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Abstract

We analyze a bargaining model in which a sequence of buyers make o¤ers to a long-lived

seller endowed with a single unit for sale. Valuation and cost are correlated. We consider

both the case in which previous o¤ers are observable and the case in which they are not.

When o¤ers are observable, trade may only occur in the �rst period, so that bargaining

typically ends up in an impasse. In the unobservable case, agreement is always eventually

reached, although it does involve delay even when frictions disappear.

1 Introduction

While the sensitivity of the predictions of noncooperative game theory to the details of the game

form is often perceived as a practical impediment, it has also deepened our understanding of

the role and value of various concepts, such as commitment, information and observability. The

purpose of this paper is to provide some insights into the role of observability. More precisely,

this paper examines the role of observability in the context of bargaining with correlated values.

We investigate the impact of observability on the equilibrium outcome, most notably the prob-

ability of reaching agreement. The underlying structure is as in Akerlof�s market for �lemons�. An

�We thank Marco Ottaviani for useful comments, as well as audiences at Columbia University, UQÁM, Johns

Hopkins University, London Business School, the Society of Economic Dynamics, and the 2006 Summer Meeting

of the European Econometric Society, Vienna.
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impatient seller is better informed than the potential buyers about the value of the transaction,

but it is nevertheless common knowledge that a mutually bene�cial trade exists. All potential

buyers share the same valuation for the unit for sale, which is strictly larger than the seller�s

cost, or reservation utility.

As in the search literature, the seller bargains sequentially with potential buyers until agree-

ment is reached, if ever, and delay is costly. Each buyer makes a take-it-or-leave-it o¤er to the

seller. The search is without recall: a seller turns to another buyer for a new o¤er as soon as he

rejects a previous o¤er.

We consider both the case in which buyers observe the o¤ers that have been rejected, so that

o¤ers are observable, or public, and the case in which buyers do not, but infer from calendar

time how many have been submitted so far (the case of hidden, or private o¤ers). Most of our

results consider the case of small frictions, i.e. low but positive discounting.

To take a speci�c example, consider the sale of residential property. In most countries,

houses are sold through bilateral bargaining. Potential buyers come and go, engaging in private

negotiations with the seller, until either an agreement with one of them is reached or the house is

withdrawn from the market. Typically, potential buyers know the time on market of the house on

sale, which allows them to estimate the number of previous o¤ers that must have been declined.

However, past o¤ers remain hidden, and �only a bad agent would reveal them,�in the words of

one broker. Similarly, in most labor markets, employers do not observe the actual o¤ers that the

applicant may have previously rejected, but they can infer how long he has been unemployed

from the applicant�s vita. In other bargaining settings, such as corporate acquisition via tender

o¤er, previous o¤ers are commonly observed.

Remarkably, our analysis supports the broker�s point of view. With public o¤ers, bargaining

typically ends up in an impasse: only the �rst buyer submits an o¤er that has any chance of

being accepted. If this o¤er is rejected, no further serious o¤er will be submitted. This is rather

surprising, since it is common knowledge that, no matter how low the quality of the unit may be,

it is still worth more to the potential buyers than to the seller. Why can a buyer not break the

deadlock by making an o¤er that is su¢ ciently low that the seller would gain by accepting when
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the quality is low enough? As we show, the problem is one of commitment from the seller�s point

of view. Since o¤ers are observable, the seller would take advantage of this o¤er to obtain a better

o¤er from the next potential buyer. In turn, this renders making such an o¤er unattractive.1

This result provides an explanation for impasses in bargaining. While standard bargaining

models are often able to explain delay, agreement is always reached eventually. Exceptions either

rely on behavioral biases (see Babcock and Loewenstein, 1997) or Pareto-ine¢ cient commitments

(see Crawford, 1982). Here, it is precisely the inability of the seller not to solicit another o¤er

that discourages potential buyers from submitting serious o¤ers.

By contrast, agreement is always reached when o¤ers are private. Because the seller cannot

use his rejection of an unusually high o¤er as a signal to elicit an even higher o¤er by the following

potential buyer, buyers are not deterred from submitting serious o¤ers. To put it di¤erently, the

unique equilibrium outcome with public o¤ers can no longer be an equilibrium outcome here.

Suppose, per impossibile, that such an equilibrium were to exist. Then consider a deviation in

which a potential buyer submits an o¤er that is both higher than the seller�s lowest possible

reservation value yet lower than the buyer�s lowest possible valuation. Future potential buyers

would be unaware of the speci�c value of this out-of-equilibrium o¤er. Hence, turning it down

would not change their beliefs about the unit�s value. Thus, given that the seller expects to

receive losing o¤ers thereafter, he will accept the o¤er if his reservation value is low enough.

This, in turn, means that the o¤er is a pro�table deviation for the buyer.

Nevertheless, in any equilibrium with private o¤ers, agreement is not reached immediately,

and delay persists even when frictions vanish. The equilibrium is generally not unique. Although

we do not characterize all possible equilibria, we show that they all involve mixed strategies and

share a common structure.

This dichotomy between public and private o¤ers may be surprising in light of the linkage

principle. Indeed, the auctioneer may be better o¤with private o¤ers. However, it is important to

distinguish between how much information is allowed to be revealed by the information structure

1Academic departments are well aware of this problem when considering making senior o¤ers. As clearly this

example cannot fail any of the necessary rationality criteria, the prevalence of such o¤ers implies that one of our

assumptions must fail in this environment.
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and the information that is actually revealed in equilibrium. While more information could be

transmitted with public o¤ers than with private o¤ers, this is not what happens in equilibrium:

because all o¤ers but the �rst one are losing o¤ers, no further information about the seller is

ever revealed, so that, somewhat paradoxically, more information is communicated in the case

of private o¤ers.

Our paper endogenizes the o¤er distribution that is typically taken as given in the search

literature. The analysis shows that random o¤ers can, indeed, be part of the equilibrium strate-

gies. In addition, it shows that the o¤er distribution depends on the information available to the

o¤erers.2 Therefore, it also suggests that it is not always innocuous to treat the o¤er distribution

as �xed while considering variants of the standard search models.

Our contribution is further related to three strands of thought in the literature. First, several

authors have already considered dynamic versions of Akerlof�s model. Second, several papers in

the bargaining literature consider interdependent values. Finally, a pair of papers have investi-

gated the di¤erence between public and private o¤ers in the framework of Spence�s educational

signaling model.

Janssen and Roy (2002) consider a dynamic, competitive durable good setting, with a �xed

set of sellers. They prove that trade for all qualities of the good occurs in �nite time. While there

are several inessential di¤erences between their model and ours, the critical di¤erence lies in the

market mechanism. In their model, the price in every period must clear the market. That is, by

de�nition, the market price must be at least as large as the good�s expected value to the buyer

conditional on trade, with equality if trade occurs with positive probability (this is condition (ii)

of their equilibrium de�nition).3 This expected value is derived from the equilibrium strategies

when such trade occurs with positive probability, and it is assumed to be at least as large as the

lowest unsold value even when no trade occurs in a given period (this is condition (iv) of their

de�nition). This immediately entails that the price exceeds the valuation to the lowest quality

2The o¤er distribution also depends on the options available to the searcher, such as recall vs. no recall, as

we discuss in an example.
3More precisely, equality obtains whenever there is a positive measure of goods�qualities traded, because there

is a continuum of sellers in their model.
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seller, so that trade must occur eventually, if not in a given period. Also related are Taylor

(1999), Hendel and Lizzeri (1999), Blouin (2003) and Hendel, Lizzeri and Siniscalchi (2005).

In the bargaining literature, Evans (1989), Vincent (1989) and Deneckere and Liang (2006)

consider bargaining with interdependent values. Evans (1989) considers a model in which the

seller�s unit can have one of two values, and assumes that there is no gain from trade if the

value is low. In this environment, he shows that, with correlated values, the bargaining may

result in an impasse when the buyer is too impatient relative to the seller. In his appendix,

Vincent (1989) provides another example of equilibrium in which bargaining breaks down. As in

Evans, the unit can have one of two values. While there are gains of trade for both values in his

case, it is not known whether his example admits other equilibria. Deneckere and Liang (2006)

generalize these �ndings by considering an environment in which the unit�s quality takes values

in an interval. They characterize the (stationary) equilibrium of the game between a buyer and

a seller with equal discount factors, in which, as in ours, the uninformed buyer makes all the

o¤ers. They show that, when the static incentive constraints preclude �rst-best e¢ ciency, the

limiting bargaining outcome involves agreement but delay, and fails to be second-best e¢ cient.

As their paper is the closest to ours, we shall mention and further discuss it on several occasions

below. Other related contributions include Riley and Zeckhauser (1983), Cramton (1984), Gul

and Sonnenschein (1988), and Vincent (1990).

Nöldeke and van Damme (1990) and Swinkels (1999) develop an analogous distinction in

Spence�s signalling model. Both consider a discrete-time version of the model, in which education

is acquired continuously and a sequence of short-run �rms submit o¤ers that the worker can either

accept or reject. Nöldeke and van Damme consider the case of public o¤ers, while Swinkels

focuses mainly on the case of private o¤ers. Nöldeke and van Damme show that there is a

unique equilibrium outcome that satis�es the never-a-weak-best-response requirement, and that

the equilibrium outcome converges to the Riley outcome as the time interval between consecutive

periods shrinks. For private o¤ers, Swinkels proves that the sequential equilibrium outcome is

unique and shows that, in contrast to the public case, it involves pooling in the limit. While

the set-up is rather di¤erent, the logic driving these results is similar to ours, at least for public
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o¤ers. Indeed, in both papers, when o¤ers are observable, �rms (buyers) are deterred from

submitting mutually bene�cial o¤ers because rejecting such an o¤er sends a strong signal to

future �rms (buyers) that is so attractive that only very low types would prefer to accept the

o¤er immediately.

The general set-up is described in Section 2. Section 3 provides a simple two-buyer example

that illustrates the main insights behind the results. Section 4 characterizes the equilibrium in

the case of public o¤ers. Private o¤ers are considered in Section 5. Results and extensions are

discussed in Section 6. In particular, we brie�y discuss without proofs the results in the case in

which buyers do not know calendar time; in which multiple buyers submit o¤ers in every period;

in which the seller may engage in cheap talk; and in which the seller, instead of the buyer, is the

proposer. Most proofs are in the appendix.

2 The Model

We consider a dynamic game between a single seller, with one unit for sale, and a countable

in�nity of potential buyers, or buyers for short. Time is discrete, and indexed by n = 1; : : : ;1.
At each time or period n, one buyer makes an o¤er for the unit. Each buyer makes an o¤er

only at one time, and we refer to buyer n as the buyer who makes an o¤er in period n, provided

the seller has accepted no previous o¤er. After observing the o¤er, the buyer either accepts or

rejects the o¤er. If the o¤er is accepted, the game ends. If the o¤er is rejected, a period elapses

and it is another buyer�s turn to submit an o¤er.

The reservation value of the unit is the seller�s private information. This reservation value is

denoted by c (x), where the random variable x is determined by nature and uniformly distributed

over the interval [x; 1] ; x 2 [0; 1). We interpret x as an index, such as the quality of the good,
and refer to it as the seller�s type. The valuation (or value) of the unit to buyers is common to all

of them, and is denoted by v (x). Buyers do not observe the realization of x, but its distribution

is common knowledge.

We assume that c is strictly increasing, positive and twice di¤erentiable, with bounded deriva-
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tives. We assume that v is positive, strictly increasing and di¤erentiable, with bounded derivative.

Moreover, we assume that v0 is positive. We set Mc0 = sup jc0j, Mc00 = sup jc
00j, Mv0 = sup jv0j,

M = max(Mc0 ;Mc00 ;Mv0), and mv0 = inf jv0j > 0.
Observe that the assumption that x is uniformly distributed is made with little loss of gen-

erality, given that few restrictions are imposed on the functions v and c.4

We assume that gains from trade are always positive with � = infx fv (x)� c (x)g > 0. In

examples and extensions, we shall often restrict attention to the standard case in which v (x) = x

and c (x) = �x, with x > 0, i.e. the reservation value to the seller is a fraction � 2 (0; 1) of the
valuation x to the buyers. The seller is impatient, with discount factor � < 1. We are particularly

interested in the case in which � is su¢ ciently large. To be speci�c, we set �� = 1�m=3M , and
will always assume � > ��. In each period in which the seller owns the unit, he derives a per-period

gross surplus of (1� �) c (x). Therefore, the seller can always guarantee a gross surplus of c (x)
by never selling the unit.

Buyer n submits an o¤er, or price, pn that can take any real value. An outcome of the game

is a triple (x; n; pn), with the interpretation that the realized index is x, and that the seller

accepts buyer n�s o¤er of pn (which implies that he rejected all previous o¤ers). The case n =1
corresponds to the outcome in which the seller rejects all o¤ers (set p1 equal to zero). The

seller�s von Neumann-Morgenstern utility function over outcomes is his net surplus
n�1X
i=1

(1� �) �i�1c (x) + �n�1pn � c (x) = �n�1 (pn � c (x)) ; (1)

when n <1, and zero otherwise. An alternative formulation that is equivalent to the one above
is that the seller derives no per-period gross surplus from owning the unit, but incurs a production

cost of c (x) at the time he accepts the buyer�s o¤er. It is immediate that this interpretation

yields the same utility function. Accordingly, we shall often refer to the reservation value c (x)

as the seller�s cost.

Buyer n�s utility is v (x) � pn if the outcome is (x; n; pn), and zero otherwise (discounting
is irrelevant since buyers make only one o¤er). We de�ne the players� expected utility over

4In particular, our results are still valid if the distribution of x has a bounded density, bounded away from

zero.
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lotteries of outcomes, or payo¤ for short, in the standard fashion. Payo¤ and pro�t will be used

interchangeably. We allow for mixed strategies on the part of all players.

We consider both the case in which o¤ers are public, or observable, and the case in which

previous o¤ers are not observable, also referred to as private, or hidden. It is worth pointing

out that the results for the case in which o¤ers are public would also hold for any information

structure (about previous o¤ers) in which each buyer n > 1 observes the price o¤ered by buyer

n� 1.
A history (of o¤ers) hn�1 2 Hn�1 in case no agreement has been reached at time n is a

sequence (p1; : : : ; pn�1) of o¤ers that were submitted by the buyers and rejected by the seller

(we set H0 equal to f?g). A behavior strategy for the seller is a sequence f�nSg, where �nS is
a probability transition from [x; 1] �Hn�1 � R in to {Accept, Decline}, mapping the realized
type x, the history hn�1, and buyer n�s price pn into a probability of acceptance. In the public

case, a strategy for buyer n is a probability transition �nB from Hn�1 to R.5 In the private case,

a strategy for buyer n is a probability distribution �nB over R.

