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1 Quantitative comparative statics

All the decision problems studied in this course are special cases of the following form:

Φ(t) := max
x∈X(t)

ϕ(x, t), (1)

where ϕ(x, t) denotes the objective, x the choice variable, t the parameter, X(t) the choice set from

which x has to be chosen, and Φ(t) the maximand, the maximum value of the objective among all x

given parameter t. For example, in a firm’s output quantity decision studied in Chapter 1, ϕ(x, t)

corresponds to the firm’s profit, with x being the output quantity, t the output price, and X(t)

the set R+ of output quantities. (In this example, the choice set X(t) is independent of the

parameter t.) For another example, in a consumer’s decision (Chapters 6–9), ϕ(x, t) corresponds to

the consumer’s utility function, x the consumption bundle (x1, x2), t the configuration (p1, p2,m)

of prices and income, and X(t) the budget set {(x1, x2) ∈ R2
+ : p1x1 +p2x2 ≤ m}. (In this example,

the choice set X(t) does depend on the parameter t.)

Previous chapters have explained techniques of directional comparative statics on various

cases of the decision problem (1), “directional” in the sense of giving a directional answer to the

question whether the optimal choice of x increases or decreases given a change in the parameter.

This chapter, to offer a general perspective of previous chapters and to end this course with a

glimpse of modern microeconomics, introduces a technique for quantitative comparative statics,

“quantitative” in the sense of giving a quantitative answer to the question how much the maxi-

mand Φ(t) changes given a change in the parameter t. That is,

d

dt
Φ(t) =? (2)

The technique to answer this question is the modern envelope theorem, modern in the sense that

it does not rely on much about the optimal choice of x, and that the technique is applicable not

only to the decision problems studied here but also to the economics of incentives and information.

2 The envelope theorem when X(t) is constant to t

To answer Question (2), look at Figure 1. There, regardless of the value of the paramter t, the

choice set X(t) consists of three elements, x′, x′′ and x′′′. Comparing the vertical positions of

ϕ(x′, t), ϕ(x′′, t) and ϕ(x′′′, t) at each value of t, we see that the optimal x is x′ when t ∈ [0, t∗), x
′′

when t ∈ (t∗, t
∗), and x′′′ when t > t∗. Thus, if we denote x̃(t) for the element in the choice set

that maximizes the objective when the parameter is equal to t, then

x̃(t) =


x′ if t < t∗
x′′ if t∗ < t < t∗

x′′′ if t > t∗.
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That is, the thickly drawn curve in Figure 1 is the graph of the maximand Φ. Note that the curve

of Φ coincides with the curve of ϕ(x′, t) when x′ is the optimum, coincides with the curve of ϕ(x′′, t)

when x′′ is the optimum, and coincides with the curve of ϕ(x′′′, t) when x′′′ is the optimum. In other

words, at any value of t except t∗ or t∗, the slope of the curve of Φ is equal to the slope of the curve

of ϕ(x, t) such that x is the optimum x̃(t) at the particular value of t. Since the slope of the curve

t
ϕ(x′, t)

ϕ(x′, t)

ϕ(x′′, t)

ϕ(x′′′, t)

ϕ(x′′, t)

ϕ(x′′′, t)

t∗ t∗0

Figure 1: The envelope theorem

of Φ at t is equal to d
dtΦ(t), and the slope of the curve of ϕ(x, t) is equal to the partial derivative

∂
∂tϕ(x, t), we have d

dtΦ(t) = ∂
∂tϕ(x, t). Keep in mind that this x is not an arbitrary element of the

choice set, but the optimal choice x̃(t) given t. Thus we obtain the answer to Question (2):

d

dt
Φ(t)

a.e.
=

∂

∂t
ϕ(x, t)

∣∣∣∣
x=x̃(t)

. (3)

Here the notation
a.e.
= reads “almost everywhere equal to,” meaning that the equation holds for all

values of t but a set of measure zero, measure zero in the sense that if one were blindfolded while

putting a finger of his on the axis for t, there is zero chance for the finger to land on a t that violates

the equation. That is, the equation is true with probability one. In Figure 1, for example, Eq. (3)

holds unless t is t∗ or t∗, but if one were to randomly select a point in the real line, the chance

for t∗ or t∗ to be selected is zero. One might think that such measure zero property relies on the

assumption that we have only finitely many elements in the choice set. But No! It turns out that

Eq. (3) holds not only when the choice set is finite but also when it is infinite, and not only when

the choice set is countable but also when it is uncountable. The proof of Eq. (3), i.e., the envelope

theorem, beyond the scope of this course, is provided by Milgrom and Segel [1].

