN LITERATURE makes the unrealistic assump- 
tion that winning bidders cannot attempt to resell the good to losing bidders. 
This assumption is not innocuous. When resale cannot be banned, the optimal 
allocation characterized by Myerson (1981) cannot be achieved without resale: 
since the allocation is sometimes biased in the sense that a winning bidder may 
value the good less than his rivals, resale may occur and upset the allocation 
(Proposition 1).In this paper, I investigate the extent to which sellers can achieve 
the optimal Myerson allocation despite possibility of resale. I find the incentive 
constraint that arises from resale possibility (Proposition 2). In two-bidder cases, 
I find that the Myerson allocation can be achieved under standard conditions 
supplemented with two assumptions (Proposition 3). With three or more bidders, 
there are additional complications that make achieving the Myerson allocation 
more difficult. I note that it can be implemented in very special circumstances 
(Proposition 4). 

Let us examine as Example 1 an environment initially considered by Ausubel 
and Cramton (1999). Two bidders, Strong and Weak, pursue an indivisible good 
that has zero value to the owner; its dollar value to Strong is uniformly distributed 
on [O, 101, and that to Weak is commonly known as $2. Suppose that whoever 
buys the good can commit to a resale price. If the initial owner is restricted to 

'This paper has incorporated a previously separate manuscript "Middlemen in Auctions." I thank 
Paul Milgrom for suggestions that inspired substantial revisions of the paper, an editor and the refer- 
ees for comments, and many individuals for discussions, especially Colin Campbell, Peter Cramton, 
Tom Gresik, Phil Haile, Jakub Kaluzny, Roger Myerson, Mike Peters, Mark Satterthwaite, Jeroen 
Swinkels, Jean Tirole, Dan Vincent, Mark Walker, Mike Whinston, Asher Wolinsky, and the partici- 
pants of the Joint CSIODDEI Industrial Organization Workshop in 2001 at Toulouse. The final stage 
of the project was supported by NSF Grant SES-0214471. 
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standard auctions with a uniform reserve price for both bidders, then the best he 
can get is $2.5 (by offering the good for sale at price $5). If implementable, biased 
allocations could be better. For example, the Myerson allocation, selling the good 
to Strong at price $6 if Strong's value is above $6 and selling it to Weak at 
price $2 if otherwise, would yield $3.6. If resale cannot be banned, this allocation 
obviously cannot be implemented during the initial sale. But the initial owner 
can sell the good exclusively to Weak at the price $3.6. As Strong is excluded 
in the initial stage, Weak continues to believe that Strong's value is uniformly 
distributed on [O, 101 and hence asks Strong for the optimal resale price $6, which 
is accepted by Strong with value above $6; thus, Weak's expected payoff at the 
resale stage is $3.6, his breakeven point. Hence this mechanism implements the 
biased allocation via resale. Moreover, the seller manages to obtain an expected 
profit that is the highest even when he could ban resale costlessly, since the 
Myerson allocation is the best for him in the no-resale environment and he 
cannot do better when he cannot ban resale. 

The general two-bidder case is slightly more complicated. I examine a model 
in which a seller commits to a mechanism with the expectation that a winning 
bidder will also commit to a mechanism that offers resale to the losing bidder. 
Suppose that the Myerson allocation favors bidder 1. If we use the same bias as 
the Myerson allocation, then bidder 2 becomes the final owner too often. That is 
because bidder 2 may buy from bidder 1 in resale. On the other hand, if we use 
the extreme bias of always selling to bidder 1, then bidder 2 becomes the final 
owner too seldom. That is because bidder 1 with greater monopolistic power is 
less willing to resell the good.2 I find that with an intermediate degree of bias 
we can recover the optimum. This optimal bias is carried out by inflating the 
favored bidder's bid t, into /?(t,), so that his rival has to top the inflated bid /?(t,) 
in order to win in the initial a ~ c t i o n . ~  The inflated bid is calculated to ensure 
that the resale price optimally chosen by the winning bidder is exactly the cutoff 
at which the Myerson allocation is indifferent between the bidders. To obtain 
this result (Proposition 3), I make two assumptions in addition to monotone 
hazard rate. One is that the bidders' virtual utility functions can be uniformly 
ranked, so that a bidder is always favored against the other. The other is that the 

To see that formally (thanks to Paul Milgrom for suggesting the gist of the argument), let us 
consider transferring an incremental probability of being the final owner from bidder 1 to 2. In this 
transfer, the marginal revenue received from bidder 2 is the same from the viewpoints of the initial 
owner and the reseller bidder 1, because the belief about the excluded bidder 2 is unchanged before 
and after bidder 1 buys the good. The marginal costs, however, are different. For the reseller, it is 
equal to his own value t,. For the initial owner, it is less than t , ,  since the initial owner does not 
know t ,  and hence has to give up rents when that incremental probability is given to bidder 1 instead 
of 2. Thus, an exclusively delegated middleman is less likely to resell the good than the initial owner 
wishes him to do. As what the owner wishes is implementable (shown later), one can prove by the 
revenue equivalence theorem that exclusive delegation is suboptimal. 

'A way to inflate bids is offering bid credits to favored bidders. In the U.S. "regional narrowband" 
spectrum auction in 1994, the government offered bid credits to small and women- and minority- 
owned firms. 
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function /3 is monotone nondecreasing, so that the incentive constraint identified 
by Proposition 2 is satisfied. 

With three or more bidders, implementing the Myerson allocation is more dif- 
ficult. When you sell to bidder 1, for example, he will want to resell to bidders 2 
and 3 by resale-robust mechanisms described in the previous paragraph, based 
on his posterior belief. That leads to a complication: he may favor a bidder that 
the initial owner would like to discriminate against, because the Myerson alloca- 
tion based on the winner's posterior belief may be different from the Myerson 
allocation based on the prior belief. Another complication is cycles: the opti- 
mal degree of bias for one bidder against another is specific to the pair; hence 
it is possible that bidder 1 beats bidder 2, 2 beats bidder 3, and 3 beats 1. In 
Section 5, I note that there are prior distributions for which these complications 
do not arise. Based on these distributions, I find a mechanism with which an ini- 
tial owner achieves his best with n bidders (Proposition 4). On the equilibrium 
path, a winner in this auction faces a similar design problem and will use the 
same mechanism (revised by updated beliefs) for resale, and so will the winner 
in his resale auction. At every stage, the Myerson allocation in the corresponding 
updated environment is implemented via a positive probability of r e ~ a l e . ~  The 
process continues until a mechanism results in no sale, in which case the current 
owner, assumed to be able to commit to his reserve, becomes the final owner. 
Readers may think of Section 5 as having both positive and negative messages. 
The good news is that Myerson's characterization of optimal final allocations is 
resale-robust at least in a special case. The bad news is that extending the posi- 
tive result beyond the special case is difficult if not impossible. To investigate the 
possibility of such extension, we need a full characterization of incentive feasibil- 
ity with the possibility of resale. Towards that end, Proposition 2 might be useful. 

This paper is closely related to the optimal auction literature; extending it to 
the case of resale is the present paper's main contribution. Myerson (1981) com- 
pletely characterized the seller-optimal mechanisms for single-good independent- 
value models where a seller can ban resale costlessly. His result implies that a 
seller-optimal mechanism is biased when bidders are not identically distributed. 
That points to a fundamental conflict between seller-optimality and efficiency, a 
main motivation of the present paper. 

The early papers on optimal auctions (Harris and Raviv (1981), Myerson 
(1981), Riley and Samuelson (1981), etc.) used the revelation principle to char- 
acterize optimal mechanisms in static environments. This method, however, is 
less useful in dynamic environments with recontracting (resale, renegotiation, 
etc.). Although an equilibrium of a mechanism-selection game from its outsider's 
viewpoint is outcome-equivalent to a Bayesian incentive feasible direct revela- 
tion mechanism (DRM), players inside the game need not be able to replicate 
the equilibrium by selecting this DRM. That is because the allocation of the 

The feature of nested post-sale auctions somewhat resembles a real episode discussed by Porter 
(1992). 
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mechanism can be altered by the exogenously available option of recontracting, 
making the DRM incredible." 

The paper is also related to the literature on auctions with resale. Please see 
Haile (2000) for a more complete list of that literature. Haile (2000) analyzed 
standard auctions followed by a resale game. In his model, new information about 
the good is revealed after an auction, so resale may occur even if the previous 
auction has achieved efficiency before the new information inflow. To focus on 
the tension between a seller's manipulation and the counterbalance from resale, 
I do not allow information to enter the economy between auction and resale. 
Regarding the role of middlemen in auctions, Bose and Deltas (1999) showed 
that, given a second-price auction with exogenous common value, it is profitable 
for a seller to exclude the final consumers from the initial auction in order to 
mitigate the winner's curse. Haile (1999) had a similar example, with the common 
value derived from the assumption that a winning bidder has a fixed share of 
the resale surplus. In a complete-information model, Milgrom (1987) showed 
that an auction is at least nearly optimal when a seller cannot prevent resale 
from himself or among bidders. Jehiel and Moldovanu (1999) analyzed several 
resale processes with complete information and interdependent values. Ausubel 
and Cramton (1999) considered an optimal multiunit auction with an efficient 
secondary market. Calzolari and Pavan (2001) considered an optimal auction in a 
two-bidder two-type model where a winning bidder need not have full bargaining 
power at resale. 