Observe that, whether o¤ers are public or private, the seller�s optimal strategy must be of

the cut-o¤ type. That is, if �nS (x; h
n�1; pn) assigns a positive probability to Accept for some x,

then �nS (x
0; hn�1; pn) assigns probability 1 to Accept, for all x0 > x. The proof of this skimming

property is standard and can be found in, for example, Fudenberg and Tirole (Chapter 10, Lemma

10.1). The in�mum over types x accepting a given o¤er is called the marginal type (at history

(hn�1; pn) given the strategy pro�le). Since the speci�cation of the action of the seller�s marginal

type does not a¤ect payo¤s, we also identify equilibria which only di¤er in this regard. For

de�niteness, in all formal statements, we shall follow the convention that a seller with marginal

type accepts the o¤er. For conciseness, we shall omit to specify that some statements only hold

�with probability 1�. For instance, we shall say that the seller accepts the o¤er when he does so

with probability 1. It follows from iterated deletion of strictly dominated strategies that buyers

never submit any o¤er that is strictly larger than c (1) = �c, the highest possible reservation value

5That is, for each hn�1 2 Hn�1, �nB(h
n�1) is a probability distribution over R, and the probability �nB(�)[A]

assigned to any Borel set A � R is a measurable function of hn�1.
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to the seller, and that any such o¤er would be accepted by the seller with probability 1. This

argument is also standard and therefore omitted.

We use the perfect Bayesian equilibrium concept as de�ned in Fudenberg and Tirole (De-

�nition 8.2).6 In both the public and the private case, this implies that upon receiving an

out-of-equilibrium o¤er, the continuation strategy of the seller is optimal.

In the public case, this also implies that, after any history on or o¤ the equilibrium path

along which all o¤ers submitted by buyers were smaller than �c, the belief (over seller�s types)

of the remaining buyers is common to all of them and computed on the assumption that the

seller�s reasons for rejecting previous o¤ers were rational. Thus, in the public case, after any

such history, the belief of buyer n over x is the uniform distribution over some interval [xn; 1],

where xn may depend on the sequence of earlier o¤ers. We do not impose any (other) restriction

on beliefs.

In the private case, the only non-trivial information sets that are reached with probability

0 occur in periods such that, along the equilibrium path, the probability is 1 that the seller

accepts some earlier o¤er. The speci�cation of beliefs after such information sets turns out to be

irrelevant.

Given some (perfect Bayesian) equilibrium, a buyer�s o¤er is serious if it is accepted by the

seller with positive probability. An o¤er is losing if it is not serious. Clearly, the speci�cation

of losing o¤ers in a equilibrium is, to a large extent, arbitrary. Therefore, statements about

uniqueness are understood to be made up to the speci�cation of the losing o¤ers. Finally, an

o¤er is a winning o¤er if it is accepted with probability 1.

Given some equilibrium, there is a one-to-one mapping between the price that is submitted

and the marginal type that, by de�nition, is indi¤erent between accepting and rejecting it. As

it will often be convenient to think of buyers choosing a particular marginal type, rather than a

particular price, we usually use the word �o¤er�to refer to the marginal type corresponding to a

given price submitted by the buyer (as opposed to this price itself).

6Formally speaking, Fudenberg and Tirole de�ne perfect Bayesian equilibria for �nite games of incomplete

information only. The suitable generalization of their de�nition is straightforward and omitted.
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We brie�y sketch here the static version with one buyer of the dynamic game described above.

The unique buyer submits a take-it-or-leave-it o¤er. The game then ends whether the o¤er is

accepted or rejected, with payo¤s speci�ed as before (with n = 1). The model considered by

Akerlof (1970) is not the static version of this game, because the market mechanism adopted

there is Walrasian. Much closer is the second variant analyzed by Wilson (1980), although he

considers a continuum of buyers. Clearly, the seller accepts any o¤er p provided p � c (x).

Therefore, the buyer o¤ers c (x�), where x� maximizesZ x

x

(v (t)� c (x)) dt;

over x 2 [x; 1]. More generally, given t 2 [x; 1), let x� (t), or x� when no confusion should arise,
denote the marginal type given the optimal o¤er when the distribution is uniform over [t; 1].

Observe that x� (t) > t for all t 2 [x; 1), and that the corresponding pro�t of the buyer must
be positive (because the buyer can always submit a price in (c (x) ; v (x)). The static case with

multiple bidders is discussed below.

3 A two-period Example

In this section, we provide an analysis of a simple case in which there are only two periods, and

thus two buyers, in order to provide some intuition about the e¤ect on the equilibrium outcome

of the type of information available to the buyers. While some features of the equilibrium are due

to the restriction to two periods, this analysis already reveals some and suggests other properties

present in the general model. Given that the purpose of the example lies in its simplicity and

tractability, we restrict attention to the standard case: the payo¤ is given by (1), with the

valuation v (x) = x and the cost c (x) = �x, � 2 (0; 1). Further, the seller�s discount factor is at
least � > �=�, where � := 2� � 1. Moreover, we assume that the buyer�s expected value does
not exceed the highest seller�s cost, that is, x < �. This means that adverse selection is severe

enough to prevent �rst-best e¢ cient trade (see Lemma 1 of Liang and Deneckere).
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3.1 Observable O¤ers

Assume �rst that the second buyer, buyer 2, observes the o¤er submitted by the �rst buyer,

buyer 1. That is, buyer 2�s belief is uniformly distributed over [x2; 1], where x2 is the marginal

type corresponding the observed o¤er submitted by buyer 1.7

Since buyer 2 is the last buyer, his optimization problem is the familiar static one. The seller

will accept buyer 2�s price o¤er p if and only if his type x is such that p � �x. Therefore, buyer
2�s optimal �type�o¤er (in terms of marginal type x) must maximizeZ x

x2

(t� �x) dt;

over x in [x2; 1]. Indeed, this integral term is his payo¤ (up to a constant factor (1� x2)
�1

ignored throughout), if all seller�s types up to x accept. It is easy to see that the optimal type

o¤er equals min f1; �x=�g. More precisely, if x2 < �=�, the optimal type o¤er is �x2=�, and the
corresponding price is �2x2=�; if instead x2 � �=�, the optimal type o¤er is 1, and the price is
�.

Buyer 1 faces a more interesting problem. If he submits a type o¤er x < �=�, the seller�s

marginal type x can expect to get a price �2x=� in the second period, so that the price p (x)

buyer 1 must o¤er satis�es

p (x)� �x = �
�
�2x

�
� �x

�
, or p (x) =

�
�
�2

�
+ (1� �)�

�
x, x < �=�:

Observe that �2 � � = (1� �)2 > 0. Therefore, if � is large enough, the coe¢ cient of x in p (x)
strictly exceeds 1. In that case, p (x) > x and such o¤ers are strictly unpro�table if x > x.8

On the other hand, if buyer 1 submits a type o¤er x � �=�, the seller�s marginal type x can
expect a price of � by rejecting, so that the price p (x) that buyer 1 must o¤er satis�es

p (x)� �x = � (�� �x) , or p (x) = ��+ (1� �)�x, x � �=�;

an a¢ ne function in x. In that case, buyer 1�s payo¤, as a function of his type o¤er, isZ x

x

(t� p (x)) dt:

7Since x < �, it follows that x2 < 1.
8More precisely, ��2=� + (1� �)� > 1 if and only if � > �=�, which has been assumed.
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Hence, his marginal payo¤ is

x� p (x)� p0 (x) (x� x) = (1� 2 (1� �)�)x� �� + (1� �)�x;

an a¢ ne function in x that is strictly increasing in x, since 1 � 2 (1� �)� > 0 is precisely

equivalent to � > �=�. That is, buyer 1�s payo¤ is a strictly convex function of his o¤er. The

maximizer over the interval [�=�; 1] is therefore either �=� or 1. The former yields a strictly

negative payo¤, because p (x) is continuous at �=� > x, yet we have seen that all serious o¤ers

below �=� are strictly unpro�table. The latter is also strictly unpro�table, since by assumption

the expected value falls short of the seller�s higher cost.9 It follows that buyer 1 necessarily

submits a losing o¤er.

We summarize this discussion in the following Proposition.

Proposition 3.1 Assume v (x) = x, c (x) = �x; � > �=� and x < �. The unique equilibrium

outcome in the two-period game with observable o¤ers is such that:

(i) the �rst buyer submits a losing o¤er with probability 1;

(ii) the second buyer submits the o¤er that is optimal in the static game; i.e. he o¤ers the

price �x�, which is accepted by all types up to x� = �x=�.

According to Proposition 3.1, the �rst buyer makes no pro�t and no sale. This may be

somewhat surprising, since there are known gains from trade between the buyer and the seller.

After all, why doesn�t the �rst buyer �preempt�the second buyer, by o¤ering immediately what

the second buyer o¤ers in the second period? The seller would be able to collect her surplus

without delay, and the �rst buyer would make a positive pro�t. The problem, of course, is

that the second buyer only o¤ers �x� if the �rst buyer submits a losing o¤er. If the �rst

buyer submitted a higher o¤er instead, buyer 2 would �up the ante�by making a larger o¤er.

Anticipating this, the seller would only accept an o¤er from the �rst buyer that is nearly as

large as the second o¤er. Indeed, if the second buyer o¤ers a price of �, the discount that the

9It follows from this analysis that, under the alternative assumption x > �, the �rst buyer would make a

winning o¤er with probability 1.
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seller�s type x is willing to accept in the �rst period is given by � � p (x) = � (1� �) (1� x),
which vanishes as � tends to 1. This explains why the �rst buyer�s payo¤ is strictly convex in the

relevant interval. If some serious o¤er were pro�table in that interval of types, then larger (type)

o¤ers would be even more so, because the corresponding price increase would be insigni�cant

compared to the impact on the average quality. Yet the only o¤er that the second buyer would

not top is a winning o¤er, which is necessarily unpro�table.

While the second buyer is able to take advantage of his monopsonistic situation and collect

a positive payo¤, we shall see in the general model that the more typical situation for a buyer

is that of the �rst buyer. Before doing so, we shall consider the case of private, or hidden o¤ers

with two buyers.

3.2 Hidden O¤ers

The analysis of the case of private o¤ers is more di¢ cult. We shall proceed by a series of claims.

The second buyer�s pro�t is positive. To see this, let x2 be the lowest type in the support of

buyer 2�s beliefs. That is, the seller accepts any equilibrium price o¤ered by the �rst buyer if and

only if his type is below x2. Note that x2 < 1 (as the expected value of the unit falls short of the

seller�s higher cost), and thus the �rst o¤er is rejected with positive probability. By o¤ering a

price in (�x2; x2), buyer 2 can guarantee himself a positive payo¤. For future reference, observe

that buyer 2�s lowest equilibrium o¤er, denoted x02, must strictly exceed x2.

The �rst buyer�s pro�t is zero, and he submits a losing o¤er with positive probability. Consider

the �rst buyer�s payo¤ as a function of an o¤er x 2 (x; x02). By de�nition, the second buyer�s
o¤er necessarily exceeds x02, so that the price that the �rst buyer should o¤er must solve

p (x)� �x = � (E [p2]� �x) , or p (x) = �E [p2] + (1� �)�x, x 2 (x; x02) ;

where E [p2] is the expected equilibrium price o¤ered by the second buyer. By the same argument

as above, the corresponding payo¤ is strictly convex in x, so that its maximum over this interval

is either attained at x or at x02. However, we have seen that x
0
2 > x2, so that x2 = x, establishing

both assertions.
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Both buyers� strategies are (totally) mixed. Suppose that buyer 2 follows a pure strategy,

making the o¤er x02 (at a price �x
0
2) with probability 1. Observe that this price would also be

accepted by types x � x02 if it were o¤ered by the �rst buyer, so that the �rst buyer could make
a positive pro�t, which is a contradiction. Suppose now that buyer 1 follows a pure strategy

and therefore makes the losing o¤er x with probability 1. Then the second buyer�s optimal o¤er

would be unique (and equal to �x=�, as in the public case), so that his strategy would be pure.

Buyer 2�s strategy assigns positive probability to exactly two o¤ers. First, if buyer 2 assigns

positive probability to two distinct o¤ers x02 and x
00
2, buyer 1 must submit some o¤er in (x

0
2; x

00
2).

If not, then buyer 2�s payo¤ is a strictly concave function in x over (x02; x
00
2) (as the density of the

type distribution is uniform over this interval), which is continuous over [x02; x
00
2]. Therefore, it

cannot achieve its maximum at both endpoints simultaneously. Second, observe that buyer 1�s

payo¤ from o¤er x can be written as

(x� x)
�
x+ x

2
� p (x)

�
; (2)

where p (x) solves p (x) � �x = � (E [(p2 � �x) 1p2��x]) = � supy2R E [(p2 � �x) 1p2�y]. As a

supremum of a¢ ne functions, p is convex over any interval (x01; x
00
1) � [x; 1], and is a¢ ne over this

interval if and only if buyer 2 does not submit any o¤er in this interval with positive probability. If

buyer 1 submits both o¤ers x01 and x
00
1 with positive probability, it must be that p (x) � (x+ x) =2

with equality for both x = x01; x
00
1. Thus, this is only possible if buyer 2 does not submit any

o¤er in this interval with positive probability. We now combine these two observations. Assume

that buyer 2 submits three o¤ers x02, x
00
2 and x

000
2 with positive probability, with x

0
2 < x

00
2 < x

000
2 .

Hence, buyer 1�s strategy must assign positive probability to o¤ers both in [x02 + "; x
00
2 � "], and

in [x002 + "; x
000
2 � "], for some " > 0. In turn, this implies that buyer 2 cannot submit any o¤er in

(x002 � "; x002 + "), which is a contradiction.
Buyer 1�s serious o¤ers are concentrated on [x02; x

00
2]. We already know that buyer 1 cannot

submit o¤ers in (x; x02), so it remains to show that he cannot do so either over (x
0
2; 1). Over this

interval, p (x) = �x, so that his payo¤ written above is a strictly concave quadratic function.

If some x01 2 (x02; 1) maximized this function, it would thus have to be that both factors of (2)
are zero (since both the payo¤ at x01 and its derivative at x

0
1 would have to vanish), which is
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impossible, since x02 > x.

The following proposition summarizes these �ndings and completes the characterization of

the equilibria. While the proposition describes the main necessary conditions only, the necessary

and su¢ cient conditions can be found in the proposition�s proof.

