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1 Cost minimization

The choice variable in the decision problem considered in Chapter 1 has only one dimension, the

firm’s quantity of output. Now we relax this assumption and consider a case with multidimensional

choice variables. Specifically, suppose that our firm, instead of choosing an output quantity, chooses

among multiple kinds of inputs to deliver a fixed quantity of its output. Suppose that there are

two kinds of inputs, called Input 1 and Input 2. The firm’s input deployment corresponds to a

vector (x1, x2) in which x1 denotes the quantity of input 1, and x2 the quantity of input 2, that the

firm is employing. Suppose that the technology given to the firm is characterized by a production

function f of two independent variables, x1 and x2, so that f(x1, x2) is the quantity of output that

the firm supplies if it employs x1 units of input 1 and x2 units of input 2. Suppose that the market

prices of the two inputs, denoted by w1 and w2, are taken as given by the firm. Then an input

bundle (x1, x2) would cost the firm w1x1 + w2x2 dollars. Also suppose that the firm is to supply

a fixed quantity y of its output (say Boeing having signed a contract to supply a certain quantity

of weapons of mass destruction to the US military). Which input bundle can deliver this output

quantity in the least costly manner? Put formally, our firm’s decision problem is

min
(x1,x2)∈R2

+

w1x1 + w2x2 (1)

subject to f(x1, x2) = y,

where R2
+ denotes the set of all pairs (x, y) such that both x and y are elements of the set R+.1

Like the decision problem in Chapter 1, Problem (1) has an objective w1x1 + w2x2 and a

choice variable (x1, x2), which is specified, underneath the minimization operator min, to belong to

the domain R2
+. Unlike the previous problem, however, Problem (1) has a constraint, the equation

f(x1, x2) = y on the second line. This is an example for constrained optimization problems.

2 Marginal products and partial derivatives

Since the function f in the constraint of Problem (1) is multivariate, before solving the problem

let us specify some useful structures of f . It is usually assumed that f is increasing in each of its

arguments x1 and x2. When f is also differentiable, we define the marginal product (MP) of input 1

to be the partial derivative of f with respect to x1, i.e.,

MP1(x1, x2) :=
∂

∂x1
f(x1, x2),

1 Recall that R+ = [0,∞). Thus we can write R2
+ equivalently as [0,∞)2.
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which is the rate of increase in output with an infinitesimal increase in x1, while x2 is held constant.

Likewise the marginal product of input 2 is

MP2(x1, x2) :=
∂

∂x2
f(x1, x2).

To calculate ∂
∂x1

f(x1, x2), simply take the derivative of f by treating x1 (the variable indicated

by ∂
∂x1

) as the variable and every other variable (x2 in this case) as a constant. For example, if

f(x1, x2) = x3
1x

1/2
2 for all positive numbers x1 and x2, then

MP1(x1, x2) =
∂

∂x1
f(x1, x2) =

∂

∂x1
x3

1x
1/2
2 = x

1/2
2

∂

∂x1
x3

1 = 3x2
1x

1/2
2 ,

with the second equality due to x2 being constant in the operation ∂
∂x1

. Note that the marginal

product of input 1 depends not only on the quantity x1 of input 1 but also on x2 of input 2.

3 Isoquants and their slopes

In general, if g(x1, x2) is a function of two variables (x1, x2) ∈ R2
+, and if y is any number that

belongs to the range of g, the set of all (x1, x2) ∈ R2
+ for which g(x1, x2) = y is called level surface

of g for the constant level y. Level surfaces are useful for us to visualize multi-variable functions

such as our production function f and the objective function in Problem (1). In intermediate

microeconomics, any level surface of the production function f is called isoquant . That is, the

isoquant for any given output quantity y is the set of nonnegative 2-vectors (x1, x2) satisfying

f(x1, x2) = y. (2)

Likewise, any level surface of the objective function in Problem (1), corresponding to w1x1+w2x2 =

c for some constant expense c, is called called isocost .

The constraint f(x1, x2) = y in Problem (1) says that whatever the firm does it must supply

the fixed quantity y of outputs. In other words, whatever the firm chooses should correspond to a

point that belongs to the isoquant for the fixed output quantity y.

