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To apply the decision-theoretic techniques introduced in previous chapters to game theory, we start

with zero sum games, which we can solve as if it were a consumer optimization problem.

1 Strategies and payoffs

A zero-sum game involves two players such that one player’s payoff is equal to the negative of the

other player’s payoff (hence the appellation “zero sum”). For example, consider this matrix:

L R

X 2 0

Y -1 3

This matrix describes a zero-sum game between two players, one choosing a row (X or Y ), the other

choosing a column (L or R). The number in the matrix is the payoff for the row player, and the

negative of the number the payoff for the column player, if they choose the row and column whose

intersection is the number. For instance, if the row player chooses Y , and the column player L,

then the row player’s payoff is equal to −1, and the column player’s payoff, 1. If the row player

switches to X and the column player sticks to L, then the former gets payoff 2 and the latter −2.

The rows, X and Y in this game, are called pure strategies, or strategies for short, of the row player.

Likewise, L and R are the (pure) strategies of the column player.

Note, from a player’s perspective, choosing a strategy amounts to choosing a vector of payoffs.

For example, the strategy Y to the row player is equivalent to the vector (−1, 3), meaning that

the player gets payoff −1 if his opponent plays L, and gets 3 if the opponent plays R. Namely,

strategy Y corresponds to a vector of contingent payoffs (cf. §4, Chapter 4) for the row player,

contingent on which strategy the column player is to choose.

For any two vectors (v1, v2) and (w1, w2), a convex combination between them means

λ(v1, v2) + (1− λ)(w1, w2) = (λv1 + (1− λ)w1, λv2 + (1− λ)w2)

for some λ ∈ [0, 1]. Geometrically speaking, a convex combination between two points is a point

that belongs to the straight segment between the two points. The set of convex combination is

exactly the straight segment. In general, a convex combination among n vectors X1, X2, . . . , Xn is

in the form of

λ1X1 + λ2X2 + · · ·+ λnXn

for some nonnegative real numbers λ1, λ2, . . . , λn such that λ1 + λ2 + . . .+ λn = 1.

The set of convex combination among any finitely many vectors X1, X2, . . . , Xn is called

convex hull of X1, X2, . . . , Xn. In the case where these vectors are all two-vectors (elements of R2),

which is the case that concerns us in this chapter, it is easy to draw the convex hull: first, draw

the vectors X1, X2, . . . , Xn as points on the plane; second, for any pair of these vectors, draw the
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straight segment between them; third, you see that some of such segments form a polygon that

contains all the segments drawn in the previous step. This polygon, boundary and interior included,

is the convex hull of vectors X1, X2, . . . , Xn. See Figure 1 for example.

v1

v2

X1

X2

X3

X4

Figure 1: The shaded area is the convex hull of X1, X2, X3, X4

A convex combination among strategies is called mixed strategy . In the above payoff matrix,

for example, 1
4X + 3

4Y is a mixed strategy, meaning that the row player chooses X with proba-

bility 1/4, and Y with probability 3/4. In terms of the contingent payoff vectors that the pure

strategies correspond to, this mixed strategy is
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In other words, the mixed strategy 1
4X+ 3

4Y , from the row player’s standpoint, amounts to getting

an expected payoff equal to −1/4 in the event of the opponent playing L, and an expected payoff 9/4

in the event of R. By expected payoff we mean the expected value of a player’s payoff from a lottery

(cf. §4, Chapter 4). In the above example, −1/4 is the expected payoff from the lottery of getting

payoff 2 with probability 1/4, and getting payoff −1 with probability 3/4; and this is the lottery

that the row player gets when he plays the mixed strategy 1
4X + 3

4Y while his opponent plays L.

Note that a pure strategy is also a mixed strategy, with the probability for the pure strategy

equal to one, and the probabilities for other pure strategies equal to zero. (That is, in Figure 1,

each of the four vectors X1, X2, X3, X4 is an element of the shaded area.)

2 A zero-sum game as consumer optimization

As we have seen previously, in choosing a strategy a player is essentially choosing a vector of

contingent payoffs, say (vL, vR). That is analogous to the consumer in our earlier chapters who

is choosing a vector of consumptions, (x1, x2). There, a component say x1 of the vector means
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the quantity of good 1 the consumer is to get. Here, a component say vL of the vector means the

expected payoff the (row) player is to get in the event where his opponent plays L. Thus, we can

figure out a player’s decision as if he were a consumer choosing among consumption bundles, with

consumption bundles corresponding to his contingent payoff vectors, and budget set corresponding

to the convex hull generated by this player’s pure strategies.