Proposition 3.2 Assume v (x) = x, c (x) = �x; � > �=� and x < �. There is a continuum of

equilibria. In all equilibria:

(i) the second buyer�s strategy assigns positive probability to a losing o¤er and some serious

o¤ers in [x02; x
00
2], where x

0
2 = �x

00
2 = x

�;

(ii) the second buyer�s strategy assigns positive probability to two serious o¤ers, x02 and x
00
2

(with probability 1� �= (2��) and �= (2��) respectively).

Proof. It remains to be shown that the two o¤ers of buyer 2, x02 and x
00
2, are indeed given

by (i) x02 = �x
� = �x=� and (ii) x002 = x

� = x=�, (iii) that the probability of the latter o¤er is

�= (2��), and (iv) that there is a continuum of equilibria.

(i) For any o¤er x2 in [x; x02], the distribution over seller�s type, conditional on the o¤er being

accepted, is uniform over [x; x2]. Since x� is the optimal o¤er against a uniform distribution over

[x; 1], buyer 2 would thus strictly prefer o¤ering x� to x02 if x
0
2 > x

�. On the other hand, suppose

that x02 < x
�. Since buyer 1 submits no serious o¤er less than x02, the density of buyer 2�s belief

is constant (say, equal to �) over this interval. Note that, if buyer 1�s belief were uniform over

[x; x+ ��1], he would optimally submit o¤er ~x = min fx+ ��1; x�g > x02. Observe that, given
his actual belief, the average quality conditional on winning with an o¤er ~x is larger than with

the uniform belief, and that the probability of the seller�s accepting such an o¤er is also higher

than with the uniform belief. Therefore, the o¤er ~x is strictly more pro�table with buyer 2�s

actual belief than with the belief that is uniformly distributed over [x; x+ ��1], while the o¤er

x02 is equally pro�table under either belief. Since, with the uniform distribution, the o¤er ~x is

strictly more pro�table than the o¤er x02, the same must be true with buyer 2�s actual belief,

which contradicts the optimality of x02.
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(ii) and (iii) The price p(x) that buyer 1 must o¤er to x 2 (x02; x002) is given by

p1(x) = �x+ ��2(�x
00
2 � �x); (3)

where �2 is the probability assigned by buyer 2 to o¤er x002. Since buyer 1 submits o¤ers in

[x02; x
00
2], it must be that p(x) � (x+ x) =2 for all x 2 [x02; x002], with equality for some x 2 [x02; x002].

Since p(�) is a¢ ne, the equality p(x) = (x+ x) =2 must hold throughout the interval [x02; x
00
2].

Identi�cation with (3) yields

�(1� ��2) =
1

2
and

x

2
= ���2x

00
2;

which gives the result.

(iv) Observe that, if buyer 2 randomizes according to Proposition 3.2, buyer 1�s strategy

is optimal if and only if his o¤ers are either losing or in the interval [x02; x
00
2]. Therefore, to

characterize all equilibria, we must provide the necessary and su¢ cient condition guaranteeing

that the o¤ers x02 and x
00
2 are optimal for buyer 2.

Let G1 be the cumulative distribution function of buyer 1�s o¤er, and de�ne F2 by F2(x) =
1

1� x

Z x

x

G1(t)dt. F2(x) it the (unconditional) probability that the seller is of type t � x, and

has rejected buyer 1�s o¤er. Thus, buyer 2�s payo¤ when o¤ering x is equal to

�2(x) =

Z x

x

(t� �x)dF2(t):

Since x02 = x�, the o¤er x02 is more pro�table than lower o¤ers. Thus, buyer 2�s strategy is

optimal if and only if

�2(x
0
2) = �2(x

00
2) and �2(x) � �2(x02); for all x � x02:

Integration by parts yields that

�2(x) = �2(x
0
2) + (1� �)xF2(x)� (x02 � �x)F2(x02)�

Z x

x02

F2(t)dt:

The function F2 is convex, nondecreasing and continuous over [x02; 1], with F2(x
0
2) � (x02 � x) = (1� x)

and F2(x) = F2(x
00
2) + (x � x002)=(1 � x) for x � x002. Conversely, any such positive function is
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associated with some strategy of buyer 1. Among these functions, a necessary and su¢ cient

equilibrium condition is thus

(1� �)xF2(x)� (x02 � �x)F2(x02) �
Z x

x02

F2(t)dt

for all x � x02, with equality for x = x002. Plainly, there is a continuum of such strategies.

According to Proposition 3.2, there is a continuum of equilibria. In fact, the support of buyer

1�s o¤ers may be �nite or not.10 As the careful reader may have noticed, the multiplicity in this

example is closely tied to the linearity that is common to the valuation and the cost function

(that is, player 1 would randomize over two o¤ers exactly in general). While this is correct, we

shall see that multiple equilibria are no longer �nongeneric� in the general model with private

o¤ers.

Despite this multiplicity, the comparison between both scenarios is now easy to make. Buyer

1 is indi¤erent between both cases, because his payo¤ is zero in either one. Buyer 2 prefers public

o¤ers, because in both cases he submits the o¤er x� at a price �x� with positive probability, but

this o¤er is more likely to be accepted with public o¤ers. The seller prefers private o¤ers, because

buyer 2 o¤ers a price of at least �x� in the private case, and possibly more. Finally, the social

surplus is also larger in the case of private o¤ers, because the probability of trade is larger and

trade occurs no later with private o¤ers, relative to public o¤ers.

As we shall see, some but not all of these properties hold true in the general model. With

public o¤ers, buyers get deterred from submitting a serious o¤er, because the seller can expect

a much higher o¤er in the following period by rejecting it. As a consequence, buyers�payo¤s are

low, and so is the probability of trade. With private o¤ers, buyers�payo¤s may not be large, but

they typically submit serious o¤ers, which results in a higher probability of trade.

While a detailed analysis of the model with recall is beyond the scope of this paper, it is worth

mentioning at this point that the assumption of no recall does a¤ect the equilibrium strategies in
10Among these equilibria, there is a unique one in which buyer 1 submits exactly one serious o¤er with

positive probability. In this equilibrium, buyer 1 submits o¤er x1 = x
�
1 + 1��

��1

�
with probability �1 =�p

� (4 + �) + �� 2
�
= (2�).
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the case of hidden o¤ers. In the simple two-period example developed here, the equilibrium with

recall also involves randomization by both bidders. In this case as well, the �rst bidder�s payo¤

is zero, while the second bidder�s payo¤ is positive. However, the support of the bid distributions

is di¤erent in the two cases, and so is the expected revenue of the seller. Perhaps surprisingly,

in speci�c examples, the seller is better o¤ without recall, primarily because the second seller is

more likely to submit the lower o¤er with recall than without it. This contrasts with the obvious

ranking in the standard models of search in which the distribution of o¤ers is exogenous, and

suggests here as well that endogenizing this distribution may overturn familiar conclusions. By

contrast, in the case of observable o¤ers, in which the equilibrium involves pure strategies, both

in the simple example and in the general case, the results are identical with or without recall.

4 General Case: Observable O¤ers

We return now to the general model described in Section 2, in which there are countably many

periods, so that there is no �last�buyer as in Section 3. Throughout this section, we maintain

the assumption that o¤ers are public.

Given x, observe that there exists at most one value of y 2 [x; x] solvingZ x

y

(v (t)� c (x)) dt = 0:

That is, if it exists, type y is such that the expected value to the buyer over all the types in [y; x]

is equal to the highest cost over types in this interval, c (x). See Figure 1(a) for an illustration in

the case of c (x) = �v (x) = x, � > 1=2, in which the inverse f�1 of f is well-de�ned. The value

y exists if and only if adverse selection is severe enough that the buyer�s expected value does not

exceed the highest seller�s cost. If it exists, y is unique because v is strictly increasing.

Let f (x) = y 2 [x; x] denote this value, as a function of x, whenever it exists. Because

infx fv (x)� c (x)g > 0, it must be that x � y > � for some � > 0, for all x. Observe that

the mapping f plays a key role in the analysis of the static model of adverse selection between

one seller and many (more precisely, two or more) buyers. Following logic à la Bertrand, any

equilibrium outcome of this static version involves two or more buyers making an o¤er x such
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that x = f (x) at the price c (x) (as long as f (1) is de�ned; otherwise, they o¤er c (1)). Note

that any such o¤er x strictly exceeds x�, the optimal o¤er that a lone buyer would submit.

De�ne the strictly decreasing sequence xk as follows: x0 = 1, xk+1 = f (xk), as long as f (xk)

is de�ned. Since x� f (x) > �, this sequence must be �nite, and we denote the smallest element
of this sequence by xK .11 For instance, if c (x) = �v (x) = �x, with � > 1=2, it is easy to verify

that xk = �
k, � = 2�� 1.

The sequence fxkg plays an important role in Proposition 4.1. While it is possible that
xK = x, this proposition is stated here for simplicity for the generic case in which xK > x.

Proposition 4.1 Assume that xK > x, and � > ��. There is a unique equilibrium outcome,

which is independent of �. On the equilibrium path, the �rst buyer submits the price c (xK),

which the seller accepts if and only if x � xK. If this price is rejected, all buyers n > 1 submit a
losing o¤er.

Before turning to the proof, it is worth o¤ering an intuition for why all buyers but the �rst

necessarily submit losing o¤ers. The logic here is similar to the one that which we applied to

the �rst buyer in the two-period example. Consider the problem faced by buyer n > 1. While

both this buyer and the seller know that there are gains from trade, they are unable to reach

an agreement. The reason is that, while buyer n + 1 submits a losing o¤er on the equilibrium

path, he only does so as long as buyer n does as well. If buyer n were to submit a serious o¤er

x 2 (xk; xk�1), for some k � K, buyer n + 1�s equilibrium action would actually be to o¤er the

price c (xk�1), accepted by the seller if and only if his type is below xk�1. Later buyers would

then all submit losing o¤ers. That is, if buyer n were to submit such a serious o¤er x, play would

proceed as if x were the initial value x.

Assuming that buyers n + 1,. . . follow such strategies, why is it not pro�table for buyer n

to submit a serious o¤er? First of all, by de�nition of xK = f (xK�1), it would be unpro�table

for this buyer to submit an o¤er x equal to or larger than xK�1, because the corresponding

11Not surprisingly, this sequence also plays a key role in Deneckere and Liang�s analysis, where it is denoted

by q�n.
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price would need to be at least as large as c (x). Therefore, only o¤ers in (xK ; xK�1) need to be

considered. Consider Figure 1(b). If future buyers were submitting losing o¤ers, the price that

buyer n would need to submit would, indeed, be c (x), which is less than v (x), so that such an

o¤er would be pro�table. But buyer n + 1 does not submit a losing o¤er. Given his response,

the price that buyer n must o¤er solves

p (x)� c (x) = � (c (xK�1)� c (x)) ;

that is, p (x) = c (xK�1)� (1� �) (c (xK�1)� c (x)). This function is nearly ��at�when the buyer
is su¢ ciently patient. Thus, the price is almost insensitive to the o¤er, so that the payo¤ of

buyer n is strictly convex in his o¤er over this range. Either it is pro�table to make the o¤er

xK�1, or no serious o¤er is pro�table. But by de�nition of xK�1, such an o¤er is not pro�table.

This reasoning explains why it is optimal for buyers to follow the equilibrium strategies and

submit losing o¤ers, but it does not explain why this is the unique equilibrium outcome. This

requires more work, and relies on backward induction over types, starting from the highest type.

The actual method is described at the beginning of the following proof.

- -
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Proof of (4.1): We �rst show that, if there exists some equilibrium, it must have a simple

structure. The proof is by induction over K. The proof for K = 0 is, in most respects, identical

to the proof of the induction step, and we therefore provide only the latter. Fix an equilibrium

and assume that, for every n � 1 and after any history hn�1 on the equilibrium path such that

xn = x, buyer n submits the price c(xl) whenever x 2 (xl+1; xl] for some l < k. We now prove
that the same conclusion holds for l = k. The proof is broken into the following four steps:

� whenever xn = x 2 (xk+1; xk), no equilibrium o¤er of buyer n is accepted by some type

s > xk;

� whenever xn = x 2 (xk+1; xk], if an equilibrium o¤er of buyer n is accepted by s = xk, then
all subsequent o¤ers are losing ones; in addition, if xn = xk, the unique equilibrium price

of buyer n is c(xk);

� whenever xn = x 2 (xk+1; xk] is close enough to xk, the unique possible equilibrium price

of buyer n is c(xk), which the seller accepts if and only his type is at most xk;

� whenever xn = x 2 (xk+1; xk], the unique equilibrium price of buyer n is c(xk), which the

seller accepts if and only his type is at most xk.

Step 1: If buyer n submits a price p(s) with marginal type s 2 (xl+1; xl] for some l < k, the

following price is c(xl) by the induction hypothesis. Hence, p(s) must solve

p(s)� c(s) = �(c(xl)� c(s));

so that buyer n�s payo¤ is

1

1� x

Z s

x

(v(t)� �c(xl)� (1� �)c(s)) dt:

As a function of s, the integral is twice di¤erentiable over the interval (xl+1; xl], with �rst and

second derivatives given by

v(s)� �c(xl)� (1� �)c(s)� (1� �)c0(s)(s� x);
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and

v0(s)� 2(1� �)c00(s)(s� x):

Since (2Mc0 +Mc00 )(1 � �) < m, buyer n�s payo¤ is strictly convex over (xl+1; xl]. Since buyer
n�s payo¤ is negative for s = xl, the claim follows.

Step 2: We argue by contradiction. We thus assume that, for some n and hn�1 with xn = x 2
(xk+1; xk), there is a positive probability that an equilibrium price pn by buyer n with marginal

type xk is eventually followed by a serious o¤er. This implies pn > c(xk). Let �p be the supremum

of all such prices (with marginal type xk), where the supremum is taken over all n and hn�1.

Given any buyer n and history hn�1, note that the price pn(x) with marginal type x � xk

does not exceed �p. Indeed, denoting the supremum over all such prices by p�, and denot-

ing the �rst buyer submitting an o¤er that type x accepts by �(x), one has pn(x) � c(x) =
E
h
��(x)(p�(x) � c(x))j�(x) > n

i
� � (max (�p; p�)� c(x)), hence p� � �p.

Consider a buyer and a history (still denoted by n and hn�1) who submits an equilibrium

price pn with marginal type xk, and such that pn > (1��)c(xk)+��p. If, instead, buyer n deviates
and submits a serious price p(s) with marginal type s < xk, then p(s) does not exceed

p(s) � (1� �)c(s) + ��p � (1� �)c(xk) + ��p:

By choosing s close enough to xk, buyer n�s payo¤,
1

1� x

Z s

x

fv(t)� p(s)g dt, is thus higher than

the equilibrium payo¤,
1

1� x

Z xk

x

fv(t)� png dt, which is a contradiction.

