Qualifier Exam Question

Economics of Contracts

Professor Charles Z. Zheng
Tepper School of Business
Carnegie Mellon University
December 2019

The primitives Consider an auction environment with a single good for sale and two bidders. Each bidder's type, which is his private information, is independently drawn from $[0,1]$ according to a commonly known cumulative distribution function F whose density f is defined by

$$
f(t):= \begin{cases}2 & \text { if } 0 \leq t<1 / 3 \\ 1 / 2 & \text { if } 1 / 3<t \leq 1\end{cases}
$$

Given any realized type t_{i}, bidder i 's ex post payoff is equal to $1+t_{i}-p$ if he wins the good and pays an amount p of money, equal to $-p^{\prime}$ if he does not win the good and pays an amount p^{\prime} of money, and equal to zero if he does not participate at all. (Thus, to a bidder of type t_{i}, the valuation of the good is equal to $t_{i}+1$.) The seller's valuation of the good is zero. Everyone is risk neutral.

Notations A mechanism means a list $\left(q_{i}, p_{i}\right)_{i=1}^{2}$ of functions defined on $M_{1} \times M_{2}$ for some sets M_{1} and M_{2} such that if bidder 1 chooses an element m_{1} from M_{1}, and bidder 2 chooses an element m_{2} from M_{2}, then bidder $i(i=1,2)$ gets the good with probability $q_{i}\left(m_{1}, m_{2}\right)$ and pays the seller an amount $p_{i}\left(m_{1}, m_{2}\right)$ of money. The seller's decision problem is to maximize his expected revenue among all mechanisms, each assessed by a Bayesian Nash equilibrium (BNE) admitted by the mechanism. If $\left(s_{1}, s_{2}\right)$ is a BNE of a mechanism $\left(q_{i}, p_{i}\right)_{i=1}^{2}$ such that $s_{i}:[0,1] \rightarrow M_{i}$ is bidder i 's equilibrium strategy, denote for any $i \in\{1,2\}$ and any $t_{i} \in[0,1]$

$$
\begin{aligned}
Q_{i}\left(t_{i} \mid s\right) & :=\int_{0}^{1} q_{i}\left(s_{i}\left(t_{i}\right), s_{-i}\left(t_{-i}\right)\right) d F\left(t_{-i}\right) \\
P_{i}\left(t_{i} \mid s\right) & :=\int_{0}^{1} p_{i}\left(s_{i}\left(t_{i}\right), s_{-i}\left(t_{-i}\right)\right) d F\left(t_{-i}\right)
\end{aligned}
$$

1. Provide a solution - in terms of the primitives - for M_{1} and M_{2} that is as simple as possible without causing any loss of generality to the seller's decision. Explain your answer with no more than one sentence.
2. Given any mechanism $\left(q_{i}, p_{i}\right)_{i=1}^{2}$ and its associated BNE $\left(s_{1}, s_{2}\right)$, use the notations provided above to do the following:
a. Write down a bidder i 's expected payoff from responding to $\left(s_{1}, s_{2}\right)$ by choosing $s_{i}\left(t_{i}^{\prime}\right)$ while his true type is t_{i}.
b. Write down a necessary and sufficient condition for $\left(s_{1}, s_{2}\right)$ to constitute a BNE of $\left(q_{i}, p_{i}\right)_{i=1}^{2}$.
c. How to reduce the seller's choice variable to the dimensions of $\left(q_{1}, q_{2}\right)$ (i.e., how to eliminate the payment dimensions $\left(p_{1}, p_{2}\right)$ of the choice variable)?
3. Derive from the primitives a function $V:[0,1] \rightarrow \mathbb{R}$ such that there is no loss of generality to assume that the seller's expected revenue from any mechanism $\left(q_{i}, p_{i}\right)_{i=1}^{2}$ and its associated $\operatorname{BNE}\left(s_{1}, s_{2}\right)$ is equal to

$$
\int_{0}^{1} \int_{0}^{1} \sum_{i=1}^{2} V\left(t_{i}\right) q_{i}\left(s_{1}\left(t_{1}\right), s_{2}\left(t_{2}\right)\right) d F\left(t_{1}\right) d F\left(t_{2}\right) .
$$

