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1 Constrained optimization with equality constraints

In Chapters 2 and 3 we have seen two instances of constrained optimization and learned to solve

each by exploiting its simple structure, with only one constraint and two dimensions of the choice

variable. In general, however, there may be many constraints and many dimensions to choose.

We need a method general enough to be applicable to arbitrarily many constraints and choice

dimensions, and systematic enough for machines to be programed to carry out the computation.

That is the Lagrange method.

This course focuses on constrained optimization problems of the following form:

max
(x1,...,xn)∈S

u(x1, . . . , xn) (1)

subject to g1(x1, . . . , xn) = 0,

...

gm(x1, . . . , xn) = 0,

where the domain S for the choice variable is assumed open in the sense that it contains no boundary

points with respect to the space of all n-vectors. (For example, when n = 1, the entire set R of real

numbers is open, whereas the set R+ of nonnegative real numbers is not, as the latter contains the

boundary point zero.) Here the choice variable (x1, . . . , xn) has n dimensions and is subject to m

constraints, each in the form of an equation gk(x1, . . . , xn) = 0. For example, the problem

min
(x1,x2)∈S

w1x1 + w2x2 (2)

subject to f(x1, x2) = y

is equivalent to a problem in the form of (1):

max
(x1,x2)∈S

− (w1x1 + w2x2) (3)

subject to f(x1, x2)− y = 0,

with n = 2, m = 1, u(x1, x2) = − (w1x1 + w2x2) and g1(x1, x2) = f(x1, x2)− y.

2 The procedure

The Lagrange method to solve Problem (1) proceeds in three steps. First, write down the La-

grangian, a function defined by

L(x1, . . . , xn;λ1, . . . , λm) := u(x1, . . . , xn) +
m∑
k=1

λkgk(x1, . . . , xn) (4)
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for any n-vector (x1, . . . , xn) and m-vector (λ1, . . . , λm). Recall from basic math the summation

notation
∑m

k=1; for example,
∑m

k=1 ak is just the shorthand for a1 + . . . + am. Note from Eq. (4)

that we form the Lagrangian by summing the objective u with all the constraint functions g1, ...,

and gm, multiplied respectively by the coefficient λ1, ..., and λm. For each k, the coefficient λk
for gk is called Lagrange multiplier for the kth constraint.

Second, write down the first-order condition for the Lagrangian to attain its local maximum.

In other words, calculate all the partial derivatives of the Lagrangian and set each of them to zero:

∂

∂xi
L =

∂

∂xi
u(x1, . . . , xn) +

m∑
k=1

λk
∂

∂xi
gk(x1, . . . , xn) = 0 for all i = 1, . . . , n; (5)

∂

∂λk
L = gk(x1, . . . , xn) = 0 for all k = 1, . . . ,m. (6)

Note that Eqs. (5)–(6) constitute an equation system of n+m equations and n+m unknowns.

Third, solve Eqs. (5)–(6) for (x1, . . . , xn;λ1, . . . , λm). The (x1, . . . , xn) obtained thereof is a

candidate for the solution of Problem (1) as long as the method described above is applicable.

For illustration, consider the cost-minimization problem (2) with nonzero parameters w1

and w2 and differentiable production function f such that the partial derivatives are nonzero.

Rewrite the problem in the form of (1) thereby to obtain Problem (3), based on which we construct

the Lagrangian

L(x1, x2;λ) := −w1x1 − w2x2 + λ (f(x1, x2)− y) .

Then write down the first-order conditions for this Lagrangian, as if we were seeking a local maxi-

mum of L without constraint:

∂

∂x1
L = −w1 + λ

∂

∂x1
f(x1, x2) = 0,

∂

∂x2
L = −w2 + λ

∂

∂x2
f(x1, x2) = 0,

∂

∂λ
L = f(x1, x2)− y = 0.