We turn to the second assertion, and let n and hn�1 2 Hn�1 be given, with xn = xk. Since

x < xK , there must exist, along hn�1, a buyer who submitted a serious o¤er with marginal type

xk. As we just proved, any such o¤er is necessarily followed by losing o¤ers. In particular, buyer

n�s equilibrium price is c(xk).

Step 3: Let n and hn�1 2 Hn�1 be given, with xn = x < xk. Consider a potential price

p(s), with marginal type s. Obviously, p(s) � c(s). Observe also that by Step 2, p(s) � c(s)
converges to zero as s increases to xk. Hence, buyer n�s payo¤,

1

1� x

Z s

x

fv(t)� p(s)g dt, is at
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most
1

1� x

Z s

x

fv(t)� c(s)g dt, and the di¤erence converges to zero, as s increases to xk. The
latter integral, as a function of s, is di¤erentiable, with derivative v(s) � c(s) � c0(s)(s � x),
which is positive as soon as s � x < m

Mc0
. Thus, for x close enough to xk, the upper bound,

1

1� x

Z s

x

fv(t)� c(s)g dt, is increasing over [x; xk). Hence, for such x, buyer n�s only possible
equilibrium price is c(xk) (assuming that some equilibrium exists).

Step 4: Again, we argue by contradiction. We assume that, for some n and hn�1 with xn > xk+1,

buyer n�s strategy assigns a positive probability to serious o¤ers with marginal type below xk.

Among all such n and hn�1, let ~x 2 (xk+1; xk) be the supremum of xn.

Consider now any n and hn�1 with x = x < ~x. By de�nition of ~x, any price p(s) with

marginal type s > ~x is followed by a price c(xk) from the next buyer, so that p(s) must satisfy

p(s)� c(s) = �(c(xk)� c(s));

and buyer n�s payo¤ writes

1

1� x

Z s

x

fv(t)� �c(xk)� (1� �)c(s)g dt:

As in Step 1, the integral is a strictly convex function of s. Therefore, the marginal type of any

equilibrium o¤er is either equal to xk, or lies in the interval [x; ~x]. In the former case, buyer n�s

price is c(xk), and his payo¤ is positive since ~x > xk+1. In the latter case, buyer n�s payo¤ is

at most (~x� x) (v(~x)� c(x)), which is arbitrarily close to zero, provided x is close enough to ~x.
As a consequence, for x < ~x close to ~x, the unique equilibrium price of buyer n is c(xk), with

marginal type xk. This contradicts the de�nition of ~x.

To conclude the proof, observe that the following strategy pro�le, de�ned recursively, is

indeed an equilibrium. To each history hn, we associate a unique xn as follows. Let x0 = x and

given xn�1 and pn, de�ne xn as follows. If there exists xk = min
�
xk0 � xn�1 : c (xk0) � pn

	
, let

xn = max
�
x; xn�1

	
, where x solves pn � c(x) = �(c(xk) � c(x)). If such xk does not exist, let

xn = 1. Observe that xn only depends on (h
n�1; pn). Given hn�1, we specify buyer n�s belief as

being the uniform distribution over
�
xn�1; 1

�
(possibly degenerate on 1). Given hn�1, the buyer�s
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strategy �nB (h
n�1) assigns probability 1 to the o¤er xn. Given (h

n�1; pn), the seller�s strategy

�nS (x; h
n�1; pn) assigns probability 1 to Accept if and only if x � xn. �

It is now possible to draw a comparison between the dynamic version with public o¤ers and

the static version (at least in the generic case in which xK > x). Observe that, depending on

the exact value of x, xK could be anywhere in the interval (x; xK�1), so that both xK > x� and

xK � x� may occur. This means that, from the seller�s point of view, the comparison between

the dynamic version and the static version with a unique buyer is ambiguous. The probability

of sale and the expected revenue could be larger in either format depending on x. However, a

benchmark that is arguably most natural is the static version with two or more buyers, because

the dynamic version involves more than one buyer. The comparison is then immediate, as the

o¤er in the static o¤er must be at least as large as xK . Thus, the seller is better o¤ in the static

version, having the di¤erent buyers compete simultaneously for the unit, rather than one at a

time. The probability of trade is higher in the static version. Only the �rst buyer is better o¤

in the dynamic version, while all other buyers are indi¤erent. As an immediate consequence,

the bargaining outcome generically fails to be ex ante e¢ cient, i.e. there exists an incentive-

compatible and individually rational mechanism that yields higher expected gains from trade.

Indeed, with a single buyer, consider the mechanism in which the seller must accept or reject the

�xed price c (x), where x is the largest root of f (x) = x.

In light of the existing literature on bargaining with correlated values, the result that trade

does not necessarily occur is rather surprising. The most recent contribution to this literature,

Deneckere and Liang (2006), �nds that such trade occurs with delay whenever (in our notation)

x < x1, but that it occurs nevertheless with probability 1. The formal di¤erence is that Deneckere

and Liang consider the case of a single long-run buyer, rather than a sequence of short-run buyers.

It is worth pointing out that Proposition 4.1 remains valid in the case of a single long-run buyer,

provided he is su¢ ciently impatient. Hence, when combined, these two results point out that

the possibility of trade depends on the relative patience of the buyer relative to the seller, an

insight that was already hinted at by Evans (1989) in the case of binary values.

Just as Proposition 4.1 remains valid with a single impatient buyer, it is also valid if the

24



number of buyers is �nite, as long as the probability that each of them is selected to make the

o¤er in each of countably many periods is su¢ ciently small. In either case, because the buyer

discounts su¢ ciently the possible surplus from meeting the seller again, he either makes an

aggressive o¤er, or makes none at all. Because the seller is patient, and a serious o¤er submitted

by all but the �rst buyer triggers another serious o¤er in turn, such aggressive o¤ers turn out to

be unpro�table.

The positive results of Vincent (1989) and Deneckere and Liang (2006) rely on the screening of

types that bargaining over time a¤ords. Because delay is costly for the seller, buyers become more

optimistic over time, so that the underlying uncertainty is progressively eroded. Our negative

result points to another familiar force in dynamic games; namely, the absence of commitment.

Indeed, if the horizon were �nite, as in the two-period example of the previous section, the last

buyer would necessarily submit a serious o¤er. However, since Coase�s (1972) original insight, the

inability to commit has always been associated with an increase in the probability of trade. To

quote Deneckere and Liang (p. 1313), the �absence of commitment power implies that bargaining

agreement will eventually be reached�. This is because the traditional point of view emphasized

the inability of the buyer to commit to not making another o¤er. Instead, the driving force here

is the inability of the seller not to solicit another o¤er. This leads to a fall in the probability of

trade, and an increase in the ine¢ ciency. It is then natural to wonder whether the result hinges

on the buyer, rather than the seller, making the o¤er. As we shall discuss in Section 6, the real

issue is not who has the initiative, but rather who has the last word in each period. We interpret

the inability to commit as meaning that the seller has the last move in each period, deciding in

�ne whether to accept the outstanding o¤er, however it came to be, or to turn to another buyer.

To conclude this section, we comment brie�y on the knife-edge case in which x = xK . Then,

as long as the marginal type is x, any randomization over the o¤ers fxK ; xK�1g is optimal, the
payo¤of either o¤er being zero. Because x = xK , equilibrium considerations do not uniquely �pin

down�the mixture, as is done in the proof above for the case x < xK in which the marginal type is

xk, k � K, after an equilibrium o¤er that is serious. Indeed, the only reason why the equilibrium
(as opposed to the equilibrium outcome) for the case x < xK is not unique is that nothing pins
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down the behavior when the marginal type is xk, k � K, following an out-of-equilibrium o¤er.

Beyond this indeterminacy, the case x = xK is identical to the case x < xK . In particular, along

the equilibrium path, the seller rejects all o¤ers provided t � xK�1.

5 General case: Hidden O¤ers

As in the previous section, we consider the general set-up of Section 2, in which there are count-

ably many periods. Unlike in the previous section, we now assume that o¤ers are unobservable.

5.1 General Properties

As we are unable to explicitly construct equilibria in general, we �rst argue that an equilibrium

exists. If no later buyer sets a price exceeding �c, it is suboptimal for a given buyer to set such a

price. Hence, for the purpose of equilibrium existence, we can limit the set of mixed (or behavior)

strategies to the setM([0; �c]) of probability distributions over the interval [0; �c], endowed with

the weak-? topology. The set of strategy pro�les is thus the countable product M([0; �c])N. It

is compact and metric when endowed with the product topology. Since the random outcome of

buyer n�s choice is not known to the seller unless he has rejected the �rst n� 1 o¤ers, buyer n�s
payo¤ function is not the usual multilinear extension of the payo¤ induced by pure pro�les. We,

however, follow the standard proof. Let any buyer n be given, and let x(p; �) denote the marginal

type for the o¤er p, given a strategy pro�le �. It is jointly continuous in p and �. Hence, the set

Bn(�) �M([0; �c]) of best replies of buyer n to the strategy pro�le � is convex-valued and upper

hemi-continuous in �. The existence of a (Nash) equilibrium follows from Glicksberg�s �xed point

theorem. To any such equilibrium, there corresponds a perfect Bayesian equilibrium, because

all buyers�private histories are on the equilibrium path until trade occurs with probability 1, if

ever.

While an equilibrium always exists, it need not be unique. To give a concrete example, if

c (x) = �v (x) = �x, with � = 3=4 and � = 3=4, and x = :4249, it can be shown that the

following two equilibria, and probably more, exist (details available from the authors).
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� The �rst buyer o¤ers � = 1=2 for sure, at a price p1 ' :46. The second buyer makes

a losing o¤er. Buyer 3 and later buyers randomize between a winning and a losing o¤er,

o¤ering the winning price 3=4 with probability 3=20, and a losing o¤er with complementary

probability.

� The �rst buyer randomizes between a losing o¤er and the o¤er x1 ' :51, at a price p1 ' :47,
assigning a probability �1 ' :40 to the losing o¤er. The second buyer randomizes between
a losing o¤er and the o¤er x2 ' :62, at a price p2 ' :54, assigning a probability �2 ' :76 to
the losing o¤er. Buyer 3 and later buyers randomize between a winning and a losing o¤er,

o¤ering the losing price with probability � ' :94.

We summarize the discussion so far in the following lemma.

Lemma 5.1 An equilibrium exists. For some parameters, the equilibrium is not unique.

In fact, as we shall see, the equilibrium is unique if and only if x > x1, as de�ned in Section

4.

The two equilibria described above are quantitatively very di¤erent. They di¤er in terms of

expected delay, revenue, and buyers�pro�t (the �rst buyer�s pro�t is positive in the �rst equi-

librium). Nevertheless, there are some qualitative similarities. Both equilibria involve mixed

strategies. More importantly, in both equilibria, trade occurs with probability 1. This is no coin-

cidence: as the following proposition shows, all equilibria necessarily involve eventual agreement.

Proposition 5.2 In all equilibria, trade occurs with probability 1.

Proof: Fix some equilibrium. Given x 2 [x; 1], let Fn (x) denote the (unconditional) probability
that the seller is of type t � x and has rejected all o¤ers submitted by buyers i = 1; : : : ; n � 1.
Suppose, for the sake of contradiction, that trade does not occur with probability 1 eventually,

i.e. limn!1 Fn (x) 6= 0 for some x < 1. In particular, the probability that the seller will accept
buyer n�s o¤er, conditional on having rejected the previous ones, converges to zero as n increases.

Hence, the successive buyers�equilibrium payo¤s also converge to zero.
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Let F = limn!1 Fn. Choose x such that F (x) > 0 andZ x

x

�
v(t)� c(x)� �

2

�
dF (t) > 0: (4)

Note that
F (x)� Fn(x)

Fn(x)
is the probability that type x will accept an o¤er from some buyer

beyond n (conditional on having rejected all previous o¤ers). Since F (x) > 0, this probability

converges to zero, and the o¤er pn(s) with marginal type s thus converges to c(x). As a result,

pn(s) � c(s)+ �
2
for all n large and, using (4), buyer n�s equilibrium payo¤ is bounded away from

zero, which is a contradiction. �
Observe that Proposition 5.2 holds independently of �. This proposition establishes that o¤ers

arbitrarily close to 1 are eventually submitted. We shall show later that, if � > ��, a stronger

result holds: a winning o¤er is submitted with probability 1 in �nite time.

It may be instructive to understand why the unique equilibrium outcome in the game with

observable o¤ers is no longer an equilibrium outcome with unobservable o¤ers. After all, given

that in the former equilibrium buyers use pure strategies, it may seem that whether their actions

are observed or simply inferred in equilibrium should make no di¤erence. The di¤erence, of

course, lies in what happens after a deviation. With public o¤ers, buyer n + 1 only submits a

losing o¤er if buyer n does so as well. If, instead, buyer n deviates and submits a serious o¤er,

then so would buyer n+ 1. With unobservable o¤ers, it is no longer possible for buyer n+ 1 to

submit di¤erent o¤ers as a function of buyer n�s o¤er. In turn, this implies that, if buyer n + 1

and later buyers were only submitting losing o¤ers in the game with unobservable o¤ers, buyer

n could make a pro�t by o¤ering a price just above the lowest possible seller�s cost, because the

seller could not reject it for the sole reason of initiating an aggressive o¤er from the next buyer.

According to Proposition 5.2, agreement is always reached in �nite time. It is natural to

wonder how fast agreement is reached, because this is directly related to the e¢ ciency of the

bargaining outcome. That is, let �(1) denote the random period in which a winning o¤er is �rst

submitted. The next proposition places bounds on E
h
��(1)

i
, the expected delay until agreement

is necessarily reached.
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Proposition 5.3 Assume that � > ��. There exists constants 0 < c1 < c2 < 1 such that, in all

equilibria,

c1 � E
h
��(1)

i
� c2:

The proof of this result, and the proofs of all remaining results in the section, can be found

in the appendix. Delay (c2 < 1) should not come as a surprise. Since the seller can always wait

until the �rst winning o¤er is submitted, and serious o¤ers until then must yield a pro�t to the

buyers submitting them, real delay must make waiting until the winning o¤er is made a costly

alternative to the sellers�s lower types. Slightly less obvious is the second conclusion; namely,

that the cost of delay remains �nite (c1 > 0).

In the �rst example of an equilibrium given in this section, the �rst buyer enjoys a pro�t, but

all other buyers make zero pro�t. More complicated examples of equilibria can be constructed in

which more than one buyer makes a pro�t, although it may be true that there always exists some

equilibrium in which all buyers�pro�ts are zero. However, in all equilibria, all buyers�pro�ts are

small, as formalized in the following proposition.