To see the shape of the isoquant, pick any nonnegative x1. There is at most one value for x2

such that (x1, x2) belongs to the isoquant. Otherwise, say (x1, x2) and (x1, x
′
2) both belong to the

isoquant while x′2 6= x2, then we have f(x1, x2) = y = f(x1, x
′
2), contradicting the assumption

that f is increasing in x2. It follows that the isoquant is a curve in the x1-x2-plane. In other words,

Eq. (2) implies a functional relationship between x1 and x2: for any x1 such that (x1, x2) belongs

to the isoquant for some quantity x2, this quantity of x2 is unique and hence we may denote it

by x̃2(x1), a function of x1. Thus Eq. (2) becomes

f (x1, x̃2(x1)) = y. (3)

Note that the left-hand side of this equation is a function of only one variable, x1. If, in addition,

f is differentiable then the isoquant is a smooth curve, whose slope is calculated by taking the

derivative with respect to x1 on both sides of Eq. (3):

d

dx1
f (x1, x̃2(x1)) =

d

dx1
y = 0,
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with the second equality due to y being constant. For the left-hand side, use the chain rule:

d

dx1
f (x1, x̃2(x1)) =

∂

∂x1
f (x1, x̃2(x1)) +

∂

∂x2
f (x1, x̃2(x1))

d

dx1
x̃2(x1).

Combining these two equations we have

∂

∂x1
f (x1, x̃2(x1)) +

∂

∂x2
f (x1, x̃2(x1))

d

dx1
x̃2(x1) = 0,

i.e.,

d

dx1
x̃2(x1) = −

∂
∂x1

f (x1, x̃2(x1))
∂
∂x2

f (x1, x̃2(x1))
, (4)

which is the formula for the slope of the isoquant at any positive x1, with x̃2(x1) obtained from

solving Eq. (2) for x2.2 The left-hand side of (4) is denoted by TRS(x1), called technical rate of

substitution. With the shorthands for marginal products, Eq. (2) can be written briefly as

TRS = −MP1

MP2
. (5)

The negative sign here signifies that the isoquant curve is downward sloping: If the firm reduces the

quantity of input 1, to stay on the same quantity of output the firm needs to increase the quantity

of input 2. It is usually assumed that, when x1 increases, the absolute value |TRS(x1)| of the slope

is decreasing, i.e., the downward sloping isoquant gets less steep: The more input 1 has the firm

been using, the less quantity of input 2 is needed to substitute a tiny decrease of x1 in order to

maintain the same output quantity.

For example, take the previous f(x1, x2) = x3
1x

1/2
2 . An isoquant corresponds to the equation

x3
1x

1/2
2 = y (6)

for some positive constant y. Solve this equation for x2 to obtain

x2 =
(
yx−3

1

)2
= y2x−6

1 ,

hence

x̃2(x1) = y2x−6
1 .

Taking the derivative of x̃2 we obtain the slope of the isoquant:

TRS =
d

dx1
x̃2(x1) =

d

dx1

(
y2x−6

1

)
= −6y2x−7

1

(6)
= −6

(
x3

1x
1/2
2

)2
x−7

1 = −6x2

x1
.

Alternatively, and more simply, use Eq. (5). We have calculated MP1 previously. Analogously,

MP2 =
∂

∂x2

(
x3

1x
1/2
2

)
= x3

1

∂

∂x2
x

1/2
2 =

1

2
x3

1x
−1/2
2 .

Hence the slope of the isoquant at x1 is equal to

TRS(x1) = −MP1

MP2
= − 3x2

1x
1/2
2

(1/2)x3
1x
−1/2
2

= −6x2−3
1 x

1/2−(−1/2)
2 = −6x2

x1
, (7)
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∆x2/∆x1

f(x1, x2) = y

Figure 1: ∆x2/∆x1 is the slope of AC

same as the result from the previous method. Since 6x2
x1

is decreasing in x1, the diminishing TRS

assumption is satisfied.