4. Consider a mechanism that uses a hierarchical allocation with respect to $V: M_{1}=M_{2}=[0,1]$ and, for any $\left(t_{1}, t_{2}\right) \in M_{1} \times M_{2}\left(=[0,1]^{2}\right.$ in this case), $q_{i}\left(t_{1}, t_{2}\right)=1$ if $V\left(t_{i}\right)>V\left(t_{-i}\right) \geq 0$, $q_{i}\left(t_{1}, t_{2}\right)=0$ if $V\left(t_{i}\right)<\max \left\{0, V\left(t_{-i}\right)\right\}$, and $q_{i}\left(t_{1}, t_{2}\right)=1 / 2$ if $V\left(t_{i}\right)=V\left(t_{-i}\right) \geq 0$. Does this mechanism admit a $\operatorname{BNE}\left(s_{1}, s_{2}\right)$ such that $s_{i}\left(t_{i}\right)=t_{i}$ for each i and each $t_{i} \in[0,1]$? Explain your answer briefly.
5. Characterize an optimal mechanism for the seller through the following steps:
a. Calculate explicitly the inverse F^{-1} of F, the composite function $h:=V \circ F^{-1}$ (i.e., $h(s):=V\left(F^{-1}(s)\right)$ for all $\left.s \in[0,1]\right)$, and the function H defined by $H(s):=\int_{0}^{s} h(r) d r$ for all $s \in[0,1]$.
b. Denote \widehat{H} for the convex hull of H. Let $0<x<y<1$ such that $\widehat{H}<H$ on (x, y), $\widehat{H}(x)=H(x)$, and $\widehat{H}(y)=H(y)$.
i. Which of the following is true?
A. $x<1 / 3<y$
B. $2 / 3<x<y$
C. $x<2 / 3<y$
D. $x<y<2 / 3$
E. none of the above
ii. Write down an equation system that determines the values of x and y. Make these equations as explicit as possible according to the formulas of h, H, etc., without solving the equations.
c. Treating x and y as known numbers, do the following:
i. Provide the formula of a function $\widehat{h}:[0,1] \rightarrow \mathbb{R}$ that is equal to the derivative of \widehat{H} almost everywhere on $[0,1]$.
ii. Provide the formula of a function $\bar{V}:[0,1] \rightarrow \mathbb{R}$ such that the hierarchical allocation with respect to \bar{V} (Step 4 with \bar{V} replacing V) is optimal for the seller. Briefly explain why this allocation admits a $\operatorname{BNE}\left(s_{1}, s_{2}\right)$ such that $s_{i}\left(t_{i}\right)=t_{i}$ for each i and each $t_{i} \in[0,1]$.

Solution

1. $M_{1}=M_{2}=[0,1]$ by the revelation principle.
2. a. $\left(t_{i}+1\right) Q_{i}\left(t_{i}^{\prime} \mid s\right)-P_{i}\left(t_{i}^{\prime} \mid s\right)$. (Note that the coefficient is $t_{i}+1$ rather than t_{i}, as the valuation of the good is $t_{i}+1$, not t_{i}.)
b. Simultaneous satisfaction of three conditions:
i. for each $i \in\{1,2\}, Q_{i}(\cdot \mid s)$ is weakly increasing on $[0,1]$;
ii. for each $i \in\{1,2\}$ and any $t_{i}, t_{i}^{\prime} \in[0,1]$,

$$
\begin{equation*}
\left(t_{i}+1\right) Q_{i}\left(t_{i} \mid s\right)-P_{i}\left(t_{i} \mid s\right)=\left(t_{i}^{\prime}+1\right) Q_{i}\left(t_{i}^{\prime} \mid s\right)-P_{i}\left(t_{i}^{\prime} \mid s\right)+\int_{t_{i}^{\prime}}^{t_{i}} Q_{i}(r \mid s) d r \tag{1}
\end{equation*}
$$

iii. for each $i \in\{1,2\}$ and any $t_{i} \in[0,1],\left(t_{i}+1\right) Q_{i}\left(t_{i} \mid s\right)-P_{i}\left(t_{i} \mid s\right) \geq 0$.
c. Plug $t_{i}^{\prime}=0$ into Eq. (1) to see that $P_{i}(\cdot \mid s)$ is determined by $Q_{i}(\cdot \mid s)$ up to a constant $P_{i}(0 \mid s)$, and the constant is pinned down by $Q_{i}(0 \mid s)-P_{i}(0 \mid s)=0$ due to the participation constraint, or Condition 2(b.)iii.
3. By the given f, we have

$$
F\left(t_{i}\right)= \begin{cases}2 t_{i} & \text { if } 0 \leq t_{i} \leq 1 / 3 \tag{2}\\ 2 / 3+\left(t_{i}-1 / 3\right) / 2=\left(t_{i}+1\right) / 2 & \text { if } 1 / 3 \leq t_{i} \leq 1\end{cases}
$$