Proposition 5.4 There exists a constant M > 0 such that, for every � > �� and every equilib-

rium, the pro�t of buyer n is at most

(1� �)2M:

Observe that Proposition 5.4 implies that the buyers�aggregate pro�ts also converge to zero

as the friction disappears, as each buyer�s pro�t converges to zero at the rate (1� �)2.
According to the next proposition, buyers that make a pro�t are infrequent, in the sense that

two buyers who make a pro�t must be su¢ ciently far apart in the sequence of buyers.

Proposition 5.5 There exists a constant M > 0 such that, for every � � �� and every equilib-
rium, the following holds. If buyers n1 and buyers n2 have a positive equilibrium pro�t, then

jn2 � n1j �
M

1� � :

In fact, as we will see, there is an upper bound on the number of buyers with positive pro�t

that is independent of both the equilibrium and the discount factor.
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5.2 Equilibrium Strategies

As mentioned at the beginning of this section, we do not provide an explicit characterization of

an equilibrium for general parameters. Nevertheless, as the examples described above suggest,

all equilibrium strategies share common features. To describe these features, further notation

must be introduced. Given some equilibrium, let Fn (x) denote the (unconditional) probability

that the seller�s type t is less than or equal to x and that the seller has rejected all o¤ers

submitted by buyers i = 1; : : : ; n � 1. Set xn = inf fx : Fn (x) > 0g. Buyer n�s strategy is a
probability distribution over prices in [c(x); �c] that he o¤ers. We denote by Pn the support12of

this distribution and by Tn the corresponding (closed) set of marginal types. That is, if buyer

n�s strategy has �nite support, x 2 Tn if and only if it is an equilibrium action for buyer n to

submit some price pn that a seller with type t accepts if and only if t � x.
The following proposition complements Proposition 5.2, because it shows that a winning o¤er

is eventually submitted. It also complements Proposition 5.5, because together they imply that

the number of buyers that enjoy a pro�t is bounded above, uniformly in the discount factor and

the equilibrium.

Proposition 5.6 Assume that � > ��. Given some equilibrium, let N0 = inf fn 2 N [ f1g : 1 2 Tng.
There exists a constant M > 0 such that, in all equilibria, N0 �M=(1� �). Further, given some
equilibrium, Tn � fxN0 ; 1g for all n � N0. For all n > N0, buyer n�s equilibrium payo¤ is zero.

Thus, from period N0 on, buyers only make winning or losing o¤ers, and all but the �rst

of these make zero pro�t. In fact, it follows readily from the proof that buyer N0 makes zero

pro�t as well, as long as x � x1. There may be several values of N0 that are consistent with the
statement of Proposition 5.6. We choose N0 to be the smallest of these. Because buyer n does

not submit an o¤er above x, the largest root of xn = f (x), it follows that N0 � K � 1, where K
is de�ned by xK , as in Section 4.

It is convenient to discuss here the case in which x > x1. In this case, observe that, provided

that he is called upon to submit an o¤er, any buyer is guaranteed a pro�t, because he can always

12That is, the smallest closed set with probability one.
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o¤er the price �c. Hence, it follows from Proposition 5.6 that the unique equilibrium outcome of

the game is such that the �rst buyer o¤ers �c, which the seller accepts. Therefore, if x > x1, the

equilibrium is unique. The next proposition shows that, in all other cases, there exists multiple

equilibria. In particular, there always exists an equilibrium in which agreement is reached in

bounded time, as well as an equilibrium in which agreement is reached in �nite but unbounded

time.

Proposition 5.7 Assume that � > �� and x � x1. For every equilibrium �:

� There is an equilibrium ~�, with ~�nB = �
n
B for all n < N0, and xn = 1 for some n � N0;

� There is an equilibrium ~�, with ~�nB = �
n
B for all n < N0, and xn = xN0 for all n � N0.

Moreover, in�nitely many such equilibria exist. While the equilibria exhibited in the proof

of the previous proposition are payo¤-equivalent, for the seller and the buyers alike, the �rst

example in this section shows that this need not be true in general.

For x < x1, the next proposition formalizes the idea that all equilibria involve mixed strategies.

Proposition 5.8 Assume that � > �� and x � x1. No buyer n � N0 uses a pure strategy, except
possibly buyer 1. All buyers n � N0 submit a serious o¤er with positive probability.

Indeed, buyer 1 need not use a mixed strategy, as the �rst example given in this section illus-

trates. Without further assumptions, it is di¢ cult to establish additional structural properties

on equilibrium strategies. However, under suitable convexity assumptions, each buyer�s strategy

is a distribution with �nite support, so that each buyer randomizes over �nitely many o¤ers only.

Proposition 5.9 Assume that � > �� and x � x1. Further, assume that v is concave and c is

convex over (x; 1), with either v or c being strictly so. Then, for any equilibrium �, the support

of the probability distribution �nB is a �nite set, for every buyer n � 1.
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Together, Propositions 5.6 to 5.9 allow us to circumscribe the equilibrium strategies as follows.

During a �rst phase of the game (until periodN0�1), buyers�strategies assign positive probability
to more than one o¤er (with the possible exception of the �rst buyer�s strategy); in particular,

they all assign positive probability to serious, but not winning, o¤ers. Some of these buyers may

enjoy a small pro�t, while all others have zero pro�t; in fact, it can be shown that the number of

those not submitting a losing o¤er with positive probability is �nite as well. In a second phase

(from period N0 on), all buyers make zero pro�t, and randomize between the winning o¤er and

a losing o¤er, with relative probabilities that are to a large extent free variables. Thus, as long

as equilibrium o¤ers are rejected, the expected value of the unit strictly increases over time until

period N0, and remains constant thereafter.

Because we have not ruled out the existence of an equilibrium in which all buyers make

zero pro�t, it is tempting to investigate the existence of such equilibria, in which all buyers�

strategies, except possibly the �rst buyer�s strategy, assign positive probability to exactly two

o¤ers; a losing o¤er, and a serious, and eventually winning, o¤er.13 The second example of an

equilibrium given at the beginning of this section belongs to this family. Unfortunately, numerical

examination suggests that even in the special case in which c (x) = �v (x) = �x, such equilibria

only exist if x is close enough to x1. This suggests that either some buyers�strategies assign

positive probability to more than two o¤ers, or that the lower o¤er in the support of some buyers�

strategies is serious as well, so that the lower end of the support of the buyers�belief increases

over time. It is numerically possible to construct equilibria of the second kind for some parameter

con�gurations, but showing whether such equilibria always exist appears to be an intractable

problem.

6 Discussion and Extensions

Comparison between observable and hidden o¤ers

13This can be shown to be equivalent to the seemingly weaker statement that each buyer�s strategy assigns a

positive probability to a losing o¤er and that the expected o¤er is increasing over time.
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The striking di¤erence between the two scenarios lies in the probability of agreement. With

observable o¤ers, this probability may be arbitrarily small (if x is close to xK), and falls short

of 1 whenever x < x1. (The set of equilibria coincide in the case x � x1, a case that we

disregard in what follows). On the other hand, agreement always obtains eventually when o¤ers

are unobservable.

Other comparisons are less clear-cut. Since it is possible that x� = xK , it follows from

Samuelson�s (1984) Proposition 1 that the equilibrium outcome with public o¤ers is the preferred

one among the outcomes of all bargaining procedures from the point of view of the �rst buyer.

In particular, since eventual agreement in the unobservable case implies that serious (but not

winning) o¤ers necessarily involve prices higher than the cost of the corresponding marginal

type, the �rst buyer strictly prefers the outcome of the game with public o¤ers to the outcome

in the game with private outcome whenever x� happens to be su¢ ciently close to xK . The

same argument applies to the aggregate pro�t of the buyers. As for buyers n � 2, they weakly
prefer the outcome with hidden o¤ers, although any di¤erence disappears as frictions vanish (see

Proposition 5.4).

From the seller�s point of view, our �rst example of an equilibrium in Section 5 is clearly

preferred to the corresponding outcome with observable o¤ers by all types of the seller, so that

this equilibrium outcome with unobservable o¤ers is ex ante more e¢ cient than the unique

outcome with observable o¤ers. We have not found any example in which this conclusion would

be reversed. However, it is straightforward to show that no equilibrium is second-best e¢ cient

(the proof is available from the authors).

In terms of interim e¢ ciency, the comparison can go either way. Considering the second

example in Section 5, it is easy to check that very low types prefer the outcome under observable

o¤ers, while very high types prefer the outcome under hidden o¤ers.

Voluntary information disclosure

These results suggest that the seller may prefer that the o¤ers remain hidden. In many

economic environments, this may be di¢ cult to achieve (for instance, many types of takeover

bids are public by design). Aside from feasibility, there is the issue of commitment. If the seller

33



cannot commit to not revealing o¤ers, the equilibrium outcome with public o¤ers remains an

equilibrium in the game in which the seller chooses, in every period, whether to make public the

bid that was just submitted, as a function of this bid. As the argument is standard, we only

provide a sketch. Whenever the seller does not reveal the o¤er in period n, later buyers assign

probability 1 to buyer n having submitted the lowest o¤er within the support of his equilibrium

strategy. Therefore, buyers�beliefs are always uniform over some interval of types, as in the

public case, and the equilibrium play then proceeds as with observable o¤ers. Given this, the

seller has no choice but to reveal the o¤er he has received, as he can only (weakly) gain from

doing so. On the other hand, without further re�nement, this game also admits as equilibria all

the equilibria from the game with hidden o¤ers. For this, it su¢ ces to specify buyers�beliefs

such that, if the seller deviates and reveals an o¤er, say o¤er x, then all future buyers assign

probability 1 to the seller being of type x.

Messages by the seller

Failure to reach agreement is often due to lack of communication. Since bargaining with

public o¤ers reaches an impasse almost immediately, it is then natural to ask whether allowing

the seller to send messages (signalling his valuation, suggesting an agreeable price, etc.) would

help to break the deadlock. While an analysis of all possible bargaining procedures in this

framework lies outside of the scope of this paper, we comment here on probably the simplest

such extension. In each period n, the seller makes an announcement from some set of messages.

After the announcement, buyer n submits an o¤er, which the seller then accepts or rejects.

Given the focus on observability, it is natural to assume that, when o¤ers are observable, so

are the seller�s messages: that is, all future buyers observe all the messages sent by the seller in

all past periods. We restrict attention to the case in which buyers follow pure strategies (such

an equilibrium exists). Fixing any such equilibrium, we can construct a realization-equivalent

equilibrium in which o¤ers are independent of all messages. Indeed, we claim that any serious

o¤er submitted in period n is independent of the history of messages along the equilibrium path.

If two di¤erent serious o¤ers were submitted in period n for two distinct histories, then any

seller�s type whose strategy assigns positive probability to the sequence of messages along one
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of these histories and who accepts the resulting o¤er would be strictly better o¤ if he were to

send, instead, the other sequence of messages. This implies that messages do not matter. The

equilibrium outcome is the same in this game as in the original one without messages.

When o¤ers are private, assume that the seller�s messages are private: that is, buyer n only

observes the message that was sent in period n (of course, he observes all o¤ers submitted previ-

ously). In that case as well, messages are irrelevant: all (pure or mixed strategy) equilibria of this

game are realization-equivalent to some equilibrium without messages. The proof of this claim

is more involved than the previous one and is available from the authors. However, the intuition

is straightforward. Since messages and o¤ers are not observed, they do not a¤ect continuation

payo¤s. Consider the seller�s type that is indi¤erent between accepting and rejecting the highest

price that buyer n may submit given (one of) this seller�s type equilibrium message. Then no

other message can induce the buyer to assign positive probability to a higher o¤er, for otherwise

the seller would prefer such a message. More generally, if there are two equilibrium messages

inducing the buyer to o¤er prices that some seller�s type would accept, then the distribution over

these acceptable prices must be the same. Consequently, the seller could just as well send no

message at all.

O¤ers by the seller

The previous extension allows for a �rst move by the seller in each period, but also preserves

his position as a last mover. As we have argued in Section 4, this is because we view the deadlock

in the case of public o¤ers as a consequence of the inability of the seller to commit to not soliciting

another o¤er. Assigning this position to the buyer would introduce some limited commitment

power to the seller, because this would allow him to �tie his hands�. To see this, consider the

game in which, in every period, the seller moves �rst and makes an o¤er. The buyer moves then

second and last, by either accepting or rejecting. Because the informed party makes o¤ers, many

equilibria can be supported by a suitable choice of beliefs. However, we claim that there exists

an equilibrium in which agreement is reached in �nite time. Here as well, we only sketch the

construction (details are available upon request). In every period, the seller makes one of two

o¤ers, depending on his type. A lower o¤er is made by all the seller�s types below some threshold,
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which the buyer accepts. A higher, constant o¤er is made by all the types above this threshold,

which the buyer rejects. The lower o¤er is such that the buyer is indi¤erent between accepting

it and rejecting it, given the threshold. Out-of equilibrium o¤ers below (above) the lower o¤er

are accepted (rejected) by the buyer, because his belief given such o¤ers is identical to his belief

given the lower equilibrium o¤er.

This construction extends the common wisdom that giving bargaining power to the informed

party promotes e¢ ciency to environments with interdependent values and provides a partial

answer to the open question raised in Deneckere and Liang�s (2006) conclusion. However, we

view this power more as the commitment power that befalls the party that is not the last to

move, as opposed to the bargaining power usually identi�ed with the role as a proposer.

What if buyers do not know calendar time?

In our analysis of the hidden case, we have maintained the assumption that buyers can infer

from calendar time the number of o¤ers that have been submitted before. In applications, this

assumption is rarely satis�ed: the duration of unemployment, or the time-on-market of a house,

is only an imperfect proxy of the number of o¤ers previously rejected. Alternatively, one might

consider the case in which buyers do not know their position in the sequence and update their

beliefs about this position given the event that they are called upon to submit an o¤er. One

possible, mathematically rigorous formalization of such an environment consists in assuming

that the total number of buyers is �nite and unknown, geometrically distributed with parameter

�. Thus, discounting appears naturally as a consequence of this uncertainty and buyers face a

stationary problem. In the case of linear valuation and cost function, the unique equilibrium can

be solved for. In the more interesting case of large � and x < x1, buyers randomize between a

losing and a serious o¤er, and their payo¤ is consequently zero. Expected delay is independent

of the discount factor.

Multiple buyers in each period

As mentioned in the introduction, the logic of our results is similar to the mechanism at

work in Nöldeke and van Damme (1990) and Swinkels (1999) in the context of Spence�s signaling
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model. In contrast to these papers, we have considered so far the case in which there is only

one o¤er made in every period. This modeling choice is consistent with the interpretation of the

sequence of buyers as a unique, but impatient buyer. If there are two or more buyers submitting

o¤ers in every period, there is no longer a unique equilibrium in the game with public o¤ers.