To illustrate the envelope theorem, recall a firm’s input-output decision studied in Chapter 2,

π(w) := max
(x,y)∈R2

+:y≤f(x)
py − wx,

and suppose that we want to know the effect of the parameter w (hence denoting the maximand

profit as a function π(w) of w). That is, the symbol w corresponds to t in (1), and the choice

variable (x, y) here corresponds to the x in (1). Note that the choice set {(x, y) ∈ R2
+ : y ≤ f(x)} is

independent of this parameter w, hence Eq. (3) applies. Take the partial derivative of the objective

py − wx with respect to this parameter w to obtain

∂

∂w
(py − wx) = −x.
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Thus, by Eq. (3), if the firm is employing x̃(w) units of the input when the input price is w, then

d

dw
π(w)

a.e.
= −x̃(w). (4)

To appreciate this equation, imagine a firm in the states that produces cookware with steel imported

from China. The Trump administration’s trade war with China, through raising the tariff of the

steel import from China, increases the input price w for this firm. If the firm is currently employing,

in a profit-maximizing manner, x̃ units of Chinese steel, the firm in lobbying against the trade war

could have provided a quantitatively specific argument by pointing to Eq. (4) and saying: “The

trade war is reducing my firm’s profit by about x̃ dollars for each dollar increase in the tariff

against Chinese steel.” The beauty of this argument is that it remains valid regardless of how the

other parameter, the output price p, might be changing and how the firm might be adjusting its

production in this process, as long as the firm is maximizing its profits.

3 When the choice set depends on the parameter

For the envelope theorem to be valid when the choice set X(t) depends on the parameter t, we need

more stringent conditions. Here is a case where the theorem still works. It is the case where the

Lagrange method, partially explained in Chapter 4, is valid: Suppose that the decision problem (1)

is equivalent to

V (t) := maxx∈Rm u(x, t)

s.t. g1(x, t) ≥ 0,

...

gn(x, t) ≥ 0,

and that the Lagrange method is applicable so that the original problem can be viewed as finding

a saddle point (x̃, λ̃) such that x̃ maximizes the Lagrangian

L(x, λ1, . . . , λn, t) := u(x, t) +
n∑
k=1

λkgk(x, t)

among x ∈ Rm given λ̃ := (λ̃1, . . . , λ̃n), and λ̃ minimizes the Lagrangian among (λ1, . . . , λn) ∈
Rn+ given x̃.1 Thus, the role of the objective ϕ(x, t) in (1) is played by the Lagrangian here,

with the choice variable x in (1) corresponding to the x here in maximizing the Lagrangian, and

corresponding to λ here in minimizing it. Now the choice set becomes Rm for x and Rn+ for λ,

constant to the parameter t, so we are back to the previous section. Furthermore, the maximand of

L(x, λ̃, t) among all x is equal to the maximand V (t) of u(x, t) among all x, because the condition

for λ̃ requires that λ̃gk(x̃, t) = 0 for all k at the solution for (x, λ1, . . . , λn) (c.f. Chapter 4), rendering

the Lagrangian equal to the original objective u(x, t). Thus, if we denote
(
x̃(t), λ̃(t)

)
for the solution

given any value t of the parameter, then Eq. (3) becomes

d

dt
V (t)

a.e.
=

∂

∂t
L(x, λ1, . . . , λn, t)

∣∣∣∣
x=x̃(t);λk=λ̃k(t):k=1,...,n

. (5)

