Mathematical tools for intermediate economics classes
Iftekher Hossain

Calculus of Multivariable Functions

Section 4

Use of the Partial Derivatives

Practise Questions

For the following functions (1-4) find the
  1. marginal functions
  2. slope of the level set \(\frac{dy}{dx}\)
  3. \(MRS_{x,y}\)

1. \(f(x,y) = x^{0.5}y^{0.5} = 10\)

  1. \(f_{x} = 0.5x^{-0.5}y^{0.5}\)

      \(f_{y} = 0.5x^{0.5}y^{-0.5}\)
  2. \(\frac{dy}{dx} = -\frac{f_{x}}{f_{y}} = -\frac{y}{x}\)
  3. \(MRS_{x,y} = -\frac{dy}{dx} = \frac{y}{x}\)

2. \(f(x,y) = x^{0.6}y^{0.4}\)

  1. \(f_{x} = 0.6x^{-0.4}y^{0.4}\)

      \(f_{y} = 0.4x^{0.6}y^{-0.6}\)
  2. \(\frac{dy}{dx} = -\frac{f_{x}}{f_{y}} = -\frac{3y}{2x}\)
  3. \(MRS_{x,y} = -\frac{dy}{dx} = \frac{3y}{2x}\)

3. \(f(x,y) = 10x^{0.5}y^{0.5}\)

  1. \(f_{x} = 5x^{-0.5}y^{0.5}\)

      \(f_{y} = 5x^{0.5}y^{-0.5}\)
  2. \(\frac{dy}{dx} = -\frac{f_{x}}{f_{y}} = -\frac{y}{x}\)
  3. \(MRS_{x,y} = -\frac{dy}{dx} = \frac{y}{x}\)

4. \(f(x,y) = Ax^{\alpha }y^{\beta }\)

  1. \(f_{x} = A \alpha x^{\alpha - 1}y^{\beta }\)

      \(f_{y} = A \beta x^{\alpha }y^{\beta - 1}\)
  2. \(\frac{dy}{dx} = -\frac{f_{x}}{f_{y}} = -\frac{\alpha y}{\beta x}\)
  3. \(MRS_{x,y} = -\frac{dy}{dx} = \frac{\alpha y}{\beta x}\)

5. Find the critical points at which the function may be optimized:

\(f(x,y) = 5x^{2} - 1.5y^{2} - 30x - 4y + 5xy\)

Set first-order partial derivatives equal zero: $$f_{x} = 10x + 5y - 30 = 0 \quad \text{(1)}$$ $$f_{y} = 5x - 3y - 4 = 0 \qquad \text{(2)}$$ Multiply equation (2) by \(2\) and deduct from equation (1): $$11y = 22$$ $$y = 2$$ $$x = 2$$ The function may be optimized at \((2, 2)\).


6. Find the critical points at which the function may be optimized:

\(f(x,y) = 5x^{2} - 3y^{2} - 30x + 7y + 4xy\)   [See Dowling P. 99]

Set first-order partial derivatives equal zero: $$f_{x} = 10x + 4y - 30 = 0 \quad \text{(1)}$$ $$f_{y} = 4x - 6y + 7 = 0 \qquad \text{(2)}$$ Multiply equation (2) by \(2.5\) and deduct from equation (1): $$19y = 47.5$$ $$y = 2.5$$ $$x = 2$$ The function may be optimized at \((2, 2.5)\).



Creative Commons License
UWO Economics Math Resources by Mohammed Iftekher Hossain is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.