In some equilibria, agreement is never reached. In others, agreement is reached in �nite time.

An example of such an equilibrium is available from the authors. Given this intriguing result,

it would be interesting to know what would happen in the Spencian model with only one o¤er

in every period. Taken together, these �ndings delineate fascinating strategic patterns whose

understanding awaits further research.
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Appendix

A Preliminaries

The appendix is organized as follows. As a preliminary, we set up some additional notation, and state

a few important facts. We then prove Propositions 5.3 through 5.9, though in a di¤erent order. We

will start with Propositions 5.4 and 5.5. We then need to prove Proposition 5.6 �with the exception of

the upper bound on N0. Indeed, it is a logical preliminary to Propositions 5.7 and 5.8, which we prove

next, and its proof is instrumental in the proof of Proposition 5.3.

A strategy of buyer n is a probability distribution �nB over price o¤ers. We denote ~pn the random

price o¤ered by buyer n. Any pro�le � of such distributions induces a probability distribution over

sequence of prices, which we denote P�. Expectation w.r.t. P� is denoted by E�.

If a seller with type x declines the �rst o¤er, and plans to accept an o¤er at a (random) time � > 1, his

expected payo¤isE�
�
���1(~p� � c(x))

�
. His optimal continuation payo¤ is thus sup�>1E�

�
���1(~p� � c(x))

�
,

where the supremum is taken over all stopping times � > 1, and the price p1(x) associated with a (type)

o¤er x, that renders type x indi¤erent between accepting and declining, is given by

p1(x)� c(x) = sup
�>1

E� [�
� (~p� � c(x))] :

For concreteness, we assume that a seller accepts an o¤er whenever indi¤erent. Therefore, a seller with

type x will accept the o¤er from buyer �(x) := inffn � 1 : ~pn � pn(x)g. Similarly, the price o¤er pn(x)
that corresponds in stage n to the o¤er x, is given by

pn(x)� c(x) = sup
�>n

E�
�
���n(~p� � c(x))

�
= E�

h
��n(x)�n(~p�n(x) � c(x))

i
where �n(x) := inffk > n : ~pk � pn(x)g.

It follows that

pn(x)� c(x) � � (pn+1(x)� c(x)) ; (5)

with equality if and only if buyer n+ 1 makes no o¤er above x: competition between successive buyers
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prevents pn from being much below pn+1.14 Using a version of the envelope theorem, the function pn

has a left-derivative everywhere, given by

D�pn(x) = c0(x)
�
1�E�

h
��n(x)�n

i�
: (6)

Note that E�
h
1� ��n(x)�n

i
is non-increasing in x, and therefore, pn is convex if the cost function is

convex.

The function pn may be interpreted as an (inverse) o¤er function faced by buyer n, and (6) provides

a direct link between the slope of this o¤er function at x, and the discounted time at which a seller with

type x expects to receives an acceptable o¤er �the earlier the discounted time, the lower the slope of

pn.

We now comment on the beliefs of the various buyers. Since o¤ers are private, the belief of buyer n

need not be a uniform distribution. Recall that Fn(x) is the (unconditional) probability that the seller is

of type t � x, and rejects o¤ers from buyers 1 through n�1. Letting fn(x) =
1

1� x

n�1Y
k=1

P� (~pk < pk(x))

denote the (normalized) probability that a seller with type x rejects the �rst n� 1 o¤ers, one has

Fn(x) =

Z x

x
fn(t)dt:

Observe that fn is left-continuous and non-decreasing, so that Fn is non-decreasing, convex, and admits

a left-derivative D�Fn(x) = fn(x). We last introduce xn = maxfx 2 [x; 1] : Fn(x) = 0g, the lowest type

that rejects the �rst n� 1 o¤ers with probability 1.

With these notations at hand, the expected payo¤ �n(x) of buyer n, when submitting the o¤er x,

is given by

�n(x) :=

Z x

x
(v(t)� pn(x)) fn(t)dt: (7)

We denote by qn(x) =
1

Fn(x)

Z x

x
v(t)fn(t)dt the average valuation of types below x, as seen by buyer

n. Then (7) rewrites

�n(x) = Fn(x) (qn (x)� pn (x)) ;
14On the other hand, it may happen that pn+1 is much below pn, as is e.g. the case if buyer n+ 1 makes high

o¤ers with high probability, followed by losing o¤ers.

40



which reads as the probability that the n-th o¤er is accepted, Fn(x), times the conditional payo¤, given

that trade takes place. The payo¤ function �n has a left-derivative everywhere, equal to

D��n(x) = (v(x)� pn(x)) fn(x)�D�pn(x)Fn(x): (8)

We stress that the quantities introduced so far, pn, Fn, fn, xn, �n, qn all depend on the pro�le �

under consideration, although the notation does not indicate this. Throughout the appendix, we let an

equilibrium �� be given, and no confusion should arise.

Since �n is continuous, the equilibrium payo¤ ��n of buyer n is equal to max[x;1] �n, and one has

�n(x) = ��n for every x 2 Tn, where Tn is the support of the random o¤er of buyer n.15

Finally, we state a preliminary observation that is used repeatedly below. We consider a buyer,

n + 1, who only submits o¤ers bounded away from xn+1 �the lowest remaining type. We prove that

the previous buyer then makes no serious o¤er below the lowest serious o¤er of buyer n+ 1.

Lemma A.1 Assume xn+2 > xn+1, for some n 2 N. Then buyer n submits no o¤er in (xn; xn+2).16

In particular, xn+1 = xn, buyer n submits a losing o¤er with positive probability, and �
�
n = 0.

The inequality xn+2 > xn+1 is satis�ed whenever �
�
n+1 > 0, since �n+1(xn+1) = 0, and �n+1(x) is

therefore arbitrarily close to zero in a neighborhood of xn+1. Lemma A.1 thus implies that there are

no two consecutive buyers with positive equilibrium payo¤.

Proof. Let a type x 2 (xn; xn+2) be given. By assumption, a seller with type x plans to accept

buyer n+1�s o¤er with probability one, were he to decline buyer n�s o¤er. Thus, the seller�s continuation

payo¤ is � (E�� [~pn+1 � c(x)]), and therefore, pn(x) = (1��)c(x)+�E�� [~pn+1]. Since � > �, this implies

that v(x)� pn(x) is increasing.
15That is, Tn is the smallest closed set of types that is assigned probability one by �nB .
16That is, ��;nB assigns probability zero to (xn; xn+2).
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Set z := inffx 2 [xn; 1] : v(x) � pn(x)g (with inf ; = xn). Note thatD
��n(x) = (v(x)� pn(x)) fn(x)�

c0(x)Fn(x) < 0 on (xn; z]. On the other hand, on the interval
�
z; xn+2

�
, D��n is upper semicontinuous

since fn is non-decreasing and left-continuous. We now prove that D��n is increasing.

Since fn is non-decreasing, one has

lim inf
y%x

(v (x)� pn (x)) fn(x)� ((v(y)� pn(y))fn(y)
x� y � (v0(x)�D�pn(x))fn(x);

thus,

lim inf
y%x

D��n(x)�D+�n(y)

x� y � (v0(x)� (1� �)c0n(x))fn(x)� (1� �)
�
c00(x)Fn(x) + c

0(x)fn(x)
�

� v0(x)� (1� �)
�
2c000(x)fn(x)

�
> 0

where the �rst inequality holds since Fn(x) � fn(x) and the second one since � � ��.

Since D��n is upper semicontinuous, this implies that D��n is strictly increasing over
�
z; xn+2

�
,

hence �n is strictly convex over
�
z; xn+2

�
.

To summarize, �n is continuous, decreasing over [xn; z], and strictly convex over
�
z; xn+2

�
. Therefore,

it has no maximum over (xn; xn+2). This proves the �rst claim.

If buyer n does not submit a losing o¤er with positive probability, then his lowest o¤er is at least

xn+2, which implies xn+1 � xn+2 �a contradiction.

In particular, ��n = �n(xn) = 0. This concludes the proof of the lemma.

B Proof of Proposition 5.4

We here prove that equilibrium payo¤s are very small. Proposition B.1 below implies Proposition 5.4.

Proposition B.1 The equilibrium payo¤ of each buyer n is at most

��n �
2

mv0(1� x)
(1� �)2

�
v
�
xn+1

�
� c

�
xn+1

��2
:

Proof. Consider a buyer n with positive equilibrium payo¤, ��n > 0, so that xn+1 > xn and

��n = Fn(xn+1)
�
qn
�
xn+1

�
� pn

�
xn+1

��
:
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We bound below each of the two terms.

Note that ��n > 0 implies �
�
n+1 = 0, which implies in turn

pn+1(xn+1) � v(xn+1) (9)

(for otherwise buyer n+1 would get a positive payo¤ when making an o¤er just above xn+1). Note also

that qn(xn+1) < v(xn+1), and that �
�
n > 0 implies pn(xn+1) � qn(xn+1):

pn(xn+1) � qn(xn+1) < v(xn+1): (10)

Recall �nally (5):

pn(xn+1)� c(xn+1) � �
�
pn+1(xn+1)� c

�
xn+1

��
: (11)

We rely on (9), (10) and (11) to prove �rst that the expected payo¤ conditional on trade, qn(xn+1) �
pn(xn+1), is at most of the order 1� �. By (10), then (9), then (11), one has

qn(xn+1) < v(xn+1)

� pn+1(xn+1)

� 1

�

�
pn(xn+1)� (1� �)c(xn+1)

	
hence

qn(xn+1)� pn(xn+1) �
1� �
�

�
v
�
xn+1

�
� c

�
xn+1

��
: (12)

Next, we argue that Fn(xn+1) is at most of the order 1� �. Substituting (9) into (11) yields

�v(xn+1) � pn(xn+1)� (1� �)c(xn+1);

which then implies, using the �rst half of (10),

qn(xn+1) � q := �v(xn+1) + (1� �)c(xn+1): (13)

The intuition now goes as follows. If the probability Fn(xn+1) is non-negligible, then the computation of

qn(xn+1) must involve a signi�cant fraction of low types, and qn(xn+1) is therefore bounded away from

v(xn+1), which stands in contradiction with (13). To verify formally this claim, we compute the highest
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value for Fn(xn+1) which is consistent with (13), and compute the value 
 of the in�nite-dimensional,

linear problem (P):
P : sup

Z x

x
f(t)dt;

where the supremum is taken over the set F of non-decreasing, left-continuous functions with values

in
�
0;

1

1� x

�
, and such that

Z x

x
v(t)f(t)dt � q

Z x

x
f(t)dt. The analysis of (P) is standard. When

endowed with the Levy distance, F is compact, and the objective of (P), continuous, hence there is
an optimal solution, f�. Since v(�) � q is strictly increasing, the solution f� must be of the form

f�(t) = 1t>x��
1

1� x . The location of the jump x
� is dictated by the constraint:

Z x

x�
v(t)dt = q(x�x�).

Plugging the inequality v(t) � v(x)�Mv0(x� t) for all t 2 [x�; x] into the constraint yields

x� x� � 2

mv0
(v(x)� q):

Therefore,


 � 2(1� �)
mv0(1� x)

�
v(xn+1)� c(xn+1)

�
: (14)

Collecting (12) and (14) then yields

��n �
2

mv0(1� x)
(1� �)2

�
v
�
xn+1

�
� c

�
xn+1

��2
;

as desired.

C Proof of Proposition 5.5

The intuition for the proof is as follows. A seller with type xn1+1 < xn2+1 expects to receive an acceptable

o¤er at stage n2 at the latest. Thus, the di¤erence n2 � n1 is directly linked to the discounted time

at which a seller with type xn1+1 expects to trade. In lemma C.1, we �rst provide a lower bound on

D�pn(x). We will then rely on the relation between D�pn
�
xn1+1

�
and the discounted time at which

type xn1+1 trades.

Lemma C.1 For any buyer n, and any serious o¤er x > xn in Tn, one has D
�pn(x) �

mv0

2
(1� x).

The proof of Lemma C.1 is a simple consequence of the following technical inequality.
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Lemma C.2 Let h : [x; 1]! R+ be non-decreasing. Then, for any [a; b] � [x; 1], one has

h(b)R b
a h(t)dt

Z b

a
v(t)h(t)dt+

mv0

2

Z b

a
h(t)dt � v(b)h(b) (15)

(with the convention 0
0 = 0).

The proof of Lemma C.2 is postponed to the end of the section.

Proof of Lemma C.1. Since �n is maximal at x, one has D��n(x) � 0, that is,

(v(x)� pn(x))fn(x)�D�pn(x)Fn(x) � 0: (16)

On the other hand, since x 2 Tn, one has �n(x) = ��n which, since x is a serious o¤er, implies

v(x) � qn(x) � pn(x). Plugging these inequalities into (16), one obtains fn(x) (v (x)� qn (x)) �
D�pn(x)Fn(x) � 0 or, equivalently,

fn(x)v(x) � fn(x)

R x
x v(t)fn(t)dtR x
x fn(t)dt

+D�pn(x)

Z x

x
fn(t)dt:

The result then follows by applying Lemma C.2.

Proof of Proposition 5.5. Recall from (6) that D�pn(x) = c0(x)(1 � E��
h
��n(x)�n

i
), where

�n(x) = inffk > n : ~pk � pk(x)g. Consider buyer n = n1, and x = xn1+1 > xn1 . Since x 2 Tn, and by
Lemma C.1, one has E��

h
��n(x)�n

i
� 1 � mv0

2Mc0
. On the other hand, �n(x) � n2, P�-a.s. This implies

�n2�n1 � 1� mv0

2Mc0
and thus,

n2 � n1 �
1

1� � �
mv0

mv0 + 2Mc0
;

as desired.

For later use, we note that the very same argument, applied to n = 1, and to any serious o¤er

x 2 T1, ensures that E��
h
��(1)

i
� 1� mv0

2Mc0
. This yields the upper bound in Proposition 5.3.
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Proof of Lemma C.2. It is su¢ cient to prove that the inequality holds for step functions, as

the result then follows using a limit argument. Since the inequality is homogenous w.r.t. h(b), we may

assume h(b) = 1.

We argue by induction over the cardinality of the range of h. If h(t) = 1 for all t 2 [x; 1], then

the desired inequality follows from v(t) � v(b) + mv0(t � b) (t 2 [a; b]). Assume now that (15) holds

for every a < b, and every step function that assumes at most n di¤erent positive values, and let h =
nX
i=0

�i1[xi;xi+1)(�) be a step function with possibly n+1 di¤erent positive values: 0 � �0 � � � � � �n = 1,

and a = x0 < x1 < � � � < xn+1 = b.