Finally, solve the three equations for (x1, x2;λ): the three equations are equivalent to

λ
∂

∂x1
f(x1, x2) = w1, (7)

λ
∂

∂x2
f(x1, x2) = w2, (8)

f(x1, x2) = y; (9)

divide the first equation by the second to cancel out λ (which can be done because the partial

derivatives are nonzero by assumption, and λ 6= 0, otherwise Eq. (7) would say that zero is equal

to a nonzero number w1) and obtain

∂

∂x1
f(x1, x2)

/
∂

∂x2
f(x1, x2) = w1/w2, (10)

which coupled with Eq. (9) gives a solution for (x1, x2); plug this solution into Eq. (7) or (8) to

obtain λ. Note that Eqs. (9)–(10) are exactly the equation system in Chapter 3 that determines

the cost-minimizing input bundle in the case where the production function is differentiable and

has diminishing TRS.
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3 An example with multiple constraints

Consider the problem

min
(x1,x2,x3)∈(0,∞)3

3x1 + 2x2 + 4x3

subject to lnx1 + 5 lnx2 = 100,

x1 = 2x3.

Here a firm chooses between three kinds of inputs to deliver 100 units of output, though according

to the first constraint only inputs 1 and 2 can contribute to production. The second constraint,

x1 = 2x3, may be due to an environmental protection legislation that requires hiring input 3 in a

certain proportion of another input that the firm hires. Note that the domain (0,∞)3, the space

of 3-vectors whose coordinates are all positive, is an open set. To solve this problem, rewrite it in

the form of (1):

max
(x1,x2,x3)∈(0,∞)3

− (3x1 + 2x2 + 4x3)

subject to lnx1 + 5 lnx2 − 100 = 0,

x1 − 2x3 = 0.

Thus the Lagrangian is

L(x1, x2, x3;λ1, λ2) := − (3x1 + 2x2 + 4x3) + λ1(lnx1 + 5 lnx2 − 100) + λ2(x1 − 2x3).

Hence the first-order conditions are

∂

∂x1
L = −3 + λ1/x1 + λ2 = 0,

∂

∂x2
L = −2 + 5λ1/x2 = 0,

∂

∂x3
L = −4− 2λ2 = 0,

∂

∂λ1
L = lnx1 + 5 lnx2 − 100 = 0,

∂

∂λ2
L = x1 − 2x3 = 0.

These equations are equivalent to

λ1/x1 = 3− λ2,
5λ1/x2 = 2,

λ2 = −2,

ln
(
x1x

5
2

)
= 100,

x1 = 2x3.

The first and third equations together imply

λ1/x1 = 3− (−2) = 5,
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which coupled with the second equation gives x1 = 2x2/25. Plug it into the fourth equation to get

2

25
x2x

5
2 = e100,

i.e., x2 =
(
25e100/2

)1/6
. Hence x1 = 2x2/25 = 2

25

(
25e100/2

)1/6
, which, plugged into the last

equation, gives
2

25

(
25e100/2

)1/6
= 2x3,

i.e., x3 = 1
25

(
25e100/2

)1/6
. Thus we obtain the only candidate for a solution of (x1, x2, x3):(

2

25

(
25e100/2

)1/6
,
(
25e100/2

)1/6
,

1

25

(
25e100/2

)1/6)
.

Compared to the above procedure, it would be more cumbersome to solve the problem with the

two-dimensional methods in Chapters 2 and 3, as the choice variable here lives in the 3-dimensional

space, in which the two constraints are each a surface rather than a curve.

4 The idea behind the method

The above procedure is encapsulated by the equation system (5)–(6). Among them Eqs. (6) are

obviously necessary for a solution of the constrained optimization problem, as they are simply

restatements of the constraints. What we still need to understand is Eqs. (5).

4.1 The idea illustrated by an example

To understand Eqs. (5), start with a simple example

max
(x1,x2)

px2 − wx1 (11)

subject to f(x1) = x2.

This problem we have solved in Chapter 2 with an intuitive method: on the x1-x2 plane, as long

as f is increasing, differentiable and concave, any interior solution is the tangent point between

the graph for the equation f(x1) = x2 and the isoprofit line passing through that point; in other

words, the slope of the two curves, one being the graph of the constraint equation, and the other

the isoprofit line, are equal to each other at the solution. That means, with the slope of the former

equal to d
dx1

f(x1) and that of the latter equal to w/p,

d

dx1
f(x1) =

w

p
(12)

if x1 is the horizontal coordinate of the solution. This tangency equation, coupled with the con-

straint f(x1) = x2, pins down the solution. The question is how to generalize this method to

cases with multiple constraints and more than two choice dimensions. In those cases, the graph

of a constraint equation (e.g., f(x1, x2) = x3) is no longer just a curve but rather a surface

in a higher-dimension space, and likewise for the graph of an isoprofit surface (e.g., the plane

px3 − w1x1 − w2x2 = 300). While we can still imagine that the solution is the tangent point
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between the two surfaces, it makes little sense to say that the two surfaces have the same “slope,”

a notion suitable to curves but awkward to surfaces.