A quick way to grasp this technique is to walk through the following steps with respect to

the game in Section 1:

1. Set up a coordinate system with the horizontal axis labeled uL and vertical axis uR.

2. Plot the point (2, 0) in the coordinate system. This point represents the contingent payoff

vector

(u(X,L), u(X,R))

for the row player when she plays the pure strategy X. Label the point (2, 0) by X.

3. Analogously, plot the point (u(Y,L), u(Y,R)) (i.e., (−1, 3)) in the diagram and label it by Y .

4. Draw the convex hull, or the set of all the convex combinations, generated by the points X

and Y in the diagram. This set is the row player’s budget set : As a consumer’s budget

set consists of all the available consumption bundles, here the set of convex combinations

between X and Y consists of all the contingent payoff vectors available to the row player: he

has only two pure strategies, X and Y , and he can mix them in whatever way he sees fit.

5. Suppose the row player assumes that, whichever strategy he plays, his payoff will be the worst

possible one given his strategy, e.g., if he plays X, he assumes that the column player plays R

so that his payoff equals zero. In other words, suppose that his preference is represented by

the utility function

V (uL, uR) = min {uL, uR} (1)

for all (uL, uR) ∈ R2. Then draw in the diagram the row player’s indifference map, which

we know from earlier chapters consists of L-shape curves whose corners all belong to the

45-degree line passing through the origin.

6. Combining the indifference map and the budget set obtained above, and using the basic

principle of consumer optimization in previous chapters, we easily find all the optima for the

“consumer.” Here there is a unique optimum, which is the intersection between the 45-degree

line and the segment between X and Y . Label in the diagram the optimum for the row player.

7. Calculate the coordinates of the optimum as follows:

a. Note that it is a convex combination between X and Y . Hence suppose it is λX+(1−λ)Y

for some λ between zero and one. Correspondingly, the coordinate of this optimum is

(λu(X,L) + (1− λ)u(Y,L), λu(X,R) + (1− λ)u(Y,R)) ,

i.e., (2λ− (1− λ), 3(1− λ))
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b. Note that the optimum lies on the 45-degree line, hence

2λ− (1− λ) = 3(1− λ),

i.e., λ = 2/3.

c. Thus the row player attains his optimum through mixing X and Y in the portion of 2/3

for X and 1/3 for Y , or 2
3X + 1

3Y for short. In other words, given the utility func-

tion (1), the row player’s optimal strategy is to play X with probability 2/3 and Y with

probability 1/3.

8. Then in the diagram the row player’s optimum is (2(2/3)− 1/3, 3(1/3)), i.e., (1, 1). In other

words, through playing the mixed strategy 2
3X + 1

3Y , the row player can guarantee that his

expected payoff is no less than one no matter what the column player chooses.

In general, if (u∗L, u
∗
R) is the row player’s optimum, then at this optimum the row player’s

utility according to (1),

V (u∗L, u
∗
R) = min{u∗L, u∗R},

is called the row player’s security level . Any mixed strategy that attains the security level is

his security strategy .

In the game that we have just gone through, it turns out that u∗L = u∗R = 1, so his security

level min{1, 1} is equal to one; and his security strategy is 2
3X + 1

3Y .

Note that the row player’s utility function (1) assesses any contingent payoff vector according

to the worst-case scenario of the vector. Thus, the optimum obtained through the above procedure

corresponds to the best for the player among worst-case scenarios. In other words, in playing a

security strategy, the player secures an expected payoff no lower than his security level .

3 What about the column player?

We can find the column player’s security strategies and security level by the following steps analo-

gous to those in the previous section:

1. Set up another diagram with the horizontal axis labeled −uX and vertical axis −uY .

2. Plot on the diagram the point (−u(X,L),−u(Y,L)), i.e., (−2, 1), and label it with L. This

point represents the contingent payoff vector for the column player when she plays the pure

strategy L. (Recall that the game is zero-sum. Thus be sure to switch the sign of the payoffs

in the matrix to register payoffs for the column player.)

3. Analogously, plot the point (−u(X,R),−u(Y,R)), namely, (0,−3)—again do not forget to

switch the sign from the payoff matrix—and label it by R.