The focus of this paper is resale among bidders. A complementary subject is 
auction design when the seller cannot commit to his no-sale decision. McAfee 
and Vincent (1997) analyzed this problem under the assumption that the seller's 
choice is a sequence of reserve prices subject to a fixed auction mechanism. 

2. THE MODEL 

I shall formulate the primitives governing the choice of mechanisms and other 
actions as a multistage mechanism-selection game with incomplete information. 

2.1. The Mechanism-Selection Game 

There is an indivisible good and n + 1 players (n = 1,2, . . . ). Player 0 is the 
initial owner of the good. The game consists of at most N +1stages, with N an 
integer much bigger than n. At stage 0, the initial owner selects a mechanism to 
be operated by a neutral trustworthy mediator within stage 1, which then begins. 
For any k = 1, . . . , N, if the game continues to stage k, the mediator announces 
and then operates the mechanism selected by the current owner at stage k - 1. 
(If no selection was made, the mechanism is "no sale no matter what.") If the 
mechanism does not sell the good, then the current owner becomes the final 

To separate mechanisms viewed by an outsider from those selected by a player in a game, perhaps 
we should call the former meta-mechanisms. 
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owner and the mechanism-selection game ends. Otherwise, the current owner 
trades with the winner, who in turn becomes the new current owner. If k = N, 
the game ends; otherwise, the current owner selects a mechanism to be operated 
in stage k +1,which then begins. In the sequel, the word stage is reserved for the 
above meaning. (A mechanism within a stage can have several rounds.) Players 
other than the current owner are called (current) bidders. 

Note that a seller is allowed to buy back the good, but he is not allowed to post- 
pone the sale to future stages. Also note the assumption that a player can commit 
to his choice of mechanisms if and only if he is the current owner. This assump- 
tion facilitates comparison with the literature on optimal mechanisms, which is 
mostly based on a seller's commitment ability. However, a player's commitment 
ability does not entitle him to pick any mechanism. An exogenous constraint is 
"resale cannot be banned," formalized next. 

Mechanisms. At each stage, the current owner is allowed to choose any mech- 
anism restricted below. It is a mapping that associates a lottery to each possible 
profile of actions; the actions (including nonparticipation) are taken by the cur- 
rent bidders, and the lottery is carried out at the end of the stage. The lottery 
picks (i) a winner from all the players (including the current owner), (ii) a con- 
figuration of monetary transfers (carried out at the end of the stage), and (iii) 
an announcement (broadcasted at the end of the stage) of some actions taken 
during the stage. Items (i) and (ii) are standard in auction theory, and item (iii) 
is relevant because the mechanism-selection game is multistage. 

In addition to the usual restrictions regarding nonparticipation and indivisibil- 
ity, the above definition of a mechanism reflects two new restrictions pertinent to 
the resale context. First, a mechanism cannot result in any binding contract con- 
tingent on any event that may occur after the trade between the current owner 
and the winner. This is captured by the restriction that the lottery mandated by a 
mechanism is independent of events after the current stage. Hence a seller can- 
not commit to rewarding or penalizing the resale behavior of ~ t h e r s . ~  Second, a 
mechanism should be transparent: once the mechanism for a stage is selected, its 
mandate at the end of the stage is independent of the current owner's messages 
or actions. This is captured by the restriction that the lottery is independent of 
the action taken by the current owner. This restriction is to avoid the unsettled 
issue of mechanism design by privately informed principals. Although the restric- 
tion is harmless with private values and quasilinear preferences when types are 
discrete (Maskin and Tirole (1990, Prop. l l ) ) ,  we consider a continuum of types 
here. We need this restriction even if the initial owner has no private informa- 
tion, as future owners may have. 

This extreme formulation of the resale constraint is to facilitate tractability. A deeper analysis 
may assume that resale is an action hidden from the current seller and then derive an endogenous 
resale constraint from the sacrifice needed to induce confession from the participants of resale. 
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Preferences. If a player i's total net payment to others throughout the 
mechanism-selection game is p (with - p  denoting the net receipts), then his pay- 
off is ti -p if he is the final owner of the good, and is - p  otherwise. Here the 
level ti of his utility from being the final owner is a constant given to him and is 
called his type. This assumption of private values allows us to trace the impact of 
resale from the endogenously induced common-value component. Discounting is 
not considered, as it can only weaken the resale constraint. 

Information Structure. At the beginning of the mechanism-selection game, a 
bidder's type is privately known to himself and is regarded as a random variable 
independently drawn from a commonly known distribution. Different bidders' 
distributions can be different. The initial owner's type is commonly known. A 
player does not know the actions of others unless the mechanism exposes them. 
(The current owner is not an exception, as the mechanism is not operated by 
himself.) After the operation of a mechanism, the identity of the winner and 
the public announcement constitute the new common knowledge. Hence a seller 
can influence the selection of future mechanisms by his disclosure policy of past 
information. 

2.2. The Equilibrium Concept 

For multistage mechanism-selection games with incomplete information, defin- 
ing the equilibrium concept is nontrivial. We need a logically consistent treat- 
ment to an issue: What should an equilibrium say when a player has selected a 
mechanism that has no continuation "equilibrium" (say due to bad tie-breaking 
rules)? The issue is not about the existence of equilibrium, but whether the equi- 
librium concept is well-formed. The resolution is a modified notion of perfect 
Bayesian equilibrium (PBE). The modified concept is the same as PBE except 
for a slightly weaker condition of sequential rationality, which is still stronger 
than that of Bayesian Nash equilibrium (BNE). A reader willing to accept the 
above claim may skip to the next subsection. 

In static environments, the above issue could be resolved by assuming that 
only equilibrium feasible mechanisms are admissible. The trouble in multistage 
mechanism-selection games is that usually we cannot identify equilibrium infea- 
sible mechanisms a priori, as whether something is a continuation equilibrium 
depends on the belief system of the underlying equilibrium of the entire game. 
This Catch-22 problem is analogous to the problem in formulating Bayesian 
updating. As is well-known, we cannot apply Bayes' formula at surprising events 
and these events cannot be identified a priori. The treatment of PBE is to iden- 
tify them relative to the equilibrium and impose no restriction on the belief sys- 
tem at such events. Analogously, we may impose no restriction on the strategy 
profile whenever the selected mechanism is "equilibrium infeasible" relative to 
the "equilibrium," provided that both notions can be defined. As these notions 
are intertwined, I define them by backward recursion of the mechanism-selection 
game. That is why the game is assumed to have a final stage N. 
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DEFINITION:An equilibrium of a continuation game at the beginning of the 
final stage N means a BNE of the continuation game. Hence the notion of equi- 
librium at this level is well-formed, since BNE is so. Pick any k = 1, . . . , N. Sup-
pose that the notion of equilibrium is already well-formed for any continuation 
game starting at the beginning of stage k. Thus, for any mechanism to be oper- 
ated in stage k, its continuation game either has an equilibrium or not; hence 
we can call the mechanism equilibrium feasible if its continuation game has an 
equilibrium and call the mechanism equilibrium infeasible if otherwise. An equi-
librium of a continuation game starting at the beginning of stage k -1means a 
pair of strategy profile .Y and belief system 3 such that: 

(i) 3 follows Bayes's rule relative to 9,except at any history where the 
decision-maker can conclude that someone else has deviated from .Y at the 
immediately preceding history; 

(ii) 3' is sequentially rational relative to 9,except when the player who buys 
the good in stage k -1has either 

(a) selected a mechanism (to be operated in stage k) that is equilibrium 
infeasible, or 

(b) deviated from Y and the deviation is dominated from the standpoint 
when the deviation was made. 

Here clause (a) gives us a logical basis for a uniform treatment when a player 
has selected a deviant mechanism: players abide the associated continuation equi- 
librium if the deviant mechanism is equilibrium feasible, and they can pick any 
action if otherwise. As a by-product of the definition, clause (b) allows us to not 
specify a current owner's optimal mechanism if in the past he made a deviant 
and dominated move. 

2.3. Environments, Allocations, and Myerson Allocations 

For a current owner, the environment consists of all the data known to him 
when he selects a mechanism. The environment for the initial owner is simply 
the exogenously given mechanism-selection game parameterized by the prior dis- 
tributions of the bidders' types. For a future owner, however, the environment is 
endogenously determined by the posterior distributions based on observed his- 
tories and the underlying equilibrium. 

Roughly speaking, allocations are type-contingent final outcomes. Selecting 
an equilibrium feasible mechanism, a current owner is essentially choosing an 
allocation. Since he is confined to transparent mechanisms (Section 2.1), we need 
only to consider those allocations that are independent of his type, though his 
choice among them is based on his type. More precisely, afinal ownership means a 
lottery that picks a final owner of the good from the set of all the players. For any 
current owner i, an allocation in his environment means a function that associates 
a final ownership to every possible profile of the types of the players other than 
i. An allocation in i's environment is said to be equilibrium feasible if i can select 
an equilibrium feasible mechanism that implements the allocation (generates it 
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on the equilibrium path). In contrast, an allocation in i's environment is said 
to be BNE-feasible if i can select a mechanism whose continuation game has 
a BNE that generates the allocation. Since our equilibrium concept is stronger 
than BNE, an equilibrium feasible allocation is always BNE-feasible, but not vice 
versa. They coincide only when all the resale stages of the mechanism-selection 
game are removed. 