Thus, since the seller's valuation is zero and a type- t_{i} bidder's valuation is $t_{i}+1$,

$$
V\left(t_{i}\right)=t_{i}+1-\frac{1-F\left(t_{i}\right)}{f\left(t_{i}\right)}= \begin{cases}2 t_{i}+1 / 2 & \text { if } 0 \leq t_{i}<1 / 3 \tag{3}\\ 2 t_{i} & \text { if } 1 / 3<t_{i} \leq 1\end{cases}
$$

(If a student mistakes t_{i} for the valuation, then his answer is $V\left(t_{i}\right)=t_{i}-\frac{1-F\left(t_{i}\right)}{f\left(t_{i}\right)}$, which is $2 t_{i}-1 / 2$ if $0 \leq t_{i}<1 / 3$, and $2 t_{i}-1$ if $1 / 3<t_{i} \leq 1$.)
4. No, because the V in Eq. (3) drops at $t_{i}=1 / 3$, from $\lim _{t \uparrow 1 / 3} V(t)=7 / 6$ to $\lim _{t \downarrow 1 / 3} V(t)=2 / 3$. Since both levels are positive, the hierarchical allocation $Q_{i}(\cdot \mid s)$ with respect to V is not weakly increasing on $[0,1]$, violating the monotonicity condition in Step 2(b.)i.
(If a student mistakes t_{i} for the valuation, then the drop of V, consistent with the mistake, would be from $1 / 6$ to $-1 / 3$. Thus it is uncertain at this point whether the ironed level of V around the drop is positive or negative. If it is negative, the non-monotonicity of V would not hurt the monotonicity of Q_{i}, as types with negative (ironed) virtual utilities have zero probability of winning. Most students are unlikely to see this subtlety though. I would give almost full credit to an answer that recognizes the connection from the non-monotonicity of V to the non-monotonicity of Q_{i} and from the non-monotonicity of Q_{i} to the failure of its incentive compatibility.)
5. a. By Eq. (2),

$$
F^{-1}(s)= \begin{cases}s / 2 & \text { if } 0 \leq s \leq 2 / 3 \tag{4}\\ 2 s-1 & \text { if } 2 / 3 \leq s \leq 1\end{cases}
$$

Thus, by Eq. (3),

$$
h(s)=V\left(F^{-1}(s)\right)= \begin{cases}2(s / 2)+1 / 2=s+1 / 2 & \text { if } 0 \leq s<2 / 3 \tag{5}\\ 2(2 s-1)=4 s-2 & \text { if } 2 / 3<s \leq 1 .\end{cases}
$$

(The answer consistent with mistaking t_{i} for the valuation is $h(s)=2(s / 2)-1 / 2=s-1 / 2$ if $0 \leq s<2 / 3$, and $h(s)=2(2 s-1)-1=4 s-3$ if $2 / 3<s \leq 1$.)
If $s \in[0,2 / 3]$, by the upper branch of (5),

$$
H(s)=\int_{0}^{s} h(r) d r=\int_{0}^{s}(r+1 / 2) d r=s(s+1) / 2 .
$$

Note $H(2 / 3)=5 / 9$. Thus, if $s \in[2 / 3,1]$, by the lower branch of (5),

$$
H(s)=\int_{0}^{2 / 3} h(r) d r+\int_{2 / 3}^{s} h(r) d r=\frac{5}{9}+\int_{2 / 3}^{s}(4 r-2) d r=2 s^{2}-2 s+1 .
$$

In sum,

$$
H(s)= \begin{cases}s(s+1) / 2 & \text { if } 0 \leq s \leq 2 / 3 \tag{6}\\ 2 s^{2}-2 s+1 & \text { if } 2 / 3 \leq s \leq 1\end{cases}
$$

