Given the linear simultaneous equations $$\quad\; x + 3y = 8 \qquad\qquad(1)$$ $$-x + 2y = 12 \qquad\qquad(2)$$ Solve for \(x\) and \(y\).
Add equations (1) and (2): $$5y = 20$$ $$\, y = 4$$ Substitute \(y = 4\) into any of the equations: $$x + 3(4) = 8$$ $$\qquad\qquad x = -4$$
Given the linear simultaneous equations $$\;\; 2x + y = -4 \qquad\qquad(1)$$ $$-x + 2y = 12 \qquad\qquad(2)$$ Solve for \(x\) and \(y\).
Multiply equation (2) by \(2\): $$-2x + 4y = 24 \qquad\qquad(3)$$ Add equations (1) and (3): $$5y = 20$$ $$y = 4$$ Substitute \(y = 4\) in equation (1) or equation (2): $$2x + 4 = -4$$ $$\qquad\; x = -4$$