Rather than slopes, a better way to look at surfaces tangent to each other is to compare

their gradients: at any point of a surface, the gradient of the surface is a vector perpendicular to

the surface at that point. In the above example, the gradient of the isoprofit line is the vector

(−w, p), which plotted on the x1-x2 diagram is perpendicular to the isoprofit line, whose slope is

constantly equal to w/p.1 The gradient of the constraint f(x1) = x2 varies with the coordinates

(x1, x2) on the curve, because the slope of the curve varies with (x1, x2), and given x1 this gradient

is the vector
(

d
dx1

f(x1),−1
)

. Note that this vector is perpendicular to the curve f(x1) = x2 at

the point with horizontal coordinate x1.
2 Thus, when the isoprofit line is tangent to the constraint

curve, their gradients, one perpendicular to the isoprofit line, and the other perpendicular to the

constraint curve, must be aligned , i.e., belonging to a single straight line. We have now arrived at a

viewpoint elegantly suitable for higher dimensions: two surfaces are tangent to each other iff their

gradients are aligned . Thus, when the choice variable has higher dimensions, instead of thinking of

a solution as the tangent point between the constraint curve and the isoprofit/isocost line, think

of the solution as the point on the constraint surface (the set of points that satisfy all constraints)

such that at this point the gradient of this surface and the gradient of the objective are aligned.

Algebraically, two vectors are aligned iff you can turn one vector into the other by multiplying

all coordinates of the former by some common number. That is, in our example, vector (−w, p)
being aligned with vector

(
d
dx1

f(x1),−1
)

means that there exists a real number λ for which[
−w
p

]
= −λ

[
d
dx1

f(x1)

−1

]
. (13)

From the viewpoint described in the previous paragraph, we reach an alternative method to solve

Problem (11): instead of solving for (x1, x2) by coupling the tangency equation (12) with the

constraint f(x1) = x2, solve for (x1, x2, λ) by coupling Eq. (13) with the constraint f(x1) = x2.

But are the two methods consistent to each other? To see that the answer is Yes, rearrange

Eq. (13) to obtain

−w + λ
d

dx1
f(x1) = 0,

p− λ = 0.

These two equations are simply Eq. (5) applied to our example, with the Lagrangian

L(x1, x2, λ) := px2 − wx1 + λ(f(x1)− x2).

In the mean time, Eq. (13) is equivalent to

−w = −λ d

dx1
f(x1),

p = λ.

1 The two are perpendicular to each other because the slope of the vector is p/(−w) and so p/(−w) · (w/p) = −1.
2 To see that, note that the slope of the gradient is equal to −1/ d

dx1
f(x1), while the slope of the constraint curve

f(x1) = x2 is equal to d
dx1

f(x1); multiply the two to obtain
(
−1/ d

dx1
f(x1)

)
· d
dx1

f(x1) = −1.

5



Dividing the first equation by the second to cancel out λ and obtain

−w/p = − d

dx1
f(x1),

which is exactly the tangency equation (12). Hence the two methods are consistent, except that

the one with gradients works also in higher dimensions.

4.2 Gradients and the general idea

The gradient of any differentiable function f of n variables, at any point (x1, . . . , xn), is defined to

be the n-vector consisting of the partial derivatives of f at (x1, . . . , xn):

∇f(x1, . . . , xn) :=


∂
∂x1

f(x1, . . . , xn)
...

∂
∂xn

f(x1, . . . , xn)

 .
Intuitively speaking, the gradient of f at any point (x1, . . . , xn) points to the direction along

which we perturb (x1, . . . , xn) and achieve the steepest rise of f ; the gradient at (x1, . . . , xn) is

also a vector perpendicular to the “level surface” consisting all the points (x′1, . . . , x
′
n) such that

f((x′1, . . . , x
′
n) = f(x1, . . . , xn). Now rewirte Eqs. (5) into a single equation in vector format:

∂
∂x1

u(x1, . . . , xn)
...