For any current owner i and any environment given to him, given any BNE- 
feasible allocation a in this environment, define the suiplus for i at a as the 
maximum expected profit for i among all the BNEs that generate the allocation, 
and define the surplus for any other player j at a as the expected profit for j at 
that i-optimal BNE. If there is an allocation that maximizes the current owner's 
surplus among all BNE-feasible allocations, we call it a Myerson allocation. A 
player's surplus at a Myerson allocation is called his Myerson surplus. 

The next lemma implies a sufficiency condition for a mechanism to be optimal 
for an owner: it is equilibrium feasible and gives the owner his Myerson surplus. 
The intuition is simply that a seller cannot do worse when he can ban resale 
costlessly than when he cannot. 

LEMMA2.1: An owner's Myerson surplus, if it exists, is an upper bound of his 
expected profits that are equilibrium feasible. A mechanism is optimal for an owner 
if it implements the Myerson allocation and gives the bidders their Myerson surpluses. 

PROOF: The first sentence follows directly from the fact that an equilibrium 
is always a BNE. Hence the second sentence is true since the owner's surplus is 
equal to the entire social surplus, fixed given an equilibrium, minus the bidders' 
surplus. Q.E.D. 

For each player i, let F, denote the prior distribution of i's type at the begin- 
ning of the mechanism-selection game. The following assumption is usual in the 
auction literature. 

ASSUMPTION1 (Hazard Rate): For each player i, the support T,. of F, is con- 
vex and bounded from below and, if T, is a nondegenerate interval, the density 
function f, is positive and continuous on T. and differentiable in its interior, and 
( 1  - I;;( t i )) / f i ( t i )is a decreasing function of ti on T,. 

Assumption 1 implies that the well-known virtual utility function Videfined by 

is strictly increasing on T,. Then one can show that all the Myerson allocations in 
the initial owner's environment are identical for almost all profiles of the types 
of the bidders, and all these allocations have the property that, for almost all 
profiles (ti):=, of bidders' types, the final owner is selected in descending order 
of the virtual utilities I/ ,(t ,)across i until they drop to the owner's type. Hence 
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the Myerson allocation in the sequel will refer to the allocation that satisfies this 
selection criterion for every possible profile of types. 

An allocation is said to be biased towards a bidder if there is a positive prob- 
ability with which he becomes the final owner of the good when some other 
bidder's value is higher than his. Clearly the Myerson allocation is biased when 
the virtual utility functions are different across i .  This important feature creates 
a tension between a seller's incentive to implement a biased allocation and bid- 
ders' incentive to undo the bias via resale. The next assumption is to dramatize 
this tension. 

ASSUMPTION2 (Uniform Bias): The bidders can be ranked by 1, . . . ,n so that, 
if bidder i is ranked before bidder j ( i  < j ) ,  then T.C T, and y.(x)2 V,(x) for all 
x E T,. 

Thus, the Myerson allocation is biased towards bidder 1 against bidders 
2, . . . ,n, biased towards bidder 2 against bidders 3 , .  . . ,n ,  and so on. We shall 
name the players by this ranking system in the sequel. 

3. PRELIMINARY ANALYSIS 

3.1. Myerson Allocations Need Resale 

Resale means trading among bidders after the current stage. Can we implement 
the Myerson allocation without resale? The answer is No. That is because the 
allocation is biased and the following fact applies. 

PROPOSITION1: It is impossible to implement a biased allocation such that the 
probability of resale is zero. 

PROOF: Suppose that an allocation biased towards a bidder i is implemented 
via a mechanism without resale. At the associated equilibrium, this allocation is 
completed after stage one of the mechanism-selection game. Let us begin with 
the special case where the mechanism does not give a winner any news other 
than the winning status. In the event that i wins, he would infer that there is a 
positive probability with which the gain of trade between him and other bidders 
is at least some positive E. Hence i has a strict incentive to deviate from the 
equilibrium and offer the good for resale at a price equal to his value plus a 
fraction of E, a contradiction. 

Next consider the general case where a winner may receive additional news. 
Conditional on every news vi and i's winning status, bidder i calculates the gain of 
trade, say gi(vi), at resale. Integrating gi over all possible news vi (with the prob- 
ability measure derived from the equilibrium path), bidder i gets the expected 
value gi of the gain from trade at resale from the standpoint of having seen 
the winning status and before receiving any additional news. As the allocation 
is biased, gi > 0. Hence g, > 0 on a positive-probability set of news. From every 
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such news, bidder i would infer that it is profitable to deviate from the equilib- 
rium prescription of no resale. Q.E.D. 

The above proposition implies that, although the Myerson allocation may be 
a best scenario for a seller, the seller cannot use it as a recipe. If he did, at 
equilibrium the winner-selection rule must be violated with a positive probability. 

3.2. Acyclic Path of Resale 

Would a bidder resell the good back to its previous owner? Would a bidder 
outbid a rival and then resell the good back to the losing rival? The next lemma 
says that the answers are No with appropriate payment schemes. The reason is 
that each player knows his own value of the good. 

LEMMA 3.1: If a current owner knows, before selecting a mechanism, that his 
type is at least as high as a player's, and if the two parties always have identical 
beliefs about others, then the current owner finds it unprofitable to include the player 
as a potential buyer. If winning in a current stage requires a bidder i to pay more 
than player j's type, and if i and j always have identical beliefs about others, then it 
is weakly dominated, ffom the standpoint of the current stage, for i to outbid j (or 
buy the good ffom j if j is the current owner) and then resell the good to j. 

PROOF: The first claim follows from the fact that there is zero gain of trade 
between the current owner and the player whose value is a priori known to be 
less than the owner's. Even if this player is willing to pay more than her value 
due to possible resale, the owner can resell the good himself. (Note that the 
two parties do not have different assessments of the revenue.) The second claim 
follows from the fact that resale back to j cannot recover i's payment, unless j is 
willing to pay more than her value due to possible resale, but again i can obtain 
that resale revenue without resale to j. Q.E.D. 

Note: The traditional payment schemes to implement Myerson allocation 
do not satisfy the condition of the above lemma. For example, a winner w 
is supposed to pay max{V;'(Vi(t,)): i # w). Clearly it need not be true that 
V;'(l/,(ti)) 3 ti. Hence the probable occurrence of resale after Myerson's opti- 
mal auction does not contradict Lemma 3.1. 

3.3. The Incentive Constraint against One-Shot Deviation 

Characterizing equilibrium feasible mechanisms is itself a challenging problem. 
Here I shall confine the investigation to the incentive condition that prevents 
one-shot deviations. Specifically, let m be a revelation mechanism to be operated 
in the current stage, and let u be a strategy profile conditional on the operation 
of m. In order for ( m ,u )  to constitute a mechanism-equilibrium pair, three con- 
ditions must hold: (i) the allocation generated by (m, u )  is BNE-feasible; (ii) the 



2207 OPTIMAL AUCTION WITH RESALE 

strategy u is sequentially rational in any possible continuation game following 
the operation of m (unless clause (a) or (b) in Section 2.2 applies); (iii) each 
player is truthful during the operation of m. The question is what (iii) exactly 
requires if (i) and (ii) are satisfied. 

Let q:(;i, ti I m, a )  denote the probability, calculated by player i, with which i 
becomes the final owner of the good if he reports fi to mechanism m and follows 
the strategy a afterwards, given his type ti and provided that other players always 
follow u .  The next proposition identifies the condition making such one-shot 
deviations unprofitable. 

PROPOSITION 2: Consider any mechanism m, strategy profile u ,  and bidder i. 
Suppose: (a) if u is followed, the final allocation is BNE-feasible; (b) u is sequen- 
tially rational for i in any possible continuation game after the operation of m (unless 
clause (ii)(a) or (ii)(b) in Section 2.2 applies); and (c) the distribution of i's type 
is supported by an interval. Bidder i always finds it optimal to be truthful during the 
operation of m (within the current stage) if and only if 

for any possible types ti and ti of i such that misrepresenting a true type ti as t: is 
not exempted by clause (ii)(a) or (ii) (b). 