4. Plot the set of all the convex combinations between the points L and R in the diagram. This

set is the column player’s budget set.
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5. Suppose the column player assumes that, whichever strategy she plays, her payoff will be

the worst possible one given her strategy, e.g., if she plays L, she assumes that the row

player plays X so that her payoff equals −2. Then draw in the diagram the column player’s

indifference map.

6. Plot in the diagram the optimum for the column player. This is her contingent payoff vector

generated by her security strategy.

7. Calculate the security strategy:

a. Suppose it is αL + (1 − α)R for some α between zero and one. Correspondingly, the

coordinate of this optimum is

αL+ (1− α)R = α

[
−2

1

]
+ (1− α)

[
0

−3

]
=

[
−2α

α− 3 + 3α

]
=

[
−2α

4α− 3

]

b. Note that the optimum lies on the 45-degree line, hence −2α = 4α− 3, i.e., α = 1/2.

c. Then you obtain the column player’s security strategy: 1
2L + 1

2R, namely, playing L

and R randomly with equal probabilities. The value of α obtained above also gives the

coordinate of the column player’s optimum in the diagram: (−2(1/2), 4(1/2) − 3), i.e.,

(−1,−1). From the coordinate you can tell that the column player’s security level, i.e.,

his lowest possible expected payoff from playing his security strategy, is equal to −1.

8. Recall from the previous section that the security level for the row player in this game is equal

to one. Thus, in this game, each player’s security level is equal to the negative of the other’s.

4 The Minimax Theorem

The observation in Step 8 of the previous section has a profound implication. Recall from the

previous sections that we obtain a player’s security strategy based on the assumption that he

assesses his choices according to their worst-case scenarios, as in (1). Thus one would ask Would he

still find it optimal to play his security strategy if he is less pessimistic or paranoid? The answer is

Yes if his security level is equal to the negative of his opponent’s (as in the game analyzed above)

and if he expects his opponent to play her security strategy. Let us illustrate that with the numbers

in the previous game. Expecting the column player to play her security strategy, which guarantees

her an expected payoff no less than her security level −1, the row player knows that his expected

payoff cannot go higher than his security level 1 (because the game is zero-sum). Thus, whatever

strategy that gives him an expected payoff no less than one is the best he can do. And his security

strategy does exactly that. Hence the player’s best response to his opponent’s security strategy is

to play his own security strategy, whether he is paranoid or not.

Now switch the table to the column player. The same reasoning in the previous paragraph

applies to her as well. Thus the column player would play her security strategy even if she does not

assess her options according to their worst-case scenarios, as long as she expects her opponent to

play his security strategy. Furthermore, according to the reasoning in the previous paragraph, the

column player can expect her opponent to play his security strategy without having to believe that
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her opponent assess his options according to their worst-case scenarios: she needs only to believe

that her opponent believes that she—the column player—will play her security strategy! In other

words, playing security strategies against each other is a self-fulfilling prophesy in a zero-sum game.

Note that the above reasoning uses a condition that the two players’ security levels are the

negative of each other. While this is true in the game analyzed above (cf. Step 8, previous section),

is this condition true in general? The answer is Yes for all zero-sum games. That is the celebrated

Minimax Theorem due to von Neumann: The security level of the column player is equal to the

negative of the security level of the row player . This theorem gives us a trick to obtain column

player’s security strategy much quicker than the steps in the previous section:

1. By Step 8 in Section 2, we already know that the security level for the row player is equal to

one, hence the security level for the column player is equal to −1 by the minimax theorem.

2. Let the security strategy for the column player be αL + (1 − α)R for some α between zero

and one. Then the contingent payoff vector for the column player is equal to

α (−2, 1) + (1− α) (0,−3) = (−2α, α− 3(1− α)) .

3. Since column player’s security level is equal to −1, it follows that

min {−2α, α− 3(1− α} = −1. (2)

4. Solve the above equation and we get α = 1/2.1 Hence the column player’s security strategy

is 1
2L+ 1

2R.

5 Saddle points and the value of a game

A saddle point of any zero-sum game means a pair of security strategies, one for each player. For

example, in the game analyzed above, the pair
(
2
3X + 1

3Y,
1
2L+ 1

2R
)

is a saddle point.