∂
∂xn

u(x1, . . . , xn)

 = −λ1


∂
∂x1

g1(x1, . . . , xn)
...

∂
∂xn

g1(x1, . . . , xn)

− · · · − λm


∂
∂x1

gm(x1, . . . , xn)
...

∂
∂xn

gm(x1, . . . , xn)

 ,
which, by the gradient notation just introduced, is equivalent to

∇u(x1, . . . , xn) = −
m∑
k=1

λk∇gk(x1, . . . , xn). (14)

This equation says that, if we scale up the gradient of each constraint by its Lagrange multiplier,

then the aggregate of such gradients is aligned with the gradient of the objective. The situation is

illustrated in Figure 1 (Luenberger [1]), where the gradients h′1 and h′2 of the two constraints span

a plane that contains the gradient f ′ of the objective. Hence you can scale up or down h′1 and h′2
so that the sum of the scaled vectors is exactly f ′; the precise proportions of the scalers are the

Lagrange multipliers.

For example, consider Problem (11) in the previous subsection. In this problem, n = 2,

m = 1, u(x1, x2) = px2 − wx1, g(x1, x2) = f(x1)− x2,

∇u(x1, x2) =

[
−w
p

]

∇g(x1, x2) =

[
d
dx1

f(x1)

−1

]
.

Hence Eq. (14) becomes the Eq. (13) in the previous subsection.
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Figure 1: The f here is our objective u, and h1 and h2 here our constraint functions g1 and g2

5 When is the Lagrange method applicable?

The full answer is nuanced. The bad news is that in general we do not know if the method is

applicable or not until we go through the above procedure, as the conditions available to validate

the Lagrange method are mostly statements about the possible solution that one would come up

with as the candidate for a solution of the original problem (1). The good news is that even

without checking such conditions one is unlikely to get a wrong answer by carrying out the above

procedure correctly. If Eqs. (5)–(6) produce no solution, then the Lagrange method is inapplicable.

If Eqs. (5)–(6) yield a solution then, except for cases that are deemed negligible within the scope

of this course, we can conclude that it is necessarily the candidate for any solution of the original

Problem (1).

Still, some of the conditions we can check at the outset before plunging into the procedure:

that the domain of the choice variable should be open (as we assume at the start of this chapter),

that n ≥ m (there be no less dimensions of the choice variable than the number of constraints),

and that the objective and constraint functions be all differentiable. If the domain is not open, the

solution may be a boundary point, at which Eqs. (5)–(6) may admit no solution. If there are more

constraints than dimensions of the choice variable, we would have more equations than unknowns

and again Eqs. (5)–(6) may admit no solution. Without differentiability we cannot take derivatives,

let alone obtaining the first-order conditions, Eqs. (5)–(6).

Even when the Lagrange method is applicable, its outcome is only a necessary condition for

a solution of the original problem (1), in the sense that if (x∗1, . . . , x
∗
n) solves Problem (1) then it

is equal to the one produced by the above procedure, but the converse is not guaranteed by the

method. To see if a candidate produced by the Lagrange method is a solution of Problem (1), one

needs to check whether the candidate satisfies the second-order condition in the manner similar to,

but more complicated than, that of Chapter 1. Nevertheless, you do not need to go through such

a trouble if the objective function u and the constraint functions gk (k = 1, . . . ,m) are all concave

functions, in which case the candidate produced by the Lagrange method solves Problem (1).3

3 For the curious mind here is a synopsis of the conditions for the Lagrange method. The Lagrange Multiplier
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6 The complication with inequality constraints

Constrained optimization problems with inequality constraints can be written in the form

max
(x1,...,xn)∈S

u(x1, . . . , xn) (15)

subject to g1(x1, . . . , xn) ≥ 0,

...

gm(x1, . . . , xn) ≥ 0.

While there are methods analogous to the procedure for equality constraints, the validity of such

methods require stronger conditions. At this point, just beware of a tempting danger for many—

alas, including many economists!—to abuse such methods even when their validity is not warranted.