PROOF: Notations: Without loss of generality, regard the current stage as 
stage one. Starting from the beginning of stage two, the player can deviate to 
a strategy, say ui(ii ,  s,), that u would instruct him to follow from now on had 
his stage-one report to the mechanism been ii (instead of say i,) and his type 
been si (instead of say ti). Let (ii, i i ,  si) denote the contingency plan of report- 

plan and the expectation that others abide by u ,  let qi(i,, i i ,  si 1 m, a )  denote 
the probability with which player i becomes the final owner of the good, and 
let i i ,  si I m, a )  denote the expected value of player i's total net payment 
to others throughout the entire mechanism-selection game, each calculated by i 
before the operation of mechanism m. Let ui(fi, i i ,  si I ti, m, u )  denote a type-ti 
player i's expected profit for the entire mechanism-selection game viewed before 
the operation of the mechanism m, given his contingency plan (ii, i i ,  si) and the 

A A

expected u .  Let u;(ii I ti, m, a )  :=u,(t,, t,, t, I ti, m, u) .  
Note that qf(fi, ti I m, u )  =qi(ii, fi, ti I m, u) ,  and u;(ii I ti, m, u )  is the player's 

expected utility from the one-shot deviation strategy that follows u except report- 
ing ii to m. Also notice that both qi(ii, i i ,  si I m, a )  and i i ,  si I m, u )  are 
independent of the player's true type. That is because the stage-one outcome is 
determined only by the stage-one reports, and the player's future action is deter- 
mined by his strategy ui(ii ,  si) (contingent on any additional news, which in turn 
is determined by the stage-one reports). Since a player's payoff is quasilinear, 
one can calculate that 

in stage one and using strategy ui(ii ,  si) afterwards. Given this contingency ;, ing 
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Pick any possible types t, and ti of the player. Since the allocation generated by 
(m, a )  is BNE-feasible, setting .ii:=ri maximizes ui(fi ,  f i ,  ?, I r i ,  m, a )  among all 
possible values of ?i. Hence the envelope theorem (Milgrom and Segal (2002)) 
implies 

4 
u ( t i t i , m , a ) - ~ ~ ( t ~ ~ t ~ . m , o ) = ~q y ( r i , r l m , o ) d r l .  

t; 

Here we used equation (3) and the assumption that the player's type is supported 
by an interval. After reporting any f, in stage one, following the instruction of 
a afterwards is optimal for the player (hypothesis (b)), hence setting si := ri 
maximizes u,(i,, i,, si I .ri, m, a )  among all possible values of s, (unless clause 
(ii)(a) or (ii)(b) applies). Again the envelope theorem, using the same hypotheses 
as in the previous equation, implies 

for any ii (unless clause (ii)(a) or (ii)(b) applies to f,). These two equations give 

whenever clauses (ii)(a) and (ii)(b) do not apply to i's deviation of reporting ti. 
This proves the proposition, because the bidder's optimization would be vacuous 
if the deviation is covered by clause (ii)(a) or (ii)(b). Q.E.D. 

The incentive constraint (2) comes from the multistage nature of the 
mechanism-selection game. If the game is one-shot, as in the mainstream frame- 
work, then one can show that this constraint is equivalent to the standard mono- 
tonicity condition, i.e., (2) holds for all ti and ti if and only if q;(.r,, T, 1 m, a )  is 
monotone nondecreasing in T,.' If the mechanism-selection game is multistage, 
however, one can construct functions q; such that q;(r,, 7, I m, a )  is monotone 
in 7, and yet (2) does not always hold. 

REMARK1: Equation (2) holds for all ti and ti if, for any T,, q;(., 7, I m, a )  is 
monotone nondecreasing. This monotonicity condition says that, given any type, a 
player submitting a higher bid to mechanism m has a higher expected probability 
of being the final owner. 

' In the static model, the current stage is the final stage, so the probability q;(?,,7, 1 m, a ) is 
invariant to 7,.Hence the claim for "if" is trivial. To prove the converse, apply (2) to the case where 
the roles o f t ,  and t: are interchanged. Summing the obtained inequality with (2), we have 

As q: ( i , , 7, 1 m, a) is invariant to T,,the monotonicity condition follows. 
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REMARK2: Any efficient allocation can be implemented with zero probability 
of resale. Coupled with sincere bidding, any standard auction, say Vickrey auc- 
tion, will do. Clearly the allocation is BNE-feasible. As a winner's payment is at 
least as high as any rival's value (given sincere bidding from others), Lemma 3.1 
implies that it is dominated to overbid now and resell the good later. Hence over- 
bidding is dominated. The only case not exempted by clause (ii)(b) is underbid- 
ding. If a bidder wins after submitting a bid below his type, he learns that other 
bidders' values are less than his, hence the winner consumes the good. Thus, the 
probability with which a bidder becomes the final owner from underbidding is 
equal to the probability with which his rivals' types are less than his bid. This 
probability is obviously monotone nondecreasing in the bid. Hence (2) h01ds.~ 

CAVEAT:When the mechanism-selector at the current stage does not know 
what player i believes, the functional form of qf is only in the mind of player i. 
Hence (2) need not be useful for the choice of mechanisms when beliefs are not 
commonly known. 

4. THE TWO-BIDDER CASE 

We already know that a seller wishes for a Myerson allocation but he cannot 
implement it without resale. The question is how to induce a reseller to do what 
the seller wishes. A reseller decides whether to resell and to whom to resell the 
good. With only two bidders, however, a reseller has only one potential buyer 
unless the initial seller buys it back. Thus, we need only to align a reseller's 
decision of whether to resell the good with the Myerson allocation. Since this 
allocation is biased towards bidder 1by the uniform-bias assumption, bidder 1is 
likely the reseller. Hence we shall focus on him. 

Suppose that the initial owner selected a mechanism and bidder 1 has won 
after bidding il in it. Then he updates his belief about bidder 2 based on this 
history together with any additional news that he may have received. Suppose 
temporarily that the virtual utility function based on the corresponding posterior 
distribution can be defined by equation (1). Denote this function by Vzlil. 

We can think of V21il(tz) as bidder 1's marginal revenue (MR) from an incre- 
mental probability of reselling the good to bidder 2 given the latter's type t,. 
Bidder 1's marginal cost (MC) is his value t ,  of consuming the good himself, 
as long as the initial owner does not buy it back. At any interior solution for 
his optimal resale decision, MR is equal to MC, since a reseller is assumed to 
have commitment ability. Hence the reseller's optimal cutoff for resale is deter- 
mined by Vzltl(t2) = t, if he has been honest (;, = t,) in the initial mechanism. 
To implement the Myerson allocation, however, the initial owner wishes the cut- 
off of resale (making bidder 2 instead of 1 the final owner) to be determined 
by Vz(tz) = Vl(tl). To align their interests, therefore, the mechanism needs to 
ensure that the two equations are equivalent. 

' It is unknown, however, whether an efficient allocation has to be implemented with zero proba- 
bility of resale. 
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Suppose that in the initial owner's mechanism bidder 1's bid fl is transformed 
to pl2(i1) by some function P12: Tl + T2. Also suppose temporarily a minimum 
information condition: bidder 1obtains no additional news other than his winning 
status. Then his posterior belief about bidder 2's type is the prior F2conditional 
on the event t, (Pl2(il). Hence bidder 2's virtual utility is given by the following 
formula with i = 1 and j = 2: 

To align bidder 1's resale cutoff V21,1(t2) = t, with the cutoff V2(t2) = Vl(tl) for 
which the initial owner wishes, we need V2,tl(Vc1(V1(t1))) = t,. By equation (4), 
that means p12needs to satisfy the following equation with i = 1and j = 2: 

Note: If i < j then I/,-'(V,.(ti)) E T, for all ti E T,. That can be proved from 
the uniform-bias assumption and the convexity of the range of V, (since V, is 
continuous and T, is convex by Assumption 1). Consequently, from the hazard- 
rate assumption and the intermediate-value theorem, one can prove that Pi,(ti) is 
unique and exists between I/,-'(V,(ti)) and the supremum of T,. As 5-'(K(ti)) ) 
ti by the uniform-bias assumption, Pij(ti) 2 ti, hence Oij inflates i's bid. 

With P12well-defined, it is meaningful for the initial owner to select a winner 
by this bid-inflation rule: bidder 1 defeats bidder 2 if and only if P,,(<) 3 i2;with 
fi denoting i's bid. If a type-t, bidder 1 wins under this rule after bidding t, and 
wants to make a take-it-or-leave offer to bidder 2, then he solves 

which assumes the aforementioned minimum information condition. By the 
hazard-rate assumption, one can show that the optimum of (6) exists and is 
V$(t,). (The inverse exists because VZlil is strictly increasing by the hazard- 
rate assumption.) If bidder 1 has bid his true type initially, this optimal resale 
price becomes V$f (tl), which is equal to V;'(V1(tl)) by the definition of P12(tl). 
Hence the resale cutoff is exactly what the initial owner wishes (Vl(tl) = V2(t2)) 
if bidder 1 is truthful initially. This leads to the following mechanism. 

The Mechanism. The minimum bid for bidder i is V,-'(t,), with to being the 
initial owner's type. Each bidder i E {1,2} independently submits a bid ?, E T ;  
the message "I do not participate" is taken as a bid below the bidder's minimum 
bid. If fl is below bidder 1's minimum bid, skip him and make a take-it-or-leave 
offer to bidder 2 at the price equal to 2's minimum bid. If fl is not below the 
minimum bid but Pl2(fl) < f2, skip bidder 1 and make a take-it-or-leave offer to 
bidder 2 at the price equal to v;'(v1(fl)). (Note that this price is at least as 
high as bidder 2's minimum bid.) If fl meets the minimum-bid requirement and 
Pl2(Ql f2, sell the good to bidder 1 at the price pl(fl) to be defined later. 
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In this mechanism, the minimum-bid requirement is to implement the bidder- 
specific reserve price in the Myerson allocation, which is t~'-'(t,) for bidder i. 
The payment scheme resembles a first-price auction for bidder 1: he cannot 
tell bidder 2's type from the amount of payment. This guarantees the minimum 
information condition, which makes equation (4) valid. 