By the first two paragraphs of Section 4, a saddle point of a zero sum game is an equilibrium

in the following sense. Say (σ1, σ2) is a saddle point, with σ1 denoting a mixed strategy of the row

player, and σ2 that of the column player. Then the row player cannot do better than σ1 as long as

the column player sticks to σ2, and neither can the column player do better than σ2 as long as the

former sticks to σ1. Note that the worst-case-scenario preference assumption we made in Step 5 of

Sections 2 and 3 is not needed at all to the equilibrium property of saddle points. Rather, it is just

a solution technique that is valid due to the minimax theorem.

A zero sum game may have multiple saddle points. However, the security level is unique for

a player regardless of which security strategy he chooses. This unique security level for the row

player is called the value of the game. Note, by the minimax theorem, that the negative of the

value of the game is equal to the security level of the column player.

1Details: Eq. (2) is the same as saying that either −2α = −1 ≥ α−3(1−α), or α−3(1−α) = −1 ≥ −2α. Each of

the two cases corresponds to a system of simultaneous equations/inequalities. Solve each system. If a system yields

no solution, the corresponding case is impossible. Else the solution for that system is a solution for (2). See Section 6

for more on solving such “minimum” equations.
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To clarify the fact that a player may have multiple security strategies while his security

level is always unique, look at Figure 2. There the row player has two pure strategies and their

corresponding contingent payoff vectors have the same vertical coordinate. Thus his budget set is

the horizontal segment XY in the figure. This coupled with his L-shape indifference curves implies

that the part of XY that coincides with a leg of an L-shape curve is the set of optima for the player.

That part is the thick segment in the figure. Note that there is a continuum of optima, namely, the

row player has a continuum of security strategies. Nevertheless, all these security strategies yield

the same security level: for any point in the thick segment in Figure 2, the minimum (recalling

the definition of security level) between its coordinate is equal to the vertical coordinate of X (and

that of Y ).

uL

uR

X Y

Figure 2: The solid segment XY : the budget set; the thick segment: the optima

Specifically, Figure 2 corresponds to the following game.

L R

X -3 1

Y 5 1

It is instructional to walk through the following steps with this game (cf. Exercise 2).

1. Use the method illustrated above to calculate the security strategies for the row player. Note

that there are multiple security strategies in this case. For each security strategy, calculate

the row player’s security level. Are these security levels equal to one another?

2. Calculate the column player’s security strategy. Note that there is only one security strategy

in this case. What is the column player’s security level?

6 Generalizing to n× 2 Zero-Sum Games

So far we have been considering only 2-by-2 zero sum games, meaning that each player has only

two pure strategies. The method sketched above applies generally to n-by-m zero sum games, with

row player having n pure strategies, column player m pure strategies, for any natural numbers n

and m. However, to use the method on two-dimensional diagrams, we shall restrict attention to

only n-by-2 zero sum games, where at least one of the two players has only two pure strategies.

It turns out that our solution technique for n-by-2 zero sum games is essentially the same as

that for 2-by-2 ones. Let us illustrate this with the next 3-by-2 zero-sum game.
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t1 t2

s1 −2 0

s2 3 −1

s3 −3 1

Following the graphical method illustrated in Section 2, you will see that the row player’s

budget set is the shaded area in Figure 3, and his optimum corresponds to the thick dot O in

the figure, which is the unique point where the budget set shares with the highest possible L-

shape indifference curve (the thick dashed L-shape in the figure).2 To find out the row player’s

ut1

ut2

O

−3
3

1

−1

s1

s3

s2

Figure 3: A 3-by-2 game

security strategy, note that the optimum O belongs to the segment between s2 and s3. That is, the

row player’s optimum corresponds to a convex combination between s2 and s3. Thus his security

strategy is in the form of

λs2 + (1− λ)s3 = λ

[
3

−1

]
+ (1− λ)

[
−3

1

]
=

[
6λ− 3

−2λ+ 1

]

for some λ ∈ [0, 1]. Since point O belongs to the 45-degree line, we have

6λ− 3 = −2λ+ 1,

namely, λ = 1/2. Thus, the row player’s security strategy is 1
2s2 + 1

2s3, and his security level is

min {6λ− 3,−2λ+ 1}|λ=1/2 = min{6(1/2)− 3,−2(1/2) + 1} = 0.

Thus, it follows from the minimax theorem that the column player’s security level is equal to

zero. Since she has only two pure strategies, t1 and t2, her security strategy is in the form of

αt1 + (1− α)t2
!