When you see a “Lagrange method” solution of an optimization problem some of whose constraints

are inequalities, be careful.4

However, some problems with inequality constraints can be turned into ones with equality

constraints. For such problems we can solve by the procedure introduced above. Let us illustrate

with the input-output decision considered in Chapter 2:

max
(x,y)∈R2

+

py − wx

subject to y ≤ f(x),

Theorem says that a solution (x∗1, . . . , x
∗
n) of Problem (1) is necessarily a solution of Eqs. (5)–(6) provided that two

conditions are met at (x∗1, . . . , x
∗
n): (a) the objective u and constraint functions gk (for all k = 1, . . . ,m) are all

continuously differentiable, and (b) the constraint functions are regular in the sense that their gradients span the

m-dimensional vector space. The regularity condition (b), in turn, means that (i) n ≥ m and (ii) none of the gradients

∇g1, . . . ,∇gm at (x∗1, . . . , x
∗
n) is redundant, i.e., none is equal to a linear combination of the other m−1 gradients (e.g,

if ∇g1 = λ2∇g2 + · · ·+ λm∇gm for some real numbers λ2, . . . , λm then ∇g1 is redundant). There would have been a

third condition (c), requiring that (x∗1, . . . , x
∗
n) not be a boundary point of its domain, which is already guaranteed

because we assume at the outset that the domain S is open.

We have explained previously why the procedure needs Condition (a) and part (i) of Condition (b). To have a

glimpse of what part (ii) of Condition (b) is up to, consider a case where it is violated: Suppose n = 3 and m = 2

such that the two constraints correspond to two surfaces that have exactly one common point and at that point

the two surfaces are tangent to each other. That immediately pins the choice variable down to this single point,

which is hence the solution of Problem (1). At this point, the gradients of the two constraints are aligned, as the

corresponding surfaces are tangent to each other. Thus, no matter how we scale up or down each of them, we cannot

alter the direction of the sum of the two. Consequently, if the gradient of the objective is not aligned with the two

constraint gradients at the outset, there is no way to scale the two constraint gradients thereby to align them with

the gradient of the objective, hence it is impossible to satisfy Eq. (14). This misalignment cannot be corrected by

perturbation, because there is no wiggle room to perturb the choice variable along the direction of the gradient of

the objective without violating one of the constraints (c.f. Exercise 4d.).
4 Even the famous Kuhn and Tucker, who are credited for a main theorem handling this case (and both are

played as characters in the Oscar-award-winning blockbuster “A Beautiful Mind”), made a serious mistake in the

initial version of their theorem. According to the late Leo Hurwicz, they did not know of the mistake until a

seminar audience pointed it out, with a counterexample, during their seminar presenting the “theorem.” Then they

haphazardly modified their theorem by adding a “constraint qualification” condition on the solution produced by

the Lagrange method. When the late Hurwicz related the anecdote to this author, who was then a graduate student

working as the former’s graduate class teaching assistant, Hurwicz hastened to add a moral of the story: “One does

not need to commit suicide even when his theorem is found wrong when he is presenting it.”
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where p and w are positive parameters, and f the production function that is increasing, differen-

tiable, concave and

lim
x→0

d

dx
f(x) =∞. (16)

i.e., when x converges to zero, the slope of the PPF steepens to vertical. Written in the form

of (15), this problem is

max
(x,y)∈R2

+

py − wx

subject to f(x)− y ≥ 0. (17)

To apply the Lagrange method with equality constraints, first notice that there is no loss of gen-

erality to restrict the choice to those such that f(x)− y = 0, for if f(x)− y > 0 then the firm can

increase its profit py−wx by increasing y slightly without changing x. This change is technologically

feasible because f(x)− y > 0, and it brings in more profit because p > 0. Thus, the constraint (17)

can be replaced by the equation f(x)− y = 0. Hence the original problem is equivalent to

max
(x,y)∈R2

+

py − wx

subject to f(x)− y = 0.