(The answer consistent with mistaking t_{i} for the valuation is $H(s)=s(s-1) / 2$ if $0 \leq s \leq 2 / 3$, and $H(s)=\frac{1}{9}+\int_{2 / 3}^{s}(4 r-3) d r=2 s^{2}-3 s+11 / 9$ if $2 / 3 \leq s \leq 1$.)
b. i. C. $x<2 / 3<y$. That is because $s=2 / 3$ is the point where h drops, according to Eq. (5), and hence its antiderivative H is non-convex around $s=2 / 3$.
ii. By definition of convex hull, \widehat{H} is affine on $[x, y]$ and its graph is tangent to that of H at x and at y. Thus the equation system is

$$
\begin{gathered}
h(x)=h(y), \\
H(y)-H(x)=h(x)(y-x) .
\end{gathered}
$$

To make these equations explicit, rewrite them according to Eqs. (5) and (6) and the fact $x<2 / 3<y$ (Step 5(b.)i):

$$
\begin{gathered}
x+1 / 2=4 y-2 \\
2 y^{2}-2 y+1-x(x+1) / 2=(x+1 / 2)(y-x) .
\end{gathered}
$$

(The answer consistent with mistaking t_{i} for the valuation is: $x-1 / 2=4 y-3$ and $2 y^{2}-3 y+11 / 9-x(x-1) / 2=(x-1 / 2)(y-x)$.)
c. i. Since h is increasing on $[0,2 / 3)$ and on $(2 / 3,1],[x, y]$ is the only region on which the convex hull \widehat{H} differs from the antiderivative H of h. Thus

$$
\widehat{h}(s)= \begin{cases}h(s) & \text { if } s \notin[x, y] \\ h(x) & \text { if } s \in[x, y] .\end{cases}
$$

Since $x<2 / 3<y$ (Step 5(b.)i), Eq. (5) implies

$$
\widehat{h}(s)= \begin{cases}s+1 / 2 & \text { if } 0 \leq s \leq x \tag{7}\\ x+1 / 2 & \text { if } x \leq s \leq y \\ 4 s-2 & \text { if } y \leq s \leq 1\end{cases}
$$

(The answer consistent with mistaking t_{i} for the valuation is: $\widehat{h}(s)=s-1 / 2$ if $0 \leq s \leq x, \widehat{h}(s)=x-1 / 2$ if $x \leq s \leq y$, and $\widehat{h}(s)=4 s-3$ if $y \leq s \leq 1$.)
ii. By the ironing procedure, $\bar{V}=\widehat{h} \circ F$. Combine this with Eqs. (2) and (7) and with the fact that

$$
x / 2=F^{-1}(x)<F^{-1}(2 / 3)=1 / 3<F^{-1}(y)=2 y-1,
$$

which is due to $x<2 / 3<y$ and Eq. (4). Then

$$
\begin{aligned}
\bar{V}\left(t_{i}\right) & =\widehat{h}\left(F\left(t_{i}\right)\right)= \begin{cases}F\left(t_{i}\right)+1 / 2 & \text { if } 0 \leq F\left(t_{i}\right)<x \\
x+1 / 2 & \text { if } x \leq F\left(t_{i}\right)<y \\
4 F\left(t_{i}\right)-2 & \text { if } y \leq F\left(t_{i}\right) \leq 1\end{cases} \\
& = \begin{cases}2 t_{i}+1 / 2 & \text { if } 0 \leq t_{i}<F^{-1}(x) \\
x+1 / 2 & \text { if } F^{-1}(x) \leq t_{i}<F^{-1}(y) \\
4\left(t_{i}+1\right) / 2-2 & \text { if } F^{-1}(y) \leq t_{i} \leq 1\end{cases} \\
& = \begin{cases}2 t_{i}+1 / 2 & \text { if } 0 \leq t_{i}<x / 2 \\
x+1 / 2 & \text { if } x / 2 \leq t_{i}<2 y-1 \\
2 t_{i} & \text { if } 2 y-1 \leq t_{i} \leq 1 .\end{cases}
\end{aligned}
$$

(The answer consistent with mistaking t_{i} for the valuation is: $\bar{V}\left(t_{i}\right)=2 t_{i}-1 / 2$ if $0 \leq t_{i}<x / 2, \bar{V}\left(t_{i}\right)=x-1 / 2$ if $x / 2 \leq t_{i}<2 y-1$, and $\bar{V}\left(t_{i}\right)=2 t_{i}-1$ if $2 y-1 \leq t_{i} \leq 1$.)
Since \bar{V} is weakly increasing on $[0,1]$, so is the Q_{i} derived from the hierarchical allocation with respect to \bar{V}. Hence Q_{i} is incentive compatible.