The intuition for the derivation of Eq. (5) is illustrated by Figure 1, where the curve represents

an isoquant (which does not satisfied the diminishing TRS assumption, by the way). Start with the

input bundle A on the curve. Increase its quantity of input 1 by a tiny amount ∆x1; i.e., change

the input bundle from A to B in the figure. With the production function assumed increasing,

this increase in x1 increases the output quantity; with the partial derivative MP1 being the rate

of change between output and input 1 when the change in x1 is infinitesimal, this increase in the

output quantity is approximately equal to MP1 ·∆x1. To stay on the same isoquant as A, we need

to decrease the quantity of input 2 by some amount such that the input bundle is changed from B

down to the point C, back on the curve; denote this change in x2 by ∆x2, which is a negative

number, as it signifies a decrease. The change in the output quantity rendered by this change ∆x2,

analogous to the change in x1, is approximately equal to MP2 · ∆x2. Thus, the total change in

the output quantity, due to the changes from A to B and from B to C, is approximately equal to

MP1 ·∆x1 + MP2 ·∆x2. But since A and C belong to the same isoquant, this total change in the

output quantity is equal to zero. Hence we obtain

MP1 ·∆x1 + MP2 ·∆x2 ≈ 0,

which is equivalent to
∆x2

∆x1
≈ −MP1

MP2
.

Note that the left-hand side, ∆x2
∆x1

, is simply the slope of the straight line AC in Figure 1. When ∆x1

converges to zero (denoted by ∆x1 → 0), line AC becomes arbitrarily close to the tangent line of

the curve at point A, and ∆x2
∆x1

converges to the slope of this tangent line, which is the slope of the

curve at point A, i.e., the TRS at A. Hence the above equation converges to Eq. (5).

2 A student versed in calculus would recognize this paragraph as an instance of the implicit function theorem.
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4 Cost-minimizing input bundle

To solve Problem (1), let us examine the objective on the x1-x2-plane. Given any two points on the

plane, which one corresponds to the less costly input bundle? Pick any constant c and consider all

input bundles that each cost c dollars given the market prices (w1, w2), i.e., the (x1, x2) such that

w1x1 + w2x2 = c. (8)

In other words, consider the level surface of the objective function for the constant c. Eq. (8) is

the same as

x2 =
c

w2
− w1

w2
x1,

which corresponds to the straight line on the x1-x2-plane with a negative slope −w1/w2 and vertical

intercept c/w2. The set of all (x1, x2) satisfying Eq. (8) is called isocost line corresponding to the

input expense c. Now pick any other number c′ > c, and consider the input bundles (x1, x2) that

would cost the firm c′ dollars:

w1x1 + w2x2 = c′, i.e., x2 =
c′

w2
− w1

w2
x1,

which is a line of the same slope as before but with a higher vertical intercept c′/w2. Thus, the

lower is an isocost line (in terms of its x2-intercept), the less does any input bundle on that line

would cost the firm.

It follows that solving Problem (1) amounts to finding a point on the isoquant that belongs to

the lowest possible isocost. Clearly such lowest possible isocost is the isocost line that happens to

touch a point on the isoquant and keeps the entire isoquant curve above (including the possibility

of touching) the line. Such a straight line is called supporting hyperplane.3 Any common point

between this supporting hyperplane and the isoquant is a solution to Problem (1), i.e., a cost-

minimizing input bundle that delivers the output quantity y. Note that the diminishing TRS

assumption guarantees that such a supporting hyperplane exists.

When f is differentiable, the isoquant is a smooth curve and the supporting hyperplane

becomes its tangent line, so the two have the same slope at their common point. The slope of

the isoquant is given by Eq. (5), and that of the supporting hyperplane, itself an isocost line, is

simply −w1/w2. Thus −MP1
MP2

= −w1
w2

at any common point between the isoquant and its supporting

hyperplane. In other words, at any cost-minimizing input bundle,

MP1

MP2
=
w1

w2
. (9)

Let us illustrate with the previous example, where f(x1, x2) = x3
1x

1/2
2 . Suppose that input 1

costs $48 per unit, and input 2, $2 per unit. Then w1/w2 = 48/2 = 24. Plug this and Eq. (7) into

Eq. (9) to obtain
6x2

x1
= 24,

3 “Hyperplane” is the general counterpart to a straight line in certain spaces with possible more than two dimen-

sions. Our method can be generalized to cases with more than two inputs.
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i.e., x2 = 4x1. Since the cost-minimizing input bundle belongs to the isoquant corresponding to y

units of output, it must satisfy f(x1, x2) = y, i.e., x3
1x

1/2
2 = y. Thus plug x2 = 4x1 into this

equation to obtain

x3
1 (4x1)1/2 = y, i.e., x

7/2
1 = y/2.