To achieve the initial owner's Myerson surplus, the payment scheme needs 
to align each bidder's Myerson surplus with the bidder's equilibrium expected 
profit. Hence let us specify a strategy profile that will be proved to constitute the 
underlying equilibrium: 

The Equilibrium Hypothesis. The initial owner selects the mechanism defined 
above (whose payment scheme is defined next). If he deviates to a different 
mechanism, clause (ii)(a) of our equilibrium concept applies. If he does not 
deviate, the bidders report their true types. If a type-t, bidder 1 has won in this 
mechanism after submitting a bid f,, he makes a take-it-or-leave offer to bidder 2 
at the price equal to V,Tit(t,), and bidder 2 accepts the offer if and only if her type 
t, is not below this price; clause (ii)(a) applies if the winning bidder 1 deviates 
to a different resale mechanism. If bidder 2 buys the good from either the initial 
owner or bidder 1, she chooses not to resell the good; if bidder 2 buys the good 
and offers to resell it, clause (ii)(b) of our equilibrium concept applies because 
it will be shown in the proof of Proposition 3 that doing so is dominated for her. 

The Payment Scheme. The payment scheme for bidder 2 has been defined. 
To define the payment scheme for bidder 1, let us calculate his expected profit 
for the entire game-viewed before the mechanism is operated-provided that 
bidder 2 follows the hypothetical equilibrium. By Lemma 3.1, it is dominated for 
bidder 1 to win the good and resell it to the initial owner, because the minimum 
bid for bidder 1 is higher than the owner's type. Thus, we consider only those 
bids i, from bidder 1 such that he will find it optimal to offer resale only to 
bidder 2. As an owner is restricted to transparent mechanisms, any mechanism 
bidder 1selects is a take-it-or-leave offer to bidder 2. Thus, if he bids fl and wins 
in the initial mechanism, his expected revenue is t, +T,(?, I t,), with T, defined 
in (6). If bidder 1 does not win, then his expected revenue is zero: either the 
initial owner becomes the final owner, or bidder 2 wins it, who becomes the final 
owner by the equilibrium hypothesis. The probability Q, (i,) with which bidder 1 
wins in the initial mechanism is F,(P,,(t^,)) if his bid matches the minimum- 
bid requirement, and is zero if otherwise. Suppose that in the payment scheme 
bidder 1's expected amount of payment is p, (i,) if his bid is i,. Then his expected 
profit, viewed before the initial mechanism is operated, is equal to 

At the hypothetical equilibrium, bidder 1 bids truthfully and gets expected 
profit u;(t, I t,). Let U;(t,) denote bidder 1's Myerson surplus if his type is t,. 
To give the initial owner his Myerson surplus, the payment scheme needs to 
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satisfy u;(t, I t,) = U;(t,) for all t,. Apayment scheme satisfying this condition is: 
bidder 1 pays zero if he does not win and pays if he wins after bidding i,, 
where is defined by 

Notice that the denominator F,(P,,(;,)) is positive when bidder 1wins.9 
We have therefore designed a mechanism for the initial owner. Are bidders 

honest in it? Proposition 2 has identified an incentive constraint (2)coming from 
the possibility of resale. As Remark 1 there points out, sufficient for (2) is a 
monotonicity condition: given any type, a player submitting a higher bid to the 
mechanism has a higher expected probability of being the final owner. 

Let us calculate this probability for bidder 1. At the hypothetical equilib- 
rium, he becomes the final owner if and only if he wins in the mechanism (bid- 
der 2's type t, does not exceed P,,(?,)) and resale does not occur ( t ,  is less 
than bidder 1's optimal resale price V$(t ,)) .  Being the optimum for problem 
(6), V$ ( t , )  cannot exceed the posterior upper bound P 1 2 ( 4 )of bidder 2's type; 
hence t, < V2-;((tl)implies t2 < P,,(;,), so bidder 1 becomes the final owner if 
and only if t, < V G  (t ,) .  Thus, the above monotonicity condition is translated 
to the condition that F,(V2-;((tl))is increasing in the bid 6. The next lemma 
tells us exactly when this condition is satisfied. 

LEMMA 4.1: Assume that F, is strictly increasing. Given the proposed mechanism 
and equilibrium, and given any type, bidder 1'sprobability of being the final owner 
is monotone nondecreasing in his stage-one bid if and only i f  P,, is monotone 
nondecreasing. 

PROOF: Since F, is strictly increasing by assumption, the claim is equiva- 
lent to "V2-;{(tl)is monotone nondecreasing in 6 if and only if P,, is mono- 
tone nondecreasing." Pick any bids z and z' such that z > z'. Let x := V$(t l )  
and x' := V$(tl) .  Suppose that P,, is monotone nondecreasing. With F, strictly 
increasing, this implies F,(P,,(z)) 2 F2(P12(z1)), haveso by equation (4) we 
V,l,, ( x )  2 V 2 1 z ( ~ ) .Hence, since V,l,(x)= t, = > V21,.V,l,, (x ' ) ,  V , l z , ( ~ )  (x ') .With 

'A bidder's total net payment throughout the mechanism-selection game is different from what he 
pays the initial owner. Bidder 1's expected payment j,to the owner is determined by equation (8). In 
contrast, the expected value of bidder 1's total net payment throughout the game at the hypothetical 
equilibrium is p;(i,)= - if he bids i,,where q,(?,) is bidder 1's probability of being i,@,(?,)u;(;,) 

the final owner in the Myerson allocation. Note 

which is positive since our mechanism is more biased than the Myerson allocation and T ,  > 0 by 
definition. This reflects the arrangement that bidder 1 passes part of his revenues from bidder 2 on 
to the initial owner. Note that j,(i,)-j;(i,)is equal to the amount by which bidder 2 indirectly 
pays the initial owner via bidder 1, due to the no-discounting assumption. 
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V2,,, strictly increasing (proved by the hazard-rate assumption), x 3 x'. This 
proves the "if" part. Since every step in this derivation is reversible, the "only if" 
part follows. Q.E.D. 

According to the above lemma, we add the following assumption to ensure 
that the bid-inflation rule satisfies the incentive constraint from resale. 

ASSUMPTION3 (Resale Monotonicity): If bidder i is ranked before bidder 
j ( i  < j ) ,  the finction pij defined by ( 5 )  is monotone nondecreasing. 

This assumption requires that a higher bid from a favored bidder be inflated 
to a higher amount. Given this condition, a favored bidder who has won after 
submitting a higher bid thinks more highly about the losers' values and hence 
charges them higher reserve prices for the good; that means a higher probability 
of no resale. If this assumption is not satisfied, the bid-inflation rule Pi,need 
not satisfy the incentive constraint for a favored bidder, and we need to consider 
other kinds of winner-selection rules. For simplicity, I focus on the cases where 
bid-inflation rules do achieve the Myerson surplus. Next is the main result in this 
section. 

PROPOSITION3: Assume that there are only two bidders and their prior distribu- 
tions satisfy the assumptions of hazard rate, uniform bias, and resale monotonicity. 
Then the mechanism designed above is optimal for the initial owner and implements 
the Myerson allocation. 

PROOF: Let us denote this mechanism by M*. As step one, we show that it 
suffices to prove that each bidder is truthful in M*. By Lemma 2.1, it suffices in 
this step to show that truth-telling in M* implies that (i) the Myerson allocation 
is implemented and (ii) bidders receive exactly their Myerson surpluses. Claim 
(ii) follows from the construction of the payment scheme (equations (7) and (8)) 
and the fact that bidder 2's payment function is the same as that constructed by 
Myerson (1981), given bidder 1's equilibrium resale price. Let us prove claim (i). 
Since the reserve prices of M* are the same as those in the Myerson allocation, 
"no sale" occurs exactly when it is needed. If the good is sold, each bidder would 
follow the hypothetical equilibrium thereafter: If bidder 2 wins in M*, she infers 
that her value is higher than bidder 1's even after the latter is inflated; hence 
bidder 2 selects not to resell the good. If bidder 1 wins, he offers resale only 
to bidder 2 (Lemma 3.1); hence he makes a take-it-or-leave offer at the resale 
price prescribed by the hypothetical equilibrium, as calculated after equation (6). 
Given his truth-telling in M*, this resale price matches precisely the Myerson 
allocation. Hence claim (i) follows. 

We next show that bidder 2 is truthful in M* given the equilibrium hypothe- 
sis. That is because her bid in M* can only affect when she becomes the final 
owner and hence she is indifferent about that. First, she pays the same price 
V;'(Vl(tl)) for the good whether she wins it by outbidding bidder 1 in M* or 
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she buys it from him later. (This follows from the construction of M" and the 
calculation of bidder 1's optimal resale price, done after equation (6).) Hence 
bidder 2 cannot profit from underbidding in M*. Second, overbidding in M" is 
not profitable by Lemma 3.1. That is because, in outbidding her rival, bidder 2 
needs to pay V;'(V1(t,)), which is more than bidder 1's value t, by the uniform- 
bias assumption. 