Second, note that the domain R2
+ of the choice variable is not open, as it contains boundary points

such as (0, y) and (x, 0). But by concavity of f and especially Eq. (16), among the isoprofit lines,

which have an identical positive slope w/p, any supporting hyperplane of the PPF touches the PPF

at a point where both coordinates are nonzero. It follows that at any solution (x, y) of the problem,

x > 0 and y > 0. Thus, there is no loss of generality to replace the domain R2
+ by the open set

(0,∞)2. Then we apply the Lagrange method. The Lagrangian by definition is

L(x, y;λ) := py − wx+ λ(f(x)− y).

The first-order conditions are

∂

∂x
L = −w + λ

d

dx
f(x) = 0,

∂

∂y
L = p− λ = 0,

∂

∂λ
L = f(x)− y = 0.

The first two equations together imply

w = λ
d

dx
f(x) = p

d

dx
f(x), i.e.,

d

dx
f(x) =

w

p
,

which coupled with the previous equation f(x) − y = 0 gives exactly the equation system in

Chapter 2 to determine the profit-maximizing production plan.

9



7 Exercises

1. Among the sets listed below, which sets are open?

a. (−∞, 0)

b. [0, 3) (i.e., the interval between 0 and 3, including 0 but excluding 3)

c. (0, 5)2 (i.e., (0, 5)× (0, 5), with (0, 5) denoting the interval between 0 and 5, excluding 0

and 5)

d. {0, 1/2} (i.e., the set consisting of 0 and 1/2)

e. (0, 1)× (0, 1]

2. A firm uses three kinds of inputs to produce one kind of output. If the firm employs a

quantity x1 of input 1, quantity x2 of input 2, and quantity x3 of input 3, with (x1, x2, x3) ∈
R3
+ (R3

+ denotes [0,∞)3), then the maximum quantity of the output is equal to

f(x1, x2, x3) := Axα1x
β
2x

γ
3 ,

where A, α, β and γ are each a positive parameter. For each k = 1, 2, 3, the market price of

input k is given to be a positive number, denoted by wk. Hence any input bundle (x1, x2, x3)

would cost the firm w1x1 + w2x2 + w3x3. The firm has committed to supply a quantity y of

its output, with y a positive parameter.

a. Express the firm’s cost-minimization problem in a format analogous to Problem (1) in

Chapter 3, with the domain of the choice variable being R3
+.

b. Is the domain of the choice variable open? If not, explain why there is no loss of generality

to restrict the domain into the open set (0,∞)3. (Hint: y > 0.)

c. Rewrite the cost-minimization problem in a format analogous to (1) of this chapter.

d. Use the Lagrange method, by following the procedure in Section 2, to solve the problem

obtained in the previous step. (The solution should be mathematical expressions of only

the parameters A, α, β, γ, y, w1, w2 and w3.)

e. Use the solution obtained in the previous step to show that the cost C(y) of any output

quantity y (y > 0) is equal to Ky1/(α+β+γ) for some positive constant K.

f. Use the result of the previous step to prove that the average cost is increasing in y if

α+ β + γ < 1, decreasing in y if α+ β + γ > 1, and constant if α+ β + γ = 1.

3. Following is a set of 2-vectors:[
1

2

]
,

[
4

−2

]
,

[
−1/3

−2/3

]
,

[
1

0

]
.

a. Plot these vectors on the plane and—

i. find out the pair of vectors that are aligned to each other;

ii. find out a pair of vectors that are perpendicular to each other; is there another such

a pair?
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b. Verify your observations in Step 3a. algebraically in the manner of Eq. (13)—for alignment—

and Footnotes 1 and 2—for perpendicularity.

c. Find a scaler (i.e., a real number) λ1 and a scaler λ2 such that the linear combination

λ1

[
−1/3

−2/3

]
+ λ2

[
4

−2

]

of vectors

[
−1/3

−2/3

]
and

[
4

−2

]
is aligned with the vector

[
1

0

]
.

d. Does there exist scalers λ1 and λ2 such that the linear combination

λ1

[
−1/3

−2/3

]
+ λ2

[
1

2

]

is aligned with the vector

[
1

0

]
?