Hence x1 = (y/2)2/7 and x2 = 4x1 = 4(y/2)2/7. Thus, the cost-minimizing input bundle to deliver y

units of output is (
(y/2)2/7, 4(y/2)2/7

)
.

For some production functions, the isoquants are not smooth curves (e.g., when the pro-

duction function is not differentiable), hence Eq. (9) is not applicable. Nevertheless, we can solve

Problem (1) by locating the common point between the isoquant and its supporting hyperplane

that supports it from below.

For example, consider a production function defined by

f(x1, x2) := min{3x1, x2},

i.e., f(x1, x2) equals either 3x1 or x2, whichever is smaller. The interpretation is that the two

inputs are perfect complements. For instance, with one unit of input 1 and 3 units of input 2 the

firm can produce up to min{3× 1, 3} = 3 units of output; the firm cannot produce more even if it

increases input 1 to 10 unless it also increases input 2, as min{3 × 10, 3} is still 3. Pick any fixed

output quantity y, so the isoquant corresponds to

min{3x1, x2} = y.

To find its shape, set the two items inside min{·} equal to each other to obtain x2 = 3x1 = y,

which gives us the point (y/3, y) in the x1-x2-plane. Note that this point belongs to the isoquant

for y units of output. Starting from (y/3, y) and moving horizontally to the right, we increase x1

while holding x2 fixed at y, and f(x1, x2) by definition remains unchanged from the level y. Thus

any point horizontally to the right of (y/3, y) belongs to the same isoquant. Likewise any point

vertically above (y/3, y) also belongs to the same isoquant. Hence the isoquant is the L-shape path

with its corner being (y/3, y). Suppose as in the previous example that w1 = 48 and w2 = 2. Then

the isocosts are straight lines of slope −24, one among which is the supporting hyperplane of the

isoquant. The common point between the two, by the L-shape of the isoquant, is the corner (y/3, y)

of the L-shape path. Thus (y/3, y) is the cost-minimizing input bundle to deliver output y.

For another example, consider a production function

f(x1, x2) := 3x1 + x2.

The interpretation is that the two inputs are perfect substitutes: Every unit of input 1 can be

substituted by three units of input 2 without changing the output quantity. The isoquant in this

example is the set of all nonnegative (x1, x2) for which

3x1 + x2 = y,

which is the straight segment with slope −3 and vertical intercept y. If the prices are w1 = 48 and

w2 = 2 as in previous examples, the slope of the isocosts is −24, steeper than the isoquant at all
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points. Thus, the supporting hyperplane that supports the isoquant from below is the isocost line

intersecting the isoquant at the vertical intercept. In this example, therefore, the cost-minimizing

input bundle is (0, y), meaning that the firm employs exclusively input 2 and none of input 1 to

deliver y. While the marginal product of input 1 is always greater than that of input 2, with the

former equal to 3 and the latter equal to 1, the firm opts for none of input 1 because its wage rate

is too high.

5 Derivation of the cost function

In Chapter 1 we considered a firm’s supply decision taking its cost function as given. Now we are

ready to provide a foundation for the cost function: For a firm that has no influence on the market

prices (w1, w2) of its inputs, the cost C(y) of supplying y units output is equal to the minimum

expense in supplying y, i.e.,

C(y) := min(x1,x2)∈R2
+

w1x1 + w2x2 (10)

subject to f(x1, x2) = y.

For example, when f(x1, x2) = x3
1x

1/2
2 , we have found the cost-minimizing input bundle as(

(y/2)2/7, 4(y/2)2/7
)
, hence the cost function is given by

C(y) = w1(y/2)2/7 + w2 · 4(y/2)2/7 = (y/2)2/7(w1 + 4w2)

and the average cost

AC(y) =
C(y)

y
= (2)−2/7y−5/7(w1 + 4w2).