Finally, we prove the honesty of bidder 1 by Proposition 2. With Lemma 4.1 
and the resale-monotonicity assumption, equation (2) is always satisfied. Hence 
it suffices to verify all the conditions of that proposition. (i) As proved previ- 
ously, the mechanism M* coupled with truth-telling would generate the Myerson 
allocation, which we know is BNE-feasible. (ii) After the operation of M*,  the 
hypothetical equilibrium projected on any continuation game is clearly sequen- 
tially rational. (Here the only nontrivial point to check is that the resale offer 
V&tl) is optimal for bidder 1, already demonstrated after equation (6).) (iii) 
The support of bidder 1's type is convex by Assumption 1. Thus, Proposition 2 
applies, as desired. Q.E.D. 

To illustrate Proposition 3, let us consider as Example 2 a two-bidder envi- 
ronment. The value of bidder i ( i = 1,2) is uniformly distributed on [O,<] ,  with 
i, > 4. Let 

The initial owner's value of the good is zero. This environment is depicted in 
Figure 1, where the rectangle IODF represents the space of possible pairs of 
the bidders' values. The Myerson allocation is to award the good to bidder 1 in 
region IJLG, award it to bidder 2 in region GLCDF, and keep the good in region 
JOCL. Hence the allocation picks the final owner by inflating bidder 1's bid t, 
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to t, + 412 such that bidder 2 cannot be the final owner if his bid is below the 
inflated level (line GL). 

The optimal mechanism M* inflates bidder 1's bid more than the Myerson 
allocation does, up to the level t, +A (line FM), so that bidder 1 wins in the 
bigger region IJMF. Consequently, when bidder 1wins after reporting his true 
type t,, he learns that bidder 2's value is uniformly distributed on [0, t, +A]. 
Hence bidder 1finds it optimal to make a take-it-or-leave offer to bidder 2 at the 
price t, + 412, which is exactly the cutoff in the Myerson allocation. To ensure 
truth-telling from bidder 1, the initial owner promises to charge him a price 
pl(fl) if he bids i, and wins, where the price calculated from (7) and (8) is 

We can verify that M* gives the initial owner his Myerson surplus without 
using the revenue equivalence theorem. Since the payment scheme in M* differs 
from that in Myerson (1981) only when the profile of types belongs to the area 
IJMF, it suffices to show that the expected revenues over this area are identical 
between the schemes. For M*, the expected revenue is 

f1+3 1 '1Ji' / pi(t1) dl2 dtll(il&) = ?;-[ ((2t1 +A)' + i i )  dt, 
t1/2 0 8t1t2 i , /2  

by the p, calculated above. For the scheme in Myerson (1981), the expected 
revenue is 

One can show that the two quantities are equal to each other, as desired. 

5. THE n-BIDDER CASE 

The main question in the two-bidder case is how to align a reseller's resale 
decision with the initial owner's preferences on the bidders. The answer is to 
inflate the favored bidder's bid to such a level that his resale decision conditional 
on winning is aligned with the initial owner's preferences between the bidders. 
Therefore, if there is a third bidder, say 3, bidder 1's inflated bid against 3 is 
determined by the initial owner's preferences between bidders 1 and 3; hence the 
inflated bid is generally different from the one against bidder 2. Thus, generalized 
to the n-bidder case, the new mechanism needs to conduct painvise comparisons 
among the bidders so that the comparison criterion is pair-specific. 

To find a winner through painvise comparisons, we need to avoid cycles such 
as "1 beats 2, 2 beats 3, and yet 3 beats 1." To do so, we add an assumption. For 
any bidders i and j with i < j and for any t, less than or equal to the supremum 
of the range of Pi,, let Pil(t ,)  := inf{ti E T, I Pi,(ti)> t,}. Hence Pij(ti) 3 t, implies 
ti 3 P,il(t,). 
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ASSUMPTION4 (Transitivity): If bidder i is ranked before bidder j and j is 
ranked before bidder k (i < j < k), then for any t, less than or equal to the supre- 
mum of the range of Pi,, Pik(Pi1 (t,)) 3 V;'(V, (t,)). 

Since the functions pi, and V,  are determined by the prior distributions, this 
is an assumption about the primitives. It says that, when bidders 1 and 2 tie in 
their painvise comparison, if bidder 3 outbids bidder 1 and hence bidder 2, then 
bidder 3 would have defeated bidder 2 should the Myerson allocation be the 
winner-selection rule. Thus, when we conduct painvise comparisons with the bid- 
inflation rules Pi,, if 1 defeats 2, and 3 defeats 1, then bidder 2 should not be 
the final owner and so we lose nothing by skipping 2 instead of comparing him 
with bidder 3. The next lemma demonstrates this transitivity-like property, which 
earns the name for the assumption. 

LEMMA5.1: Assume that the prior distributions satisfy the assumptions of hazard 
rate, uniform bias, resale monotonicity, and transitivity. If i < j < k, Pi,(ti) 3 ti, and 
Pik(ti)< t,, then V,(t,) > V,(tj) and t, > t,. 

PROOF:Since Pij(ti) 3 ti, the definition of Pi1 implies ti > @;'(ti). Thus, 

Here the second and third inequalities come from the assumptions of resale 
monotonicity and transitivity, respectively; the last inequality is due to the fact 
V- (t  .) > V, (tj) (the uniform-bias assumption). Note that the third inequality 

J J.

implies Vk(t,) > V,(tj). Q.E.D. 

Suppose we sell the good to the lowest-indexed bidder who is not outbid by 
those ranked after him. That is, given any profile (ii):=, of bids, the winner goes 
to the smallest w E (1, . . . ,n) such that PWi(iw) 3 ii for all i > w. Given truth- 
telling in this selection process, an inductive application of Lemma 5.1 implies 
the fact that t, > t, and V,,,(t,) > V,(t,) for all j < w. Hence the winner w finds it 
optimal to offer resale only to bidders i > w (Lemma 3.1), and the initial owner 
also likes w to do so. 

If he resells the good, the winner needs to select a buyer from bidders 
w + 1, . . . ,n. We need to align this decision with the initial owner's preferences 
on them. Say the winner has only two potential buyers, and our result in the 
two-bidder case applies to his environment. Then the winner would implement 
a Myerson allocation that favors one bidder against the other. However, he may 
favor a bidder against whom the initial owner would like to discriminate, because 
the Myerson allocation based on the winner's posterior belief may be differ- 
ent from the Myerson allocation based on the prior belief. In general, this ten- 
sion makes it difficult for the initial owner to recover his Myerson surplus. For 
tractability, I add the last assumption on the prior distributions so that the ten- 
sion is absent when the painvise bid-inflation rules @,, are used. 

mailto:@;'(ti)
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ASSUMPTION5 (Invariance): For any w E (1, .  . . ,n} and any i, j > w, if ti i 
PWi(t,) and t, 5 PWj(t,), then I/,(ti) > (resp. =) V,(t,) implies h(V;'(VW(t,)))/ 
h(ti) > ( res~ .=) J ; ( V ~ ' ( l / , ( t w ) ) ) l f j ( t j ) .  

Since the functions Vi and p,, come from the prior distributions, this assump- 
tion is about the primitives. The assumption implies that, whenever a bidder w's 
P-inflated bids defeat some less favored bidders i and j ,  the virtual-utility rank- 
ing between i and j is invariant before and after the announcement of w's victory 
and bid, i.e., VL(t,) > (resp. =) V,(t,) is equivalent to V,l,w(ti) > (resp. =) V,l,w(t,). 
To prove this, one calculates V,l,w(ti) - VjlIw(tj) by equations (4) and (5). This 
assumption is very restrictive, but it facilitates tractability. After proving the main 
result, I will present an example that satisfies all the above assumptions. 

With the invariance assumption, the initial owner's task becomes implementing 
the pair-specific winner-selection rule based on Pi,. That leads to a new question: 
how to take care of a bidder's incentive when an auction both favors him against 
a rival and favors another rival against him? He should not be overly aggressive 
in competing with those ranked before him, but he should be aggressive enough 
to win at the right time so that he can probably resell the good to those ranked 
behind him. To accommodate both aspects, I design a multiple-round procedure 
where a bidder plays different roles at different rounds. In each round, only 
one of the bidders, called leader 1, can possibly win and the other bidders can 
only affect whether 1 wins. We designate the most favored player, bidder 1, as 
the leader for the first round. In each round, the current leader 1 and those 
ranked behind him submit sealed bids, say i bids ii. If the leader's is not outbid 
(Pli(f,)2 iifor all i > l), he wins and trades with the initial owner. If the leader is 
outbid, we skip him and designate the most favored bidder who has outbid him 
as the new leader. Repeat the process until a leader wins or the least favored 
bidder n is reached. In every round, the leader never loses the good to those 
ranked before him, because they have been skipped, and the nonleaders can do 
nothing but help to determine whether the leader wins or not. 

