Microeconomics Core Exam Question

Professor Charles Z. Zheng
Department of Economics
University of Western Ontario
Summer 2019

Question Consider the following extensive-form game

Denote mixed strategies by

$$
\begin{aligned}
\sigma_{1} & :=x D_{1}+(1-x) A_{1}, \\
\sigma_{2} & :=y D_{2}+(1-y) A_{2}, \\
\sigma_{3} & :=z L+(1-z) R, \\
\sigma & :=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right),
\end{aligned}
$$

with $x, y, z \in[0,1]$. Use these notations in solving the following problems.
a. Calculate the necessary and sufficient condition for L to be a best response to σ. (Note the article "a"-rather than "the"—before "best response.")
b. Calculate the necessary and sufficient condition for A_{2} to be a best response to σ.
c. Calculate the necessary and sufficient condition for A_{1} to be a best response to σ.
d. Find the set of all the Nash equilibria where A_{1} is played with probability one.
e. Find the set of all the Nash equilibria where A_{1} is played with probability strictly between zero and one.

Solution

a. Calculate the necessary and sufficient condition for L to be a best response to σ.

L being a best response for player 3 is equivalent to L is weakly preferred to R given σ :

$$
\begin{aligned}
L \succeq_{3} R & \Longleftrightarrow 0 \geq 1 \cdot x+(-1) \cdot(1-x) y \\
& \Longleftrightarrow(1-x) y \geq x .
\end{aligned}
$$

Equivalently, the answer can be $y /(1+y) \geq x$. Just do not write them as strict inequalities, as the question does not ask for L being the best response.
b. Calculate the necessary and sufficient condition for A_{2} to be a best response to σ. A_{2} being a best response for player 2 is equivalent to either $x=1$ (so A_{2} is just as good as D_{2} for player 2) or (non-exclusively) $A_{2} \succeq_{2} D_{2}$, with

$$
\begin{aligned}
A_{2} \succeq_{2} D_{2} & \Longleftrightarrow 1 \geq 0 \cdot z+3 \cdot(1-z) \\
& \Longleftrightarrow z \geq 2 / 3 .
\end{aligned}
$$

c. Calculate the necessary and sufficient condition for A_{1} to be a best response to σ.

$$
\begin{aligned}
A_{1} \succeq_{1} D_{1} & \Longleftrightarrow 3 \cdot y z+1 \cdot(1-y) \geq 3 \cdot z \\
& \Longleftrightarrow 1-y \geq 3 z(1-y) \\
& \Longleftrightarrow[y=1 \text { or } z \leq 1 / 3] .
\end{aligned}
$$

Note that it is incorrect to write the third line as " $\Longleftrightarrow z \leq 1 / 3$."
d. Find the set of all the Nash equilibria where A_{1} is played with probability one.

Claim: This set is empty.
Proof: With A_{1} played for sure, $x=0$. Note $y=1$, otherwise $z \leq 1 / 3$ (by Part (c) and $A_{1} \succeq_{1} D_{1}$) and $A_{2} \succeq_{2} D_{2}$ (by definition of the notation y), which in turn implies, by Part (b) and $x<1$, that $z \geq 2 / 3$, contradiction. Now that $y=1$, Part (c) and A_{1} being played at all together imply that $z \leq 1 / 3$. Furthermore, since $x=0$ and $y=1$, we have $(1-x) y=1>0=x$. Then Part (a) implies $L \succ_{3} R$, i.e., $z=1$, contradiction.
(If a student misses the "or" nuance in parts (b) and (c) and gets only " $z \geq 2 / 3$ " and " $z \leq 1 / 3$ " for those parts, then the correct conclusion of empty set in part (d) would be easier to obtain than the above proof.)
e. Find the set of all the Nash equilibria where A_{1} is played with probability strictly between zero and one.

Claim: This set is

$$
\left\{\left(x D_{1}+(1-x) A_{1}, D_{2}, z L+(1-z) R\right): 1 / 2 \leq x<1 ; z \leq 2 / 3 ; z>0 \Rightarrow x=1 / 2\right\}
$$

Proof: By the first half of the proof in Part (d), $y=1$, which, by Part (c), suffices to guarantee that $A_{1} \sim_{1} D_{1}$. To guarantee that $D_{2}(y=1)$ is a best response, Part (b) requires that $z \leq 2 / 3$. With $z \leq 2 / 3, \mathrm{R}$ needs to be a best response, hence Part (a) requires $(1-x) y \leq x$, which, due to $y=1$, is equivalent to $1-x \leq x$, i.e., $x \geq 1 / 2$. Furthermore, if $z>0$, then $0<z \leq 2 / 3$ means that $L \sim_{3} R$, which in turn requires (by Part (a)) that $(1-x) y=x$ and hence (since $y=1$) $1-x=x$, i.e., $x=1 / 2$; in other words, $z>0 \Rightarrow x=1 / 2$.

Note: If one misses the "or $y=1$ " clause in Part (c), then the partial condition about $z \leq 1 / 3$ obtained there, coupled with $A_{1} \sim_{1} D_{1}$, would force $z=1 / 3$; that means $L \sim_{3} R$ and hence $(1-x) y=x$, which coupled with $y=1$ would mean $x=1 / 2$; then the answer for (e) would be only the singleton containing

$$
\left(\frac{1}{2} D_{1}+\frac{1}{2} A_{1}, D_{2}, \frac{1}{3} L+\frac{2}{3} R\right) .
$$