4. Which of the following constrained optimization problems can the Lagrange method with

equality constraints be applied to, either directly or after the problem is rewritten into an

equivalent form?

a. Minimize 3x1 + 4x2 among (x1, x2) ∈ (0,∞)2 subject to the constraint min{x1, 2x2} = y

b. Maximize 5y−8x among (x, y) ∈ [0,∞)2 subject to the inequality constraint y ≤ ln(x+1)

c. Maximize 5y − 8x among (x, y) ∈ (0,∞)2 subject to the constraints y =
√
x, y = x− 1

and y = x2 + 1.

d. Maximize 5y − 8x among (x, y) ∈ (0,∞)2 subject to the constraints y =
√
x and y =

x/2 + 1/2. (Hint: Condition b.ii, Footnote 3.)

5. For each function defined below, calculate the gradient at the point (1, 1) and the gradient at

(4, 2) and plot each gradient in a two-dimensional coordinate system.

a. π(x1, x2) := 6x2 − 3x1 for all nonnegative x1 and x2

b. g(x1, x2) :=
√
x1 − x2 for all nonnegative x1 and x2

c. u(x1, x2) := 2x1 + 5x2 for all nonnegative x1 and x2

d. h(x1, x2) := x
1/2
1 x

1/2
2 for all nonnegative x1 and x2

6. Consider an input-output decision, as in Chapter 2, with production f(x1) :=
√
x1, where x1

denotes the input quantity. Suppose that the price for the input is $3 per unit, and that for

the output is $6 per unit. Denote x2 for the output quantity.

a. On the x1-x2 plane, graph the production possibility frontier (PPF) and the isoprofit

line passing through the point (4, 2). Note that the point belongs to the PPF.

b. Draw an arrow to indicate the gradient of the profit function at the point (4, 2). (For

example, if the gradient is [−w, p], plot the point (−w + 4, p + 2) and draw the arrow

starting from (4, 2) and pointing towards (−w + 4, p+ 2).)
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c. Analogously, draw an arrow to indicate the gradient of the PPF at the point (4, 2).

d. Is Eq. (13) satisfied at the point (4, 2)? In other words, are the two gradients aligned?

e. Find the coordinates of the point on the PPF at which Eq. (13) satisfied. On the above

diagram draw the vectors of the objective and the PPF at that point.

7. Which of the following optimization problems is equivalent to one where the inequality con-

straint is replaced by its corresponding equality, and the domain replaced by an open set?

a. max(x,y)∈[0,∞)2(10y − 3x) subject to y ≤ 5x1/3

b. max(x,y)∈[0,∞)2(10y − 3x) subject to y ≤ 2 ln(x+ 1)

c. max(x1,x2)∈[0,∞)2 x1x
2/3
2 subject to 3x1 + 2x2 ≤ 100

d. max(x1,x2)∈[0,∞)2(10− (x1 − 1)2 − (x2 − 2)2) subject to 3x1 + 2x2 ≤ 100

8. Consider the following optimization problem:

max
(x1,x2,x3)∈R3

+

lnx1 + β lnx2

subject to p1x1 + x3 ≤ m
rx3 = p2x2,

with parameters 0 < β < 1, p1 > 0, p2 > 0, m > 0 and r > 1.

a. Explain why the domain of the choice variable can be restricted to the open set (0,∞)3

without loss of generality.

b. Explain why the weak inequality constraint can be restricted to an equality constraint

without loss of generality.

c. Rewrite the above problem in a form analogous to (1) of this chapter.

d. Define the Lagrangian for the problem obtained in the previous step.

e. Write down the first-order conditions

f. Demonstrate that the solution of the first-order conditions is:

(x∗1, x
∗
2, x
∗
3, λ
∗
1, λ
∗
2) =

(
m

p1(1 + β)
,

β

1 + β

rm

p2
,
βm

1 + β
,−β + 1

m
,−β + 1

rm

)
.

g. Denote the objective by u(x1, x2, x3) := lnx1 + β lnx2 and the two constraint functions

by g1(x1, x2, x3) := p1x1 + x3 −m and g2(x1, x2, x3) := p2x2 − rx3. Calculate gradients

of the objective and the two constraint functions at the solution (x∗1, x
∗
2, x
∗
3) obtained in

the previous step.

h. Prove that Eq. (14) is satisfied at the solution (x∗1, x
∗
2, x
∗
3), i.e.,

λ∗1∇g1(x∗1, x∗2, x∗3) + λ∗2∇g2(x∗1, x∗2, x∗3) = −∇u(x∗1, x
∗
2, x
∗
3).
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