In the example where f(x1, x2) := min{3x1, x2}, (y/3, y) is the cost-minimizing input bundle, so

C(y) = w1y/3 + w2y =
1

3
y(w1 + 3w2),

AC(y) =
1

3
(w1 + 3w2).

In the example where f(x1, x2) := 3x1 + x2, the cost-minimizing input bundle is (0, y) and hence

C(y) = w2y,

AC(y) = w2.

6 Returns to scale

In the previous section, the firm’s average cost of supplying y units of output is a decreasing function

of y in the first example, and constant to y in the second and third. What determines whether the

average cost is increasing, decreasing or constant in the output level? The answer depends on what

type of returns to scale that the firm’s production function exhibits.

A production function f exhibits constant returns to scale (CRS) iff

f(tx1, tx2) = tf(x1, x2) (11)
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for any t > 1 and any nonnegative input bundle (x1, x2). That is, when the quantity of every input

is scaled up to t times its previous quantity, the maximum output of the firm is also scaled up to

exactly t times its previous level. An interpretation of a CRS technology is that it is replicable in

the sense that the same recipe of the inputs produces exactly the same output.4

For example, the previous f(x1, x2) := min{3x1, x2} is CRS: for any t > 1,

f(tx1, tx2) = min{3tx1, tx2} = tmin{3x1, x2} = tf(x1, x2).

One can easily verify that the production function f(x1, x2) := 3x1 + x2 is also CRS. A class of

CRS production functions, beloved by macroeconomists, is the Cobb-Douglas functions:

f(x1, x2) := Axα1x
1−α
2 ,

where A and α are constants with A > 0 and 0 < α < 1. Any such an f is CRS: for any t > 1,

f(tx1, tx2) = A(tx1)α(tx2)1−α = Atα+1−αxα1x
1−α
2 = Atxα1x

1−α
2 = f(x1, x2).

Note: While we define CRS by requiring Eq. (11) for all t > 1, the definition thereof implies

that Eq. (11) holds for all t > 0. The case when t = 1 is trivial. Let us demonstrate the case when

t < 1. Hence let t < 1, which means 1/t > 1. Then

f(x1, x2)
(11)
= f

(
1

t
tx1,

1

t
tx2

)
=

1

t
f(tx1, tx2),

where the second equality can apply Eq. (11) because the 1/t here, playing the role of t in (11),

is bigger than one as Eq. (11) requires. The above-displayed formula says that, whenever t < 1,

f(x1, x2) = f(tx1, tx2)/t, which is exactly Eq. (11). Hence Eq. (11) is extended to the case t < 1.

A production function f exhibits increasing returns to scale (IRS) iff

f(tx1, tx2) > tf(x1, x2) (12)

for any t > 1 and any nonnegative input bundle (x1, x2). That is, when the firm doubles the

quantities of its inputs, it can more than double its output. The production function f(x1, x2) =

x3
1x

1/2
2 considered previously is IRS: for any t > 1,

f(tx1, tx2) = (tx1)3(tx2)1/2 = t3+1/2x3
1x

1/2
2 > tx3

1x
1/2
2 = tf(x1, x2),

with the inequality due to t > 1.

A production function f exhibits decreasing returns to scale (DRS) iff

f(tx1, tx2) < tf(x1, x2)

for any t > 1 and any nonnegative input bundle (x1, x2). That is, when the firm doubles the

quantities of its inputs, it cannot double its output. The production function f(x1, x2) = xα1x
β
2 ,

with α and β positive constants such that α+ β < 1, is DRS: for any t > 1,

f(tx1, tx2) = (tx1)α(tx2)β = tα+βxα1x
β
2 < txα1x

β
2 = tf(x1, x2),

4 Usual suspects for such replicable technologies are those of McDonald’s, Starbucks, Tim Hortons, and even

Hollywood blockbuster production—hire a team of CGI experts and a group of stars, as well as a bendable script

writer, and you churn out another equally forgettable action thriller.
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with the inequality due to t > 1 and α+ β < 1.

Fact: (i) if the production function exhibits CRS then the average cost is constant to the

output level; (ii) if IRS then the average cost is decreasing in the output level; (iii) if DRS then the

average cost is increasing in the output level .