1 The notion of saddle point, and the condition under which the original problem becomes a saddle point problem,

are beyond the scope of this course.
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To illustrate (5), consider a consumer’s decision studied in Chapters 6–9 such that his pref-

erence relation is smooth and monotone, exhibits diminishing MRS, and is represented by a differ-

entiable utility function u(x1, x2) for any nonnegative consumption bundle (x1, x2), with prices p1
and p2 for the two goods and income m being positive parameters. Then as explained in Chap-

ters 6–7 the Lagrange method with equality constraints applies, with the Lagrangian

L(x1, x2, λ, p1, p2,m) := u(x1, x2) + λ (p1x1 + p2x2 −m) . (6)

Suppose that we are interested in the effect of income m. Take the partial derivative of the

Lagrangian with respect to m to obtain

∂

∂m
L(x1, x2, λ, p1, p2,m) = −λ.

Then Eq. (5) implies
∂

∂m
V (p1, p2,m)

a.e.
= −λ̃(p1, p2,m). (7)

The question is What is the solution λ̃(p1, p2,m) for λ equal to? The answer one can find by

recalling one of the first-order conditions for maximizing the Lagrangian:

∂

∂x1
L =

∂

∂x1
u(x1, x2) + λp1 = 0

when (x1, x2) = x̃(p1, p2,m) and λ = λ̃(p1, p2,m). Solve the above equation for λ to obtain

λ̃(p1, p2,m) = − 1

p1

∂

∂x1
u(x1, x2)

∣∣∣∣
(x1,x2)=x̃(p1,p2,m)

. (8)

Plug this into Eq. (7) to get

∂

∂m
V (p1, p2,m)

a.e.
=

1

p1

∂

∂x1
u(x1, x2)

∣∣∣∣
(x1,x2)=x̃(p1,p2,m)

. (9)

What about the effect of the price p1 of good 1? To answer that, note from (6) that

∂

∂p1
L(x1, x2, λ, p1, p2,m) = λx1.

Thus Eq. (5) implies

∂

∂p1
V (p1, p2,m)

a.e.
= λ̃(p1, p2,m)x̃1(p1, p2,m)

= − x̃1(p1, p2,m)

p1

∂

∂x1
u(x1, x2)

∣∣∣∣
(x1,x2)=x̃(p1,p2,m)

, (10)

with the second line due to (8).

To appreciate (9) and (10), imagine a consumer working for a steel factory in the states. The

Trumpian trade war, raising the price of imported steel, has recovered the steel factory thereby

improving the employment opportunity for this consumer, giving him an additional income ∆m.

Thus, according to (9), the consumer’s welfare improves by about

∆m

p1

∂

∂x1
u(x1, x2)

∣∣∣∣
(x1,x2)=x̃(p1,p2,m)

.
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On the other hand, the tariff hike against Chinese imports has pumped up the price p1 for con-

sumption goods, in the category labeled as good 1, including all sorts of previously cheap daily

needed stuff such as clothing, toys, electronics, and smartphones aka attention-span-collapsing

autonomy-foregoing drugs. Say the average price for such consumption goods jumps up by ∆p1.

Then according to (10) the consumer’s welfare worsens by about

∆p1 ·
x̃1(p1, p2,m)

p1

∂

∂x1
u(x1, x2)

∣∣∣∣
(x1,x2)=x̃(p1,p2,m)

.

In sum, this consumer’s net gain from Trump’s trade war is approximately equal to

(∆m−∆p1 · x̃1(p1, p2,m))
1

p1

∂

∂x1
u(x1, x2)

∣∣∣∣
(x1,x2)=x̃(p1,p2,m)

.

Since the second factor, 1
p1

∂
∂x1

u(x1, x2)
∣∣∣
(x1,x2)=x̃(p1,p2,m)

, is positive (as it is the marginal utility of

good 1 divided by the price), whether the consumer benefits or suffers from the trade war boils

down to whether the first factor ∆m − ∆p1 · x̃1(p1, p2,m) is positive or negative. Even if the

boost of his income, ∆m, may be substantial because he works for a factory that the trade war is

meant to protect, if the consumer is a frequenter of Walmart for the consumption goods, that is, if

x̃1(p1, p2,m) is large, chances are that ∆m−∆p1 · x̃1(p1, p2,m) could be negative and so he could

still be hurt by the trade war. The beauty of this calculation is that it does not require any specific

information about the consumer’s utility function u, nor much about how he is re-budgeting among

the goods given the price and income changes due to the trade war. Isn’t that amazing?

