Optimize \(Q(x,y) = x^{0.6}y^{0.3}\)
subject to \(g(x,y) = 4x + 2y = 300\)
Form the Lagrange function: $$L(x,y,\mu ) \equiv \color{red}{Q(x,y)} - \mu (\color{purple}{g(x,y) - k}) \quad\;\;$$ $$L(x,y,\mu ) \equiv x^{0.6}y^{0.3} - \mu (4x + 2y - 300)$$ Set each first order partial derivative equal to zero: $$\frac{\partial L}{\partial x} = 0.6x^{-0.4}y^{0.3} - 4\mu = 0 \qquad\qquad\; \text{(1)}$$ $$\frac{\partial L}{\partial y} = 0.3x^{0.6}y^{-0.7} - 2\mu = 0 \qquad\qquad\; \text{(2)}$$ $$\frac{\partial L}{\partial \mu } = -(4x + 2y - 300) = 0 \qquad\qquad \text{(3)}$$ Multiply equation (2) by \(2\): $$0.6x^{0.6}y^{-0.7} - 4\mu = 0 \qquad\qquad\qquad\quad\;\; \text{(4)}$$ From equations (1) and (4) we can write: $$0.6x^{-0.4}y^{0.3} = 0.6x^{0.6}y^{-0.7}$$ $$x = y$$ Use \(x = y\) in equation (3) to get: $$4x + 2y = 300$$ $$6x = 300 \qquad$$ $$x = 50 \qquad$$ $$y = x = 50$$ The objective function may be optimized at \((50,50)\).
2. Using the geometric approach, find the critical points of the following constrained optimization if any:
Optimize \(Q(K,L) = K^{0.6}L^{0.3}\)
subject to \(g(K,L) = 4K + 2L = 300\)
If there exist an interior optimum, then we can apply the following geometric approach to find the point which may be a critical point of the constrained optimization problem:
Find the slope of the objective function: \(-\frac{K}{2L}\)
Find the slope of the constrained function: \(-\frac{2}{4}\)
If there exists an interior solution:
$$-\frac{K}{2L} = -\frac{2}{4}$$
$$K = L$$
Use \(K = L\) in the constraint function to get:
$$4K + 2L = 300$$
$$6K = 300 \qquad\;\;$$
$$K = 50 \qquad\;\;$$
$$L = K = 50$$
3. Find the critical points of the following utility function subject to the constraint:
Optimize \(u(x,y) = x^{0.5}y^{0.5}\)
subject to \(u(x,y) = 40x + 20y = 800\)
Form the Lagrange function: $$L(x,y,\mu ) \equiv x^{0.5}y^{0.5} - \mu (40x + 20y - 800)$$ Set each first order partial derivative equals zero: $$\frac{\partial L}{\partial x} = 0.5x^{-0.5}y^{0.5} - 40\mu = 0 \qquad\qquad\;\; \text{(1)}$$ $$\frac{\partial L}{\partial y} = 0.5x^{0.5}y^{-0.5} - 20\mu = 0 \qquad\qquad\;\; \text{(2)}$$ $$\frac{\partial L}{\partial \mu } = -(40x + 20y - 800) = 0 \qquad\qquad \text{(3)}$$ Multiply equation (2) by \(2\): $$x^{0.5}y^{-0.5} - 40\mu = 0 \qquad\qquad\qquad\qquad\quad\;\; \text{(4)}$$ From equations (1) and (4) we can write: $$0.5x^{-0.5}y^{0.5} = x^{0.5}y^{-0.5}$$ $$\qquad y = 2x$$ Use \(y = 2x\) in equation (3) to get: $$40x + 20(2x) = 800$$ $$80x = 800$$ $$x = 10$$ $$y = 2x = 20$$
Note: Geometric approach will also provide the same solution.