= α

 2

−3

3

+ (1− α)

 0

1

−1

 =

 2α

−3α+ 1− α
3α− 1 + α

 =

 2α

−4α+ 1

4α− 1


2You may have guessed from Figure 3 that the point O is the origin, (0, 0), of the diagram. But do not assume so

yet, as drawing by hand could be imprecise. If the guess is correct it will turn out as an outcome of the calculation.
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for some α ∈ [0, 1], where the “!” on the first equality is just to remind you of switching the signs

for the column player’s payoffs. Recall that we have deduced that the column player’s security level

is zero. By definition of security level we have

min {2α,−4α+ 1, 4α− 1} = 0.

This equation is the same as saying that there are only three possible cases:

i. 2α = 0 and −4α + 1 ≥ 0 and 4α − 1 ≥ 0: this is impossible because it implies α = 0 and

hence 1 ≥ 0 and −1 ≥ 0.

ii. −4α + 1 = 0 and 2α ≥ 0 and 4α − 1 ≥ 0. This is reduced to α = 1/4 (consistent with the

inequalities: 2(1/4) ≥ 0 and 4(1/4)− 1 ≥ 0).

iii. 4α− 1 = 0 and 2α ≥ 0 and −4α+ 1 ≥ 0: same as Case (ii).

Thus, there is exactly one solution for the above equation: α = 1/4. That is, the column player’s

security strategy is 1
4 t1 + 3

4 t2.
3 Both players’ security strategies and security levels pinned down,

we have hence solved the game. (The value of the game is equal to zero, because the security level

for the row player is zero according to our previous calculation.)

Finally, what about 2-by-n zero-sum games such as the following one?

Table 1: A 2-by-4 zero sum game

t1 t2 t3 t4

s1 −2 0 4 −5

s2 3 -1 -2.5 −7

To handle them we need only one little trick: just transpose the payoff matrix such that there are

only two rows. That is, simply rewrite the game from the column player’s viewpoint:

s1 s2

t1 2 −3

t2 0 1

t3 −4 2.5

t4 5 7

Note that the the payoffs have each switched signs. Then use the previous technique to solve this

transposed game (cf. Exercise 4).

7 Exercises

1. Consider the zero-sum game described by the following payoff matrix:

3Why do you think we use the minimax theorem rather than the procedures in Section 3 to find this strategy?
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L R

X 1 -2

Y -3 2

a. The column player’s payoff is equal to if she plays R and the row player plays X.

b. When the row player plays the mixed strategy (1/3)X + (2/3)Y , his expected payoff is

equal to if the column player plays L, and his expected payoff is equal to

if the column player plays R.

c. On a diagram where the horizontal axis stands for the row player’s expected payoff if

the column player plays L, and the vertical axis the expected payoff if the column player

plays R, draw the “budget set” for the row player. Be explicit about the coordinates of

the boundary points of the budget set.

d. The column player’s expected payoff from playing strategy L is equal to when

the row player plays (1/3)X + (2/3)Y .

2. Consider the zero-sum game in Section 5 and complete the two steps listed thereof. (For the

row player, follow the steps in Section 2, but note, differently from the example there, the

multiplicity of optima. For the column player, either follow the steps in Section 3, or the

quicker method in Section 4.)

3. Consider the zero-sum game described by the following payoff matrix:

L R

X 3 -2

Y 0 2

Z -3 1

a. On a diagram with uL being the horizontal axis and uR the vertical axis, graph the row

player’s choice set (shade it with dashed lines) and indifference map (assume that the

player evaluates a strategy by its worst-case scenario). Label the row player’s optimal

contingent payoff vector by the symbol ∗.
b. Row player’s security strategy is of the form

i. λX + (1− λ)Y for some λ between 0 and 1.

ii. λY + (1− λ)Z for some λ between 0 and 1.

iii. λX + (1− λ)Z for some λ between 0 and 1.

iv. αX + βY + γZ for some α and β such that 0 < α < 1 and 0 < β < 1 and

0 < 1− α− β < 1.

c. Row player’s security strategy is equal to , and his security level equal to

.

d. Given the row player’s security level derived above, use the minimax theorem to do:

i. the column player’s security level is equal to

ii. the lowest possible expected payoff for the column player, if she plays her security

strategy, is equal to .
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iii. the column player’s security strategy is equal to .

4. Use the technique in Section 6 to solve the 2-by-4 zero sum game in Table 1. That is, calculate

the security level and all security strategies for each player, and the value of the game.
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