To prove (i), let (x∗1, x
∗
2) be a cost-minimizing input bundle that delivers one unit of output.

Hence f(x∗1, x
∗
2) = 1 and C(1) = w1x

∗
1 + w2x

∗
2. Pick any y > 0. By CRS, we apply Eq. (11), which

we have explained holds for all t > 0, and let the y here play the role of t there:

f(yx∗1, yx
∗
2) = yf(x∗1, x

∗
2) = y · 1 = y.

Thus, the bundle (yx∗1, yx
∗
2) delivers the output quantity y. Hence by Eq. (10),

C(y) ≤ w1yx
∗
1 + w2yx

∗
2 = y (w1x

∗
1 + w2x

∗
2) = yC(1).

We claim also that C(y) ≥ yC(1). Suppose not, then there exist an input bundle (x1, x2) such that

w1x1 + w2x2 < yC(1) and f(x1, x2) = y. Then, applying Eq. (11) to f(x1, x2) = y, we have

w1 (x1/y) + w2 (x2/y) < C(1),

f (x1/y, x2/y) = 1.

That means the bundle (x1/y, x2/y) can deliver one unit of the output with less expense than C(1),

a contradiction. Thus, C(y) ≥ yC(1). Since we have already shown C(y) ≤ yC(1), it follows that

C(y) = yC(1), i.e., the average cost AC(y) = C(y)/y = C(1), a constant. This completes the proof.

Claims (ii) and (iii) can be demonstrated based on a similar idea. For (ii): IRS, coupled with

continuity of the production function, means that to scale the output level from y up to ty, the

firm does not need to scale its inputs up to t times the previous quantities; it needs only to scale

its inputs up to t′ times, for some t′ < t. Thus, C(ty) < tC(y). This being true for any t > 1 and

any y > 0, we have, for any y′ > y (and hence y′/y > 1),

AC(y′) = C(y′)/y′ = C

(
y′

y
y

)/
y′ <

y′

y
C(y)

/
y′ = C(y)/y = AC(y).

The proof of (iii), similar to that for (ii), is sketched by Exercise 8 in Section 7.

7 Exercises

1. Calculate the partial derivatives of the following functions of two variables:

a. f(x1, x2) = 3x1 + 7x2

b. f(x1, x2) = 2
√
x1 + 3x2

c. f(x1, x2) = 3x7
1x

1/3
2

d. f(x1, x2) = 3x7
1 + x

1/3
2

e. f(x1, x2) = (2x1 − 5x2)(x2 + 1)

2. Suppose the production function is: f(x1, x2) := x2
1 + x2

2 for all nonnegative x1, x2.
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a. Pick any constant y > 0. Given the isoquant equation x2
1 + x2

2 = y, solve x2 as an

expression of x1. Then calculate the derivative of x2 with respect to x1.

b. Calculate the marginal products. Then calculate the slope of an isoquant by Eq. (5).

Compare the result with that in the previous step.

c. Does this production function satisfy the diminishing TRS assumption?

3. Suppose that the price for input 1 is $10 and that for input 2 is $5. For each of the following

production functions defined for all nonnegative x1 and x2, calculate the cost-minimizing

input bundle and the cost function C(y):

a. f(x1, x2) := xα1x
1−α
2 , where α is a parameter such that 0 < α < 1

b. f(x1, x2) := min{x1, 4x2}

c. f(x1, x2) := x1 + 2x2

d. f(x1, x2) := x2
1 + x2

2

4. Consider the following decision problem:

max
(x1,x2)∈R2

+

px2 − wx1

subject to x2 ≤
√
x1,

where p > 0 and w > 0 are parameters. The interpretation of this problem is that a firm

produces its output with only a single kind of inputs, with x1 denoting the input quantity

and x2 the output quantity, so that the firm needs to choose an input-output plan, (x1, x2) ∈
R2

+, to maximize its profit px2 − wx1, with p being the market price for the output, and w

the wage rate for the input. The constraint x2 ≤
√
x1 says that, if it employs a quantity x1

of the input, the firm can produce up to
√
x1 units of the output but nothing beyond.

a. On a diagram of the x1-x2 plane, draw the set of all (x1, x2) ∈ R2
+ for which x2 ≤

√
x1.