Since those ranked before the leader are not allowed to bid, we need to pass 
their competitive pressure on to the leader. Hence we update the minimum-bid 
requirement for the leader according to the bids submitted by them. If he bids 
below the required level or does not participate, skip him and designate the 
bidder immediately behind him as the new leader. How much should we update 
the minimum bid? Since a winner will not resell to a lost bidder ranked before 
him (shown later), the decision of letting the leader 1 instead of a skipped bidder 
i win should be consistent with the initial owner's preference between i and 1. 
As this preference is determined by comparing the bidders' virtual utilities, the 
leader's minimum bid should be raised at least to the level v r l ( ~ ( f i ) ) ,  given the 
skipped bidder's i,. 

The Mechanism. Based on the above ideas, let us define a mechanism for the 
initial owner by the following algorithm. Here 1 denotes the leader, w denotes 
the player who gets the good at the end of the current stage, and bidenotes the 
minimum bid for bidder i. 
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w :=0; bi :=max{inf T,, K-'(t,)} (Vi = 1, . . . ,n); 1 :=1. 
While 1 5 n do 

secretly inform 1 of b,; 
each i E { I , .  . . ,n} bids ii independently and secretly; 

bids can be different from those in previous rounds; 
if i does not participate, then set ii:=inf Ti; 

if il< bl or 1 does not participate: 
then b j  :=max{bj, V;'(V~(~~))) (V j > l), 

1:=1+1;  
else if p,,(i,) ii (V i > I): 

then 
trade with 1 at price p,(i, I b,) determined by equation (10); 
publicly announce i,; 
w := 1 and halt; 

else 
i, := the lowest indexed i > 1 with P,i(i,) < ii, 
-b j :=max{bj, max{v;'(y(ii)) : i = 1,.  . . ,i, - I}} (V j > l), 
1:= i l .  

Note: If all bidders are truthful in this mechanism, the winner is the lowest- 
indexed bidder whose inflated bids are not outbid by those ranked behind him. 
That is exactly the winner-selection rule motivated after Lemma 5.1. Notice the 
control of information: First, the winning bid is publicly announced, so the new 
upper bound of a loser's type is commonly known. Second, the winner's payment 

I b,) implies nothing about the bidders ranked behind him. Third, a leader's 
inference about the skipped bidders' types from his minimum bid is harmless 
because he will not resell the good to them on the equilibrium path. The updated 
minimum bid is told secretly just to eliminate any unnecessary information link- 
age. Fourth, nonparticipation from a bidder is not observed by others. 

The Payment Scheme. In our mechanism, a bidder pays only if he trades with 
the owner. Hence we need only to design the payment function for a leader when 
he wins. The construction is the same as equation (8) in the two-bidder case, 
except that the function now is contingent on the leader's minimum bid b,. Let 
U;(t, I b,) denote a type-t, leader 1's Myerson surplus conditional on the event 
that 

(9) 6, = I inf T,, ~ ~ ' ( t , ) ,max max V ; ~ ( V ~ ( ~ ~ ) ) J .  
i c l  

Let ~ ; ( t ,  I b,) denote the Myerson surplus for 1 in the posterior environment 
after everyone reports truthfully in the mechanism and leader 1 wins, conditional 
on the event (9). As we will see ((d) of step one in the proof of Proposition 
4), e ( t ,  I b,) is the leader's maximum expected profit from possible resale on 
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the equilibrium path, Mimicking equation (8), we define a leader 1's payment 
I b,) for each f ,  2 b,: 

In the first branch, the denominator n:=,+,4 ( P l i ( f l ) )is the probability for leader 
1 to win given fl 2 b,. In the second branch, the leader n bids only against his 
minimum bid. Thus, conditional on f n  2 b,, his probability of winning is one and 
u,"(fn I b,) = fn  -bn. As we will demonstrate, a winner does not resell to those 
ranked before him, .n:(fn ( b,) = 0. Hence the second branch should be b,. 

LEMMA 5.2: If the prior distributions satisjj the assumptions of hazard rate, uni- 
form bias, and resale monotonicity, a winner in the above mechanism pays at least 
his minimum bid. 

PROOF: To win, a bidder 1 must be the leader and make some bid f ,  >b,. Let 
@,(ti1 b , )  denote the probability for a type-t, leader 1 to be the final owner in 
the Myerson allocation, conditional on the event (9) .  The revenue equivalence 
theorem (which uses the convexity of T, in Assumption 1) says u;(?, I b,)-
U;(b,  1 b,)= 12 @,(zI P I )dz .  Since bidder 1 with any type below the right-hand 
side of ( 9 )  cannot be the final owner in the Myerson allocation, U;(b ,  I b , )  =0 
by a continuity argument. Thus, ~ ; ( f ,b , )  = 1;:gl ( z  1 b , )  d z .  It follows from I 
equation (10) that p,(b,  1 b , )  >b , ,  since n12 0 bf definition. Let us consider the 
other case, where fl  > b,. By equation (10) and the nonnegativity of n , ,  

Suppose that f ,  > b, and p l ( f l  I b , )  < b,; then for some 5 E ( b , ,  f l ) ,  

By the resale-monotonicity assumption, n:=,+,F, (Pl i ( . ) )is nondecreasing, hence 
q l ( [  1 F,(Pl i ( ( ) ) .Thus, the leader's probability of being the final b , )  > n:=,+, 
owner in the Myerson allocation is greater than his probability of winning in the 
mechanism. That contradicts the fact that the mechanism is more biased to a 
leader than the Myerson allocation (P l i ( t l )3 K - l ( V l ( t l ) )if 1 < i ,  by the uniform- 
bias assumption). Q.E.D. 

LEMMA 5.3: If the prior distributions satisfy the assumptions of hazard rule, uni- 
form bias, resale monotonicity, and transitivity, then for any i c j c k and any 
ti T,, Pij(tj)5 Pik(tj). 
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PROOF: Let ti E ?;. By the definition of Pi1,  ti 3 P;'(Pij(ti)). Thus, 

here the first inequality comes from the monotonicity of P,, (resale monotonic- 
ity), the second inequality is from transitivity (i < j < k), and the third is from 
uniform-bias ( j  < k). Q.E.D. 

Next is the main result. It says that the above mechanism generates the Myer- 
son surplus for the initial owner, the best outcome for him even when he could 
ban resale costlessly. Thus, to some extent Myerson's characterization of seller- 
optimal allocations is robust even when resale cannot be banned. A cautionary 
note, however, is that the proposition is based on restrictive assumptions. 

PROPOSITION4: Suppose that the prior distributions satisfy the assumptions of 
hazard rate, uniform bias, resale monotonicity, transitivity, and invariance. Then 
the mechanism designed above is optimal for the initial owner and implements the 
Myerson allocation. 

PROOF: We shall apply induction on the number of bidders. The one-bidder 
case is trivial. Pick any n = 2,3 , .  . . and suppose that the proposition is true 
when the number of bidders is less than n. Let us prove the proposition when 
the number is n. Denote the mechanism designed above by M*. By Lemma 2.1, 
it suffices to show that M" (i) implements the Myerson allocation and (ii) gives 
each bidder his Myerson surplus. 

First, we show that both (i) and (ii) are fulfilled if all bidders are truthful 
in M". To prove (i), let us analyze the consequence of truth-telling in M*. If 
the mechanism results in no sale, then every bidder i's type is below the initial 
minimum bid I/,-'(t,), which is exactly the case where the Myerson allocation 
requires no-sale. Consider the other case and let bidder w be the winner. We 
claim that his resale decision is consistent with the Myerson allocation. The claim 
is proved in five steps. 

(a) The winner chooses to offer resale to only bidders ranked behind him. By 
an inductive application of Lemma 5.1, any bidder ranked before winner w has 
a lower type than w; hence the first sentence of Lemma 3.1 applies. 

(b) Thus, the winner's potential buyers are the bidders in {w + 1, . . . ,n}. The 
posterior belief about every such bidder i is commonly held and is that i's type 
is independently drawn from the conditional distribution 4(.I ti IPWi(t,)). That 
is because the winner's identity and bid (hence type) constitute the entire new 
public information after the mechanism M* is over. 

(c) Assumptions from 1 to 5 are satisfied with these posterior distributions 
taking the role of the priors: Coming from a lower truncation of the prior sup- 
port, a posterior satisfies the hazard-rate assumption. Since the priors satisfy the 
invariance assumption, the ranking of the virtual utilities is invariant from the 
prior (V,(ti));=,,+, to the posterior ( y  (ti));=,+,. This, coupled with the fact that 
P,,.(t,) 5 Pwk(tu,)whenever w c j < k (Lemma 5.3), implies that the posteriors 
satisfy the uniform-bias assumption. The invariance of the ranking also implies 
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that V;~(Vlr,(t,)) = V['(l/;(t,)) for all t, if w < i < j. Thus, the inflation rule 
pijdetermined by the priors via (5) coincides with the Pi, determined by the pos- 
teriors on the posterior support. Hence the posteriors satisfy the assumptions of 
resale monotonicity, transitivity, and invariance. 