4 Exercises

1. Consider the input deployment problem, defined by Eq. (10) in Chapter 3, with production

function f(x1, x2) := x31x
1/2
2 for all nonnegative input bundles (x1, x2) and positive param-

eters w1, w2 and y, representing the prices for inputs 1 and 2, and the output quantity to

be delivered. Denote C(w1, w2, y) for the left-hand side of Eq. (10) in Chapter 3, i.e., the

minimum cost of delivering y given input prices (w1, w2).

a. Write down the choice set of this decision problem. Is it constant to the parameter w1?

b. Rewrite this decision problem in the format such that the min operator on the objective

is replaced by the max operator.

c. Calculate the partial derivative of the objective in the rewritten problem in Step (b)

with respect to w1.

d. Suppose, given the parameters (w1, w2, y), that the firm’s optimal input bundle is

(x̃1(w1, w2, y), x̃2(w1, w2, y)) .

Combine this with Step (c) and Eq. (3) to obtain ∂
∂w1

C(w1, w2, y).

e. Suppose that w1 = 48, w2 = 2 and y = 256. Then:

i. Calculate the input quantity x̃1(w1, w2, y) when w1 = 48, w2 = 2 and y = 256.

5



ii. Plug the result in (e.i) into that in (d) to obtain ∂
∂w1

C(w1, w2, y) when w1 = 48,

w2 = 2 and y = 256. By approximately how much does the firm’s cost C(w1, w2, y)

increase if the input price w1 increases by a small quantity ∆w1?

2. Consider the same decision problem in the above exercise problem.

a. Is the choice set constant to the parameter y?

b. Explain why the Lagrange method with equality constraints is applicable to this problem.

c. Write down the Lagrangian of this problem based on the rewritten format obtained in

Step (b) of the previous exercise problem.

d. Calculate the partial derivative of the Lagrangian with respect to y.

e. Suppose, given the parameters (w1, w2, y), that the solution for the (x1, x2, λ) in the

first-order conditions according to the Lagrange method is(
x̃1(w1, w2, y), x̃2(w1, w2, y), λ̃(w1, w2, y)

)
.

Combine this with Step (d) and Eq. (5), with the role of V (t) there played by−C(w1, w2, y)

here, to obtain ∂
∂yC(w1, w2, y).

f. Suppose that w1 = 48, w2 = 2 and y = 256. Then:

i. Solve for (x1, x2, λ) through the first-order conditions in the Lagrange method.

ii. Plug the result in (f.i) into that in (e) to obtain ∂
∂yC(w1, w2, y)—the marginal cost

according to the terminology in Chapter 1—when w1 = 48, w2 = 2 and y = 256.

3. Different from the modern envelope theorem introduced here, the “envelope theorem” in most

textbooks requires the assumptions (A) that both the maximand Φ(t) and the optimum x̃(t)

are differentiable functions of the parameter t, (B) that the objective ϕ(x, t) is a differentiable

function of both x and t, and (C) that the optimum x̃(t) satisfies the first-order condition

∂

∂x
ϕ(x, t)

∣∣∣∣
x=x̃(t)

= 0.

a. Note that Φ(t) = ϕ (x̃(t), t).

b. Given the above-listed assumptions, explain why

d

dt
Φ(t) =

(
∂

∂x
ϕ(x, t)

∣∣∣∣
x=x̃(t)

)
d

dt
x̃(t) +

∂

∂t
ϕ(x, t)

∣∣∣∣
x=x̃(t)

=
∂

∂t
ϕ(x, t)

∣∣∣∣
x=x̃(t)

.

c. Does Figure 1 satisfy Assumption (A)? Is Assumption (C) warranted in general?

References

[1] Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. Econometrica,

70(2):583–601, March 2002. 2

6


	Quantitative comparative statics
	The envelope theorem when X(t) is constant to t
	When the choice set depends on the parameter
	Exercises