For such an h, we view the left-hand side of (15) as a function of �0,

 (�0) =
1Pn

i=0 �i(xi+1 � xi)

nX
i=0

�i

Z xi+1

xi

v(t)dt+
mv0

2

nX
i=0

�i(xi+1 � xi);

de�ned for �0 2 [0; 1].
After simpli�cation, the derivative of  is seen to be

 0(�0) =
mv0

2
(x1�x0)+

1

(
Pn
i=0 �i (xi+1 � xi))

2�
(

nX
i=1

�i

�
(xi+1 � xi)

Z x1

x0

v(t)dt� (x1 � x0)
Z xi+1

xi

v(t)dt

�)
:

Since v is increasing, the summation between braces is negative, hence  0 is non-decreasing, so that  

is convex. As a result,

 (�0) �
�
1� �0

�1

�
 (0) +

�0
�1
 (�1): (17)

Note that if �0 is either equal to 0 or to �1, the function h assumes at most n di¤erent positive values.

By the induction assumption,  (0) � v(b) and  (�1) � v(b), and the result follows from (17).

D Proof of Proposition 5.6

We here prove Proposition D.1 below. It corresponds to Proposition 5.6, except for the upper bound

on N0, which will be established in the proof of Proposition 5.3.

Proposition D.1 There is a stage N0 such that:

P1 Tn � fxN0 ; 1g, for all n � N0;
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P2 maxTn < 1, for all n < N0.

In addition, ��n = 0, for all n � N0.

There may be several (consecutive) stages consistent with P1 and P2. Without further notice, we

choose N0 to be the �rst of those stages.

Proof. De�ne N := 1+maxfn : maxTn < 1 and Fn(1) � �
Mc0
g. Since limn Fn(1) = 0, the stage N

is well-de�ned, and either FN (1) < �
Mc0
, or maxTN = 1.

To start with, assume that the latter holds. We prove that P1 and P2 hold with N0 = N .

Since 1 2 TN0 , one has �N0(1) = FN0(1)
�
qN0 (1)� c

�
� 0, and thus �n(1) � 0, for all n � N0. We

argue by contradiction, and assume that Tn\ (xN0 ; 1) 6= ;, for some n � N0, and we call n the �rst such

stage. One thus has qn+1(1) > qn(1), hence �n+1(1) > 0 so that �
�
n+1 > 0, and thus xn+2 > xn+1. This

implies that buyer n+1 makes a winning o¤er with probability one. (Otherwise indeed, the equilibrium

payo¤ of buyer n + 2 would be at least �n+2(1) � �n+1(1), and both buyers n + 1 and n + 2 would

have a positive payo¤ �a contradiction.) Put otherwise, xn+2 = 1. By Lemma A.1, buyer n makes no

serious o¤er in (xn; xn+2) = (xN0 ; 1). This is the desired contradiction. Therefore, Tn � fxN0 ; 1g, for

all n � N0.

Assume now that FN (1) < �
Mc0
, and that x := maxn<N maxTn < 1. We will prove that no buyer

n � N0 ever submits a serious o¤er in (x; 1). Since limn Fn(1) = 0, this will imply that some buyer

n � N eventually submits a winning o¤er with positive probability. Letting N0 be the �rst such buyer,

one then has Tn � fxN0 ; 1g, using the same proof as above, and the result follows.

We prove our claim inductively. Let n � N be given, and assume that none of the buyers N; : : : ; n�1

submits an o¤er in (x; 1). Since this is also true for buyers k < N , one has fn(t) = 1
1�x , for t 2 [x; 1].

For x � x, de�ne

~�n(x) =

Z x

x
(v(t)� c(x))fn(t)dt

= ~�n(x) +
1

1� x

Z x

x
(v(t)� c(x))dt:
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This is the payo¤ that would accrue to buyer n if he were the last buyer, or alternatively if all buyers

following n would only submit losing o¤ers. Thus, ~�n(x) � �n(x), with equality if x = 1. The derivative

of ~�n is given by

~�0n(x) =
1

1� x(v(x)� c(x))� c
0(x)(Fn(x)� Fn(x))

� �

1� x �Mc0Fn(1) > 0:

Therefore, ~�n is increasing over the interval [x; 1], so that �n(1) > �n(x) for every x 2 [x; 1): buyer n

makes no o¤er in (x; 1).

It remains to prove that ��n = 0 for all n � N0. It su¢ ces to prove that ��N0 = 0. Assume to the

contrary that ��N0 > 0. Then buyer N0 would make a winning o¤er with probability one, for otherwise

��N0+1 would also be positive. Therefore, by Lemma A.1, buyer N0 � 1 would make no serious o¤er in

(xN0�1; xN0+1) = (xN0�1; 1), which would stand in contradiction to the de�nition of N0.

E Proof of Proposition 5.7

For convenience, we recall below the statement of Proposition 5.7. As stated in Proposition D.1, any

o¤er is either winning or losing from stage N0 on. However, the speci�c behavior of buyers n � N0 is to

a large extent indeterminate. If trade takes place in bounded time according to ��, then an irrelevant

change in �� yields an equilibrium under which trade occurs in �nite, but not bounded, time. And

vice-versa.

Proposition E.1 Let N0 be as given in Proposition D.1. Then:

A There is an equilibrium �, with �nB = ��;nB for all n < N0, and such that Tn = f1g, for some n � N0;

B There is an equilibrium �, with �nB = ��;nB for all n < N0, and such that Tn = fxN0 ; 1g, for all

n � N0.

Since the proof will involve two pro�les, � and ��, some of the notations will be starred when they

refer to ��. Obviously, either T �n = f1g for some n � N0, or T �n = fxN0 ; 1g for all n � N0. Hence, only

A or B has to be proven, depending on ��.
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Proof. Assume �rst that T �n = fxN0 ; 1g for all n � N0, and let us prove that A holds. De�ne

n� 2N through the inequalities �n�+1 � E��
h
��(1)

i
< �n� . Note that �(1) � N0 a.s., and �(1) > N0

with positive probability, hence n� � N0.

We de�ne the buyers pro�le �B as:

� �nB = ��;nB , for n < N0;

� buyer n assigns probability one to the o¤er c(xN0), for n = N0; : : : ; n� � 1;

� buyer n� assigns probability
E��

h
��(1)

i
� �n�+1

�n�(1� �) 2 [0; 1) to a winning o¤er, and o¤ers c(xN0)

otherwise.

� buyer n� + 1 submits a winning o¤er (and later buyers as well).

We �rst claim that the optimal acceptance policy of the seller in any stage n < N0 is the same,

when facing either �B or ��B. As a consequence, �
n
B is a best reply to �

�n
B , for such n�s.

Let n < N0 and a type x be given. When computing the optimal continuation payo¤ of type x, we

may restrict our attention to those stopping times � that either accept an o¤er before N0, or wait until

the �rst winning o¤er is received: � � N0 � 1, or � = �(1). For such a � , one has

E�
�
���n(~p� � c(x))

�
= E�

�
���n(~p� � c(x)1�<N0

�
+ (c� c(x))E�

h
��(1)�n

i
�P�(� � N0)

= E��
�
���n(~p� � c(x))

�
since buyers strategies coincide up to stage N0, and since E�

h
��(1)

i
= E��

h
��(1)

i
.

This readily implies that pn(x) = p�n(x) for all n < N0 and x 2 [x; 1], as desired.

We next prove that �nB is a best reply to ��nB for all N0 � n � n� + 1, by induction over n.

Observe �rst that the distribution of types faced by buyer N0 is the same under both pro�les � and

��: FN0(�) = F �N0(�). In particular, c(xN0) is a losing o¤er. Assume that
FN1(�)
FN1(1)

=
F �N1(�)
F �N1(1)

for some

N0 � n � n� + 1.

By construction, E��
h
��(1)j�(1) > n

i
� E�

h
��(1)j�(1) > n

i
. Therefore, one has pn(x) � p�n(x),

with equality if x = xn, or x = 1. It follows that
�n(�)
Fn(1)

� ��n(�)
F �n(1)

, with equality if x = xn or x = 1.
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Therefore, both the o¤er c(xN0) (a losing o¤er) and the winning o¤er are optimal for buyer n given

��n. The concludes the proof of A.

We now assume that T �n = f1g for some n � N0, and let N1 be the �rst such n. Observe that, by

Lemma A.1, SN1�1 � fxN1�1; 1g, hence N1 > N0. We de�ne the pro�le � as follows:

� �nB = ��;nB for all buyers n < N1 � 1;

� buyer N1 � 1 assigns probability � to a winning o¤er, and probability 1 � � to the price o¤er

c(xN0);

� all buyers n � N1 assign probability � to a winning o¤er, and probability 1�� to the price o¤er

c(xN0).

Given �, the probability � is chosen s.t.

�� + (1� ��)� = � + (1� �) ��

1� �(1� �) ; (18)

where �� < 1 is the probability assigned by ��;N1�1N to a winning o¤er. Provided � is close to one,

� 2 [0; 1). In addition, we assume that � is su¢ ciently close to one so that

1� �(1� �) > (1� �)2Mc0 +Mc00

mv0
:

The choice of � in (18) ensures thatE�
h
��(1)

i
= E��

h
��(1)

i
, andE�

h
��(1)j�(1) > n

i
= E��

h
��(1)j�(1) > n

i
,

for all n < N1� 1. As in the proof of A above, this implies that pn(�) = p�n(�), hence �nN is a best reply

to ��nB , for all buyers n < N1�1, and the distribution of types faced by buyer N1�1 is the same under

the two pro�les � and ��. In particular, the o¤er c(xN0) is a losing o¤er.

It remains to prove that no buyer n � N1�1 would �nd it pro�table to make a serious, non-winning
o¤er. For such n, one has

pn(x)� c(x) = (c� c(x))E�
h
��n(1)

i
= (c� c(x))

�
��+ (1� �)��2 + � � �

�
= (c� c(x)) ��

1� �(1� �) ;
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hence

pn(x) =
1

1� �(1� �) ((1� �) c(x) + ��c) : (19)

We now replicate an argument used in the proof of Proposition D.1. Recall that D��n(x) = (v(x) �

pn(x))fn(x) � D�pn(x)Fn(x), and let z = minfx 2 xN0 : v(x) � pn(x)g. Then �n is decreasing over�
xN0 ; z

�
, and convex on [z; 1]. The result follows.

F Proof of Proposition 5.8

For convenience, we recall the statement of Proposition 5.8.

Proposition F.1 All buyers n < N0 submit a serious o¤er with positive probability. No buyer n < N0

uses a pure strategy, with the possible exception of the �rst buyer.

Proof. By de�nition of N0, buyer N0 � 1 makes a serious, non-winning o¤er with positive proba-

bility.

We start with the �rst statement. We argue by contradiction, and assume that Tn = fxng, for some

n < N0. (In particular, ��n = 0:) Let n� > n be the �rst buyer following n who submits a serious o¤er

with positive probability. Since n� � N0 � 1, one has xn� := maxTn� < 1.
Because of discounting and using (5) inductively, one has

pn(xn�)� c(xn�) = �n��n(pn�(xn�)� c(xn�));

hence pn(xn�) < pn�(xn�).

Since buyers n � k < n� only submit losing o¤ers, the distribution of types faced by buyers n and

n� is the same, and qn(xn�) = qn�(xn�). It follows that �n(xn�) > �n�(xn�) = ��n� � 0 �a contradiction.

This concludes the proof of the �rst statement.

Consider now an arbitrary buyer n, with 1 < n < N0. If buyer n assigns probability one to

a speci�c o¤er, it must be to a serious o¤er xn > xn, and then xn+1 = xn. On the other hand,

pn�1(xn)� c(xn) = �(pn(xn)� c(xn)), hence pn�1(xn) < pn(xn). By Lemma A.1, ��n�1 = 0 and buyer

n � 1 makes no o¤er in (xn�1; xn), hence qn�1(xn) = qn(xn). As above, this implies �n�1(xn) > 0 �a

contradiction.
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G Proof of Proposition 5.9

We here prove Proposition 5.9: in the presence of further concavity and convexity assumptions on v

and c, the equilibrium distributions ��;nB have �nite support.

Plainly, this is true for n � N0, since Tn � fxN0 ; 1g. For n < N0, we argue by induction. Assume

that the strategies ��;1B ; : : : ; ��;n�1B have �nite support, for some n � 1. This implies that fn(t) is a step

function: there exist types x0 = x < x1 < � � � < xK = 1, and values 0 � �0 < �1 < � � � < �K�1, such

that fn(t) = �k for t 2 [xk; xk+1).

Claim: the map x 7! qn(x) is concave over [xk; xk+1], for each 0 � k < K.

Proof of the claim. Fix k. For x 2 [xk; xk+1], the average quality qn(x) is given by qn(x) =
Qn(x)=Fn(x), with Qn(x) :=

Z x

xn

v(t)fn(t)dt. Both Qn and Fn are twice di¤erentiable on [xk; xk+1),

with F 0n(x) = �k, F 00n (x) = 0, Q
0
n(x) = �kv(x) and Q00n(x) = �kv

0(x). Thus,

q00n(x) =
1

Fn(x)3
�
Fn(x)

2Q00n(x)� 2F 0n(x)
�
Q0n(x)Fn(x)�Qn(x)F 0n(x)

�	
has the same sign as

N(x) := v0(x)Fn(x)
2 � 2�kv(x)Fn(x) + 2�kQn(x):

Note that N 0(x) = v00(x)Fn(x)2 � 0, hence

N(x) � N(xk) = v0(xk)Fn(xk)
2 � 2�kv(xk)Fn(xk) + 2�kQn(xk)

= v0(x)

(
k�1X
i=0

�i(xi+1 � xi)
)2
� 2�kv(xk)

(
k�1X
i=0

�i(xi+1 � xi)
)
+ 2�k

(
k�1X
i=0

�i

Z xi+1

xi

v(t)dt

)
For given �0 < �1 < � � � < �K�1, we view this right-hand side as a function h of x1; x2; : : : ; xk, de�ned

over the domain x1 � � � � � xk.

After simpli�cation, the derivative of the map x 7! h(x1; x2; : : : ; xj ; x; x; : : : ; x) is given by

v00(x)Fn(x)
2 + 2v0(x)Fn(x)(�j � �k);

and is therefore non-positive. Thus, h(x1; x2; : : : ; xj ; xj+1; xj+1; : : : ; xj+1) � h(x1; x2; : : : ; xj ; xj ; xj ; : : : ; xj)

for every j (with strict inequality if xj < xj+1) and therefore,

h(x1; x2; : : : ; xk) � h(x1; x1; : : : ; x1) = 0:
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This concludes the proof of the claim.