(d) Thus, the winner's environment satisfies all the assumptions required by 
the proposition and consists of less than n bidders. Since the winner is restricted 
to transparent mechanisms for resale, his Myerson surplus in the posterior envi- 
ronment is the best he can achieve (Lemma 2.1). Thus, the induction hypothesis 
implies that the winner is willing and able to implement the posterior Myerson 
allocation in the posterior environment. Thus, for every profile (ti);,, of types, 
the final owner is either a bidder w'> w such that Vw81,w = (ti): i >(t,,) m a ~ { V , ~ , ~  
W} and VW,,,,(tw8)3 t,, or the current owner w if such a bidder does not 
exist. By the construction of P,,, (equation (5)), Vw,l,w 2 t,(t,,) is equivalent to 
V,,(t,,) 2 Vw(t,); by the invariance assumption, V,l,w(ti) 3 VjItu(t,) is equivalent 
to V,(t,) 3 V,(t,). Thus, this allocation is equivalent to the outcome where the 
final owner is the player w'3 w such that V,,(t,,) =max{Vi(ti): i 2 w}. 

(e) An inductive application of Lemma 5.1 shows that Vj(t,) < V,(t,) for all 
bidders j < w.Thus, the final owner w'has the highest virtual utility among 
all bidders 1, . . . ,n. The Myerson allocation in the initial environment is hence 
implemented. 

To prove that task (ii) is fulfilled, let us calculate a type-t, bidder i's expected 
profit (for the entire game) u:(fi I ti, b,) from bidding f, in M*, when he is leading 
and secretly informed of his minimum bid b,. Conditional on bi ,  let Q,(fi I b,) 
denote his probability of winning in M* and let .rri(fl I t,, h i )  denote i's optimal 
expected profit from possible resale conditional on the history that he bids f, and 
wins in M*. If he does not win in M*, the bidder gets zero payoff since according 
to (a) he will not get the good in the future. Thus, 

By the reasoning in (d), .rri(t, I t,, b i )  = .rrr(t, I b,)  with < defined after equation 
(9). Hence the construction (10) of the payment function implies u:(ti I ti, bi)  = 
Ul*(tiI b,).  Thus, with b, being the random variable, the expected values Eb u:(ti I 
t , ,bi)  and Eb U;(t, I bi )  are the same. The former expected value is bidder i's 
expected profit from truth-telling (because a bidder is engaged in no trade unless 
he leads) and the latter is his Myerson surplus, both calculated before M* is 
operated. Thus, truth-telling in M* induces Myerson surplus for every bidder and 
hence fulfills task (ii). 

Second, we show that a bidder is truthful when he leads. By a trivial extension 
of Lemma 4.1 based on the resale-monotonicity assumption, the probability with 
which a leader becomes the final owner is increasing in his bid in M*. Hence 
inequality (2) is always satisfied. We need only to verify all the conditions of 
Proposition 2. The first condition (BNE-feasibility) follows from the proved fact 
that the allocation is Myerson. The third condition (convex support for the 
leader's type) is true by assumption. The second condition is proved below: (a) 
If leader 1 wins, he pays a price above the value tj of any bidder j < 1. That 
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is because the payment is at least the minimum bid (Lemma 5.2), which is at 
least V;l(v,(tl)) (equation (911, which in turn is at least t, by the uniform-bias 
assumption. (b) It follows from (a) and Lemma 3.1 that we can eliminate those 
bids i, such that after winning with i, the leader would find it optimal to resell the 
good to those ranked before him. (c) Thus, if he wins after bidding i,, the leader's 
environment will effectively consist of bidders i > 1, with commonly held posteri- 
ors F , ( .  I P,;(i,) 2 t,). As shown in (c) of the previous paragraph, these posteriors 
satisfy Assumptions from 1to 5. Hence the induction hypothesis implies that the 
winning leader will find it optimal (and feasible) to implement the Myerson allo- 
cation in that posterior environment. Hence the second condition of Proposition 
2 is satisfied, as desired. 

Finally, we show that any bidder i is truthful when he is not leading. Let 1 
denote the current leader. There are only two cases. Case one is that there is a 
bidder w such that 1 c w c i and w's type outbids 1's inflated type Pl,(t,). Then 
bidder i's bid cannot affect anything, since the leader in the next round will be 
a bidder ranked before him. Case two is that there is no such w specified in 
case one. Then bidder i's bid affects only (i) whether he will lead in the next 
round and (ii) the posterior belief about him if he is skipped. If he is skipped, 
the bidder gets zero payoff; hence his deviation makes no difference if it does 
not change whether he will lead next. Even if the deviation changes that event, 
it still makes no difference to his payoff, because he will be truthful when he 
leads (demonstrated above) and no difference is made if he does not lead. Thus, 
a nonleader has no strict incentive to deviate, as asserted. Q.E.D. 

The equilibrium obtained above is interesting in its own right. It exhibits a self- 
similar tower of optimal auctions via optimal resale auctions. On the equilibrium 
path, the environment inherited by a new owner is similar to the environment 
of his immediate predecessor. Although an owner is allowed to resell the good 
to previous owners, he chooses not to do so because from the previous sales he 
infers that previous owners have lower values. Likewise, a winner does not resell 
the good to the losing bidders favored against him, because from his victory the 
winner knows that his value is higher than theirs even after they are inflated. The 
next corollary summarizes these features. 

COROLLARY5.1: Suppose that the prior distributions satisfy Assumptions 1 
through 5. Then the mechanism-selection game has an equilibrium where the ini- 
tial owner selects the mechanism designed above, every subsequent owner w E 
(1, . . . , n - 1) selects the same mechanism, with the priors updated, that offers resale 
to bidders in {w + 1, . . . , n), and player n selects to keep the good if he owns it. The 
mechanism chosen by any player i < n results in a sale with a positive probability. 

Let us consider as Example 3 an n-bidder environment. Bidder i's type is 
uniformly distributed on [ti,&I, with t,  5 . . . 5 tl 5 to5 i,5 . . . 5 in.For i < j c k, 
we calculate: 

v,(t,) = 2ti - t,; 
v;' (v,(t,)) = t, + (4- t1)/2; 
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Pi,(ti)= ti+i,- t;; 
P ik(Pi l ( t j ) )= ti f fk - f j ;  

yiti(t,)=2t, - ( t i+i,- t;.). 
Hence the example satisfies Assumptions 1through 5, and the Myerson allocation 
favors the bidders in descending order of their labels (1,.. . ,n) . That is, if i < j, 
the allocation wants i instead of j to be the final owner if and only if ti L t,+(i,-
i l ) /2 .By Proposition 1, this allocation cannot be implemented without resale. 

To implement this allocation, the initial owner uses the mechanism M*, which 
offers rival-specific bid credits to each favored bidder. That is, the bid il from 
bidder i is inflated to fi +$ -iiwhen he is compared to bidder j = i +1,. . . ,n, so 
that j cannot outbid i unless j's bid is higher than i's inflated bid. Conditional on 
a sale, the winner is the first bidder along the list (1,.. . ,n )  whose inflated bids 
are not outbid by those listed behind him. Say the winner is w. The fact that he 
has defeated those ranked before him implies that their values, though inflated, 
are lower than the winner's. Hence he offers resale only to bidders ranked behind 
him. The fact that no such bidder j > w has outbid him implies that j's value 
does not exceed w's inflated bid against j. Hence the posterior belief about j is 
just the prior conditional on this event, and this belief is commonly held due to 
the control of information in the mechanism M*. Thus, the winner's environment 
is similar to the initial owner's: there are n -w bidders and bidder j's value is 
uniformly distributed on [0, t ,  +i,- i,];furthermore, the ranking on the bidders 
(w +1, . . . ,n )  is invariant when the virtual utilities switch from the prior I/, to 
posterior Vlt , Thus, the winner wants to implement an allocation that coincides 
with the Myerson allocation from the initial owner's viewpoint. That is how a 
seller achieves his optimum through resale. 

This example also exhibits an interesting pattern in the selection of middlemen: 
a good is first offered to the bidder whose value is least uncertain to the owner. 
The wider is the spread of one's value, the more downstream is the bidder in the 
distribution channel. 

6. CONCLUDING REMARKS 

The above results are relevant to a couple of general questions. A frequently 
asked question is why we should care about auction design at all given secondary 
markets. Behind the question is the conjecture that an item sold in an initial 
auction will eventually go to a bidder who values it most. The results in the paper 
imply that this conjecture is false even in the simplest single-item private-value 
environment with perfectly patient bidders. Resale among bidders is hampered 
by their asymmetric information and hence cannot fully undo the inefficiency of 
the previous sale. Hence sellers may be able to achieve their desired levels of 
inefficiency by mechanisms that cancel out the partial correction effect of resale. 

Another general question is about the role of middlemen. A traditional view 
is that middlemen are to bypass exogenous restrictions in matching and trading. 
In this paper, we have seen that a seller achieves his optimum through and only 
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through resale. Here the emergence of middlemen does not require the usual 
barriers to multilateral trades. 

Two modeling aspects in this paper are worthwhile noticing. One is that the 
model allows players to choose how the resale game should be played. Not only 
does this formulation capture some interactions between sellers and resellers, 
it is also aligned with a fundamental appeal of mechanism design: economic 
predictions should be robust even when people can modify institutions for their 
own interests. The other aspect is that the mechanism-selection process is really 
decentralized: the final outcome results from the various mechanisms selected 
by individual players, and no single mechanism can reach it. This suggests a 
hope that mechanism design can be applied to various economic and political 
institutions, which are often shaped by different players at different times. 
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