This is the entire choice set in this decision problem.

b. Given any x1 > 0, calculate the slope of the graph of the equation x2 =
√
x1.

c. Pick any positive constant c. Draw the level surface of the objective function for the

constant c. Calculate the vertical (x2-) intercept of this level surface. Does the decision

maker prefer to be on a level surface with higher vertical intercept or lower vertical

intercept? If this level surface is a straight line, calculate its slope (in terms of w and p).

d. Draw the level surface of the objective function that is a supporting hyperplane of the

choice set such that the choice set is contained in the lower side of the hyperplane.

e. Denote (x∗1, x
∗
2) for the point at which the above-specified supporting hyperplane touches

the boundary of the choice set (i.e., the curve of x2 =
√
x1). Why is (x∗1, x

∗
2) the solution

of our decision problem?

f. What is the relationship between the slope of the hyperplane and the slope of the choice

set boundary at (x∗1, x
∗
2)? Calculate (x∗1, x

∗
2) in terms of the parameters p and w.
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g. Use the formula of x∗1 obtained above to predict what a firm would do (increase or

decrease its input employment x∗1) if the wage rate w of the input becomes higher (say

due to a new law that raises the minimum wage for labor, labor being the firm’s input).

5. For each of the following production functions, determine whether it exhibits constant, in-

creasing, or decreasing returns to scale:

a. f(x1, x2) = x1 +
√
x2

b. f(x1, x2) = (x
1/4
1 + x

1/4
2 )4

c. f(x1, x2) =
√
x1 + 3x2

6. Recall that Section 6 defines CRS by requiring Eq. (11) for all t > 1 and later proves that for

any CRS production function f Eq. (11) remains unchanged for all 0 < t < 1. Now consider

production functions f that exhibit increasing returns to scale (IRS), which Section 6 defines

by requiring Ineq. (12) for all t > 1. Given any such IRS production function f , if 0 < t < 1,

does the inequality in (12) remain unchanged or turn to the reverse direction?

7. Consider the special case where our firm uses only one kind of input to produce its output,

with production function f defined by

f(x) := (αx)β

for any nonnegative input quantity x, where α and β are positive parameters. Denote the

market price of the input by w, another positive parameter to the firm.

a. For any y > 0, calculate:

i. the cost-minimizing input quantity for this firm to supply output quantity y;

ii. the cost C(y) that the firm incurs in supplying output quantity y;

iii. the average cost AC(y) that the firm incurs in supplying output quantity y.

b. Does the production function exhibit constant, increasing, or decreasing, returns to scale,

and is the firm’s average cost constant, increasing, or decreasing, in its output quantity y,

i. when β = 1?

ii. when β > 1?

iii. when β < 1?

8. To prove Claim (iii) in Section 6, that decreasing returns to scale implies increasing average

cost, work out the following steps:

a. Denote f for the production function that exhibits DRS; let w1 and w2 be the prices

of inputs 1 and 2, respectively. Pick any y > 0 and any t > 1; let (x∗1, x
∗
2) be a cost-

minimizing input bundle to produce the output quantity ty.

b. Is C(ty) greater than, equal to, or less than w1x
∗
1 + w2x

∗
2?

c. Why is f(x∗1/t, x
∗
2/t) > y?

d. Assuming differentiability of f and f(0, 0) = 0, use a theorem in calculus to explain why

there exists an s such that 0 < s < 1 and f(sx∗1/t, sx
∗
2/t) = y.
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e. Use the definition of C(y) and the equality in (d) to explain why C(y) < w1x
∗
1/t+w2x

∗
2/t.

f. Based on (b) and (e), is C(y) greater than, equal to, or less than C(ty)/t?

g. Using the conclusion of (f), mimic the last displayed formula in Section 6 to show that

AC(y′) > AC(y) whenever y′ > y.

12


	Cost minimization
	Marginal products and partial derivatives
	Isoquants and their slopes
	Cost-minimizing input bundle
	Derivation of the cost function
	Returns to scale
	Exercises