We now complete the proof of the proposition. For any type x, one has �n(x) = Fn(x)(qn(x)� pn(x)).

One thus has

qn(x)� pn(x) �
��n

Fn(x)
; (20)

with equality if x 2 Tn.

The left-hand side of (20) is strictly concave over each interval [xk; xk+1], while the right-hand side

is convex. Hence, there is at most one x in [xk; xk+1], such that qn(x) � pn(x) = ��n=Fn(x): therefore,

Tn \ [xk; xk+1] is either empty, or a singleton. This concludes the induction step.

H Equilibrium delay

Recall that �(1) = inffn : ~pn = cg is the �rst buyer who submits a winning o¤er. From the proof of

Proposition 5.5, we know that E��
h
��(1)

i
� 1 � mv0

2Mc0
. We here proceed to provide a lower bound for

E��
h
��(1)

i
, which is independent of � and of the equilibrium �.

Let N0 be given by Proposition D.1, and de�ne N1 := inffn : Fn(1) � �
Mc0
g. We proceed in three

steps:

Step 1 : one has N1 � C1
1�� , where C1 is independent of � � �� and of the equilibrium ��.

Let x = maxn<N1 maxTn be the highest o¤er that may be submitted by some buyer n < N1. From

the proof of Proposition D.1, we know that either x = 1, in which case N0 = N1, or that no buyer ever

submits an o¤er in (x; 1).

Step 2 : One has N0 �N1 � C0
1�� , where C0 is independent of � � �� and of the equilibrium ��;

Step 3 : One has E�
h
��(1)�N0

i
� C2, where C2 > 0 is independent of � � ��, and of the equilibrium

��.

By Steps 1�3, one thus has E��
h
��(1)

i
� C2�

�
�

1
1��
�C0+C1

, and the result follows since �
1

1�� � e�
��

for every � � ��.
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Step 1 and Step 2make use of the following technical result, which links the discounted expectation

of a random variable (hereafter, r.v.) to its tail distribution.

Lemma H.1 Let � be a random time with integer values, and such that

E
�
���nj� > n

�
� a; (21)

for some a > 0 and all n � 1. Then P
�
� � 1

ab(1� �)

�
� b, for all b > 0.

Proof. For simplicity, set Na;b := 1
ab(1��) . Among the r.v.�s that satisfy (21), choose a r.v. �� for

which P(�� � Na;b) is minimal.17 For n � 1, set p�n := P(�� = nj�� � n). Casual inspection shows

that one must have 1 < �� � Na;b + 1 P-a.s., and that the constraint E
�
����nj�� > n

�
� a is binding

whenever p�n > 0.

As a result, there is a stage N� such that:

� E
�
����nj�� > n

�
= a for all 1 � n � N�;

� p�n = 0 for all N� < n � Na;b.

The value of N� is determined by the condition �N+1�(N�+1) > a � �N+1�N� :

N� = �
�
ln a

ln �

�
+ 1 +Na;b:

For 1 < n � N�, the value of p�n is pinned down by the condition E
�
����nj�� > n

�
= a. One gets

p�n =
a(1� �)
1� �a for 1 < n < N�, and pN� �

a(1� �)
1� �a . Therefore,

P(�� � Na;b) �
�
1� a(1� �)

1� �a

�N��1
;

and the result follows by standard algebraic manipulations, which we omit.

We now proceed to Steps 1�3. Our computation of C1 and C0 will involve three parameters. We

choose �; � s.t. 0 < � < � < �;18 and � 2 (0; ���2v(1)). Next, set K = 1 +
l
Mv0 (1�x
2(���)

m
, " = 1

2�
K , and

17Existence of such a r.v. follows from standard compactness arguments.
18Where � = minn (v(x)� c(x)) is a lower bound on the gains from trade.
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a = ��
c�c(x) . We will express C1 and C0 as functions of these constants. We will make no attempt at

optimizing the choice of �; � and �.

Step 1: De�ne C1 := 1 + ln
Mv0

�

1

a

1

"2
. We prove that N1 � C1=(1� �).

For a given stage n, we let xn := maxfx 2 [x; 1] : qn(x) > c(x)+�g. Since qn(1) � �c one has xn < 1.

On the other hand, since qn(xn) = v(xn), one also has xn > xn.

The proof is organized as follows. In claim 1 below, we �rst prove that, conditional on the seller

having rejected all previous o¤ers, the probability that the seller�s type does not exceed xn, is bounded

away from zero. That is, from buyer n�s viewpoint, types below xn have a signi�cant probability.

Claim 1: One has Fn(xn) � 2"Fn(1).

Next, we will observe that, since qn(xn) is bounded away from xn, the price pn(xn) associated with

the o¤er xn is also bounded away from c(xn). Therefore, it is likely that type xn will receive acceptable

o¤ers shortly after stage n (for otherwise, he would accept a price close to c(xn)). In claim 2, we use

this insight to prove that conditional on the seller having rejected all previous o¤ers, it is very likely

that type xn will accept an o¤er within 1=a"(1� �) additional stages.

Claim 2: One has Fn+Na;"(xn) < "Fn(1), where Na;" :=
1

a"(1� �) is de�ned as in the proof of Lemma

H.1.

The assertion of Step 1 immediately follows from Claims 1 and 2. Indeed, observe that, for a given

x, Fn(1)� Fn(x) is the probability that the seller rejects all o¤ers from buyers 1; 2; : : : ; n� 1, and has
a type t in [x; 1]. This di¤erence is non-increasing in n, hence

Fn+Na;"(1)� Fn+Na;"(xn) � Fn(1)� Fn(xn):

By Claims 1 and 2, this yields

Fn+Na;"(1) � (1� ")Fn(1)

and thus also, F1+iNa;"(1) � (1� ")i, for all i � 1.

In particular, Fn(1) < �
Mc0

as soon as n � 1 + C1=(1� �), as desired.
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Proof of Claim 1. We introduce an auxiliary sequence of types which is de�ned by y0 = x and

yj+1 = maxfx 2 [0; 1] : E [v(t)jt 2 [yj ; x]] � c(x) + �g;

until yJ = 1. In particular, E [v(t)jt 2 [yj ; yj+1]] = c(yj+1)+� for j < J�1. On the other hand, observe
that

E [v(t)jt 2 [yj ; yj+1]] =
1

yj+1 � yj

Z yj+1

yj

v(t)dt � v(yj+1)�
Mv0

2
(yj+1 � yj):

Since v(yj+1)� c(yj+1) � �, this implies that

yj+1 � yj �
2(� � �)
Mv0

; for j < J � 1;

hence J � K.

For a given stage n, let jn := minfj : Fn(yj) � �K�jFn(1)g. We now check that xn � yjn , which

will yield Fn(xn) � Fn(yjn) � 2"Fn(1), as desired.
There is nothing to prove if jn = 0, hence assume jn > 0. By de�nition of jn, one has Fn(yjn�1) <

�Fn(yjn): conditional on t � yjn , it is very likely that buyer n faces a type in [yjn�1; yjn ]. Hence,
19

jEFn [v(t)jt � yjn ]�EFn [v(t)jt 2 [yjn�1; yjn ]] j � 2�v(1); (22)

since jE(X) � E(X1A)j � 2P(A) sup jXj for every bounded r.v. X and every event A. The �rst

expectation in (22) is qn(yjn), while the second one is at least c(yjn)+�. Therefore, qn(yjn) � c(yjn)+�

and thus, xn � yjn .

Proof of Claim 2. For clarity, we abbreviate xn to x. Recall that �n(x) = inffm > n : ~pm �
pm(x)g denotes the �rst buyer after n, who submits an o¤er that is acceptable to type x. For any given
stage m � n, and since pm(x)� c(x) = E��

h
��n(x)�m(~p�n(x) � c(x))j�n(x) > m

i
, one has

pm(x)� c(x) � (c� c(x))E��
h
��n(x)�mj�n(x) > m

i
: (23)

19denoting by EFn the expectation under the belief held by buyer n
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On the other hand, pm(x) = qm(x) � qn(x) if �
�
m = 0, and then pm(x)� c(x) � �, while pm(x)� c(x) �

�(pm+1(x)� c(x)) � �� if ��m > 0, since then, ��m+1 = 0. Using (23), this implies

E��
h
��n(x)�mj�n(x) > m

i
� ��

c� c(x) � a:

Apply now Lemma H.1 to obtain P�(�(x) � n+Na;"j�(x) � n) � ".

Finally, observe that

P�(�(x) � n+Na;") � P�(�(x) � n+Na;"; t 2 [x; x])

� P�(�(t) � n+Na;"; t 2 [x; x])

= Fn+Na;"(x);

whereas

P�(�(x) � n) = P�(�(x) � n; t 2 [x; 1])

� P�(�(1) � n; t 2 [x; 1])

= Fn(1):

Therefore,
Fn+Na;"(x)

Fn(1)
� P�(�(x) � n+Na;"j�(x) � n) � ";

as desired.

Step 2: De�ne C0 =
�

2Mc0

(1� x)mv0

�
� 1
a

1

"2
. We will prove that N0 �N1 � C0=(1� �).

Denote x� = maxn<N1 maxTn the highest o¤er that may be submitted before stageN1. In particular,

one has qn(1) � qn(x�) � c(x�).

On the other hand, N0 = inffn : qn(1) = cg. Indeed, qN0(1) = c since ��N0 = 0, and qN0(1) >

qN0�1(1) since buyer N0 � 1 makes a serious, non-winning o¤er with positive probability.

Thus, N1�N0 is bounded by the time it takes for qn(1) to increase from c(x�) to c. Between stages

N1 and N0, and using the proof of Proposition D.1, no buyer ever submits a serious o¤er above x�.

Hence, qn(1) increases steadily with time, at a speed which is related to the probability with which

successive buyers do trade. Lemma H.2 below provides a precise estimate of this relationship.

57



Lemma H.2 Let n < m � N0 be any two stages, and denote by �n;m := Fn(1)�Fm(1)
Fn(1)

the probability

that the seller accepts an o¤er from some buyer n; n+ 1; : : : ;m� 1, conditional on having declined all
previous o¤ers. Then:

qm(1)� qn(1) �
mv0(1� x)

2
� (1� x�)

�n;m
Fm(1)

: (24)

The proof of Lemma H.2 is tedious and somewhat lengthy. It is postponed to the end of the section.

By Lemma H.1, one has, as in Step 1, �n;n+Na;" � ". By Lemma H.2, one thus has

qn+Na;"(1)� qn(1) � mv0(1� x)
2

� (1� x�)"

� mv0(1� x)
2

c� c(x�)
Mc0

":

Hence, in any block of Na;" consecutive stages k < N0, the average quality increases by at least
mv0(1� x)"

2Mc0
times c � c(x�). In particular, it takes no more than

�
2Mc0

mv0(1� x)"

�
such blocks to in-

crease from c(x�) to c. The result follows.

Step 3: In the light of the results obtained so far, this last step is straightforward. Observe �rst that

pN0(xN0) � v(xN0) � c(xN0) + �, for otherwise buyer N0 would get a positive payo¤ when submitting

an o¤er slightly above xN0 .

Since no buyer n � N0 ever submits a serious o¤er below 1, one has

pN0(xN0)� c(xN0) = (c� c(xN0)E��
h
��(1)�N0

i
;

which yields

E��
h
��(1)�N0

i
� �

c� c(xN0
:

This concludes the proof.

Proof of Lemma H.2. Fix the distribution fn of types faced by buyer n, and the value of

�n;m. We will minimize qm(1) over all distributions of types that buyer m may possibly be facing. It

is convenient to parameterize such distributions by g(t), the probability that a seller with type t would

reject all o¤ers from buyers n; n+ 1; : : : ;m� 1, so that fm(t) = g(t)fn(t).
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Hence, qm(1) is minimal when
Z 1

x
g(t)fn(t)v(t)dt is minimal. The minimum is computed over all

non-decreasing functions g, with values in [0; 1], and such that

(i) g(t) = 1 over [x�; 1] (since there is no serious o¤er beyond x�);

(ii)
Z 1

x
g(t)fn(t)dt = (1� �n;m)Fn(1).

Since v is increasing, the minimum is obtained when g is constant over the interval [x; x�], that

is, g(t) = ! if t < x�, and g(t) = 1 if t � x�. The value of ! is deduced from (ii), and is given by

!Fn(x�) = �n;mFn(1).

Thus,

qm(1)� qn(1) �
1

Fm(1)

Z 1

x
v(t)g(t)fn(t)dt�

1

Fn(1)

Z 1

x
v(t)fn(t)dt: (25)

The rest of the proof consists in showing that the right-hand side of (25) is at least equal to the

right-hand side in (24).

Plugging g into (25), one has

qm(1)� qn(1) � 1

Fm(1)

�Z 1

x
v(t)fn(t)dt� !

Z x�

x
v(t)fn(t)dt

�
� qn(1)

=
!Fn(x�)

Fm(1)

�
1

Fn(1)

Z 1

x
v(t)fn(t)dt�

1

Fn(x�)

Z x�

x
v(t)fn(t)dt

�
=

�n;m
Fm(1)Fn(x�)

�
Fn(x�)

Z 1

x
v(t)fn(t)dt� Fn(1)

Z x�

x
v(t)fn(t)dt

�
=

�n;m
Fm(1)Fn(x�)

�
Fn(x�)

Z 1

x�

v(t)fn(t)dt� (1� x�)
Z x�

x
v(t)fn(t)dt

�

where the �rst equality follows from the identity
a� a0
b� b0 =

b0

b� b0

�
a

b
� a0

b0

�
, the second from the value

of !, and the third from Fn(1) = Fn(x�) + (1� x�).
We now use the inequality v(t) � v(x�) +mv0(t � x�) (t 2 [x�; 1]) to bound the �rst integral, and

the inequality v(t) � v(x�)+mv0(t�x�) (t 2 [x; x�]) to bound the second one. After simpli�cation, this
yields

qm(1)� qn(1) �
�n;m

Fm(1)Fn(x�)
(1� x�)mv0

�
Fn(x�)

1� x�
2

+

Z x

x�

(x� � t)fn(t)dt
�
: (26)
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Consider �nally the right-hand side of (26). For a given value of Fn(x�), the integral is minimized when

fn is constant over [x; x�], and equal to Fn(x�)=(x��x). The integral is then equal to 1
2(x��x)Fn(x�).

Substituting into (26), this yields

qm(1)� qn(1) �
�n;m
Fm(1)

(1� x�)mv0 �
1� x
2

;

as desired.
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