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Abstract

We study the competitive effects of restricting direct access to secondary care

by gatekeeping, focusing on the informational role of general practitioners (GPs).

In the secondary care market there are two hospitals choosing quality and special-

ization. Patients, who are ex ante uninformed, can consult a GP to receive an

(imperfect) diagnosis and obtain information about the secondary care market. We

show that hospital competition is amplified by higher GP attendance but damp-

ened by improved diagnosing accuracy. Therefore, compulsory gatekeeping may

result in excessive quality competition and too much specialization, unless the mis-

match costs and the diagnosing accuracy are sufficiently high. Second-best price

regulation makes direct regulation of GP consultation redundant, but will generally

not implement first-best.
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1 Introduction

The UK and the Scandinavian countries are examples of countries where general practi-

tioners (GPs) have a gatekeeping role in the health care system. Patients do not have

direct access to secondary care. They need a referral from their (primary care) GP to

get access to a hospital or a specialist.1 In the US, several health maintenance organiza-

tions (HMOs) also practice gatekeeping. Recently, however, some HMOs have relaxed the

restrictions on access to specialists (see, e.g., Ferris et al., 2001). In Germany, patients

need a referral to get access to a hospital and it has been on the political agenda to also

restrict direct access to specialist care by giving GPs a gatekeeper role. The interna-

tional experience with gatekeeping thus appears to be mixed: while some countries relax

gatekeeping regulations (e.g., the US), others seem to move towards stricter rules (e.g.,

Germany). The current paper contributes to the discussion on gatekeeping by analyzing

the competition effects that arise when GPs are equipped with a gatekeeping role.

In general, there are two main arguments for introducing gatekeeping in health care

markets (see Scott, 2000). First, it is usually claimed that gatekeepers contribute to cost

control by reducing ‘unnecessary’ interventions.2 Second, it is argued that secondary care

is used more efficiently since ‘GPs usually have better information than patients about

the quality of care available from secondary care providers’ (Scott, 2000, p. 1177). In the

present paper we focus on the second argument, highlighting the fact that making this

information available to patients changes the nature of competition between secondary

care providers, which in turn affects the social desirability of gatekeeping.

As pointed out in a seminal paper by Arrow (1963), uncertainty and various informa-

tional problems make health care markets distinctly different from most other markets.

The present paper stresses the importance of non-price competition between health care

providers, as well as the role of imperfect information in the relationship between pa-

tients and providers. Building on the familiar model of Hotelling (1929), we consider a

1In Sweden, though, individuals have direct access to hospital outpatient care, but still need a referral
if hospitalization is required.

2Although this is a common argument for restricting access to secondary care, the empirical evidence
that gatekeeping actually contributes to lower health care expenditures seems to be scarce (see, e.g.,
Barros, 1998).
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secondary care market with two providers (hospitals). In order to attract patients (and

obtain third party payments) the hospitals have two strategic variables at their disposal:

location and quality of care. We refer to location as the specialization or service mix

at a hospital, though it may also be interpreted in geographical terms. Thus, hospitals

engage in non-price competition in terms of both horizontal and vertical differentiation

of services.

The major aim of the paper is to highlight the informational role of GP gatekeepers in

secondary care markets. We assume that patients are ex ante uniformed about their spe-

cific diagnosis and the exact characteristics of the hospitals. Thus, if they access secondary

care providers directly, their choices may be subject to substantial errors. First, a patient

may end up in a poor match, i.e., he may choose the hospital that is less able to cure his

disease. Second, he may decide to go to the hospital that provides the lower quality of

care. To reduce the risk of choosing the ‘wrong’ hospital, patients may therefore (at some

costs) consult a GP first. The GPs are informed agents (middlemen) and convey accurate

information about hospital characteristics, i.e., quality and specialization. They also give

attending patients a noisy diagnosis. Thus, the GPs are imperfect agents in the sense

that diagnosing accuracy is not perfect.3 We abstract from any moral hazard problems

that may originate in the agency relationships between players.4 When deciding whether

to consult a GP or to approach a hospital directly, patients simply weigh the consulting

costs against the reduction in (expected) mismatch costs due to better information.

The analysis is focused on two basic questions. (i) How does GP gatekeeping affect

hospitals’ incentives to specialize and to invest in quality? (ii) Is strict gatekeeping – i.e.,

no access to secondary care without a GP referral – socially desirable? The answers to

these two questions are closely connected. Concerning the first question, we show that

a higher GP attendance rate amplifies quality competition and induces the hospitals to

specialize their services. The former is explained by the fact that informed patients are

3Diagnosing accuracy may be determined by several factors like a GP’s skills, a GP’s effort, a patient’s
disease type, etc.

4The physician agency literature analyzes in detail strategic reasons for GPs to make false reports
or to exercise inappropriate levels of (diagnosis) effort (see McGuire, 2000, for an overview). Below we
discuss the part of this literature which is relevant for gatekeeping.
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sensitive to quality differences, while uninformed patients are not. The latter is due the

fact that hospitals can dampen quality competition by specializing their services.5

Interestingly, the other information variable – diagnosing accuracy – has the exact

opposite effect. When diagnosing accuracy is low, patients attending a GP put a larger

weight on quality differences than hospital specializations, since the probability of a wrong

diagnosis is high. As a consequence, improved diagnosing accuracy tends to weaken

quality competition and, in turn, the corresponding incentives for specialization. However,

improved diagnosing accuracy also increases the benefit of consulting a GP, leading to

higher GP attendance, which, in turn, increases hospital competition. Thus, when the

patients’ decision of whether or not to attend a GP is endogenized, the latter (indirect)

effect of improved diagnosing accuracy on hospital competition tends to counteract the

former (direct) effect.6

Regarding the second question, numerical simulations of our model suggest that strict

gatekeeping is detrimental to welfare unless mismatch costs and diagnosing accuracy are

sufficiently high. The reason is that both low mismatch costs and low diagnosing accuracy

trigger hospital competition. Since higher GP attendance has the same directional effect

on competition, as explained above, strict gatekeeping tightens hospital competition even

further. As a consequence, hospitals engage in excessive competition, resulting in too

high quality and too much specialization from a welfare perspective.7

The regulator (payer) determines the hospital reimbursement by setting a (prospec-

tive) price per treatment (or patient). We show that if second-best price regulation

5A completely analogical feature is present in the location-price game by D’Aspremont et al. (1979),
where firms differentiate (specialize) to soften price competition. Like in their paper, the dampening-of-
competition effect dominates the countervailing market-expanding effect of locating closer to your rival.
For a more detailed discussion, see Brekke et al. (2006).

6In our specific model, with linear GP consultation costs, these two effects exactly offset, so that
equilibrium hospital specialization and quality provision are unaffected by the degree of diagnosing accu-
racy. However, under (enforced or de facto) strict gatekeeping, where every patient attends a GP before
receiving secondary care, the indirect effect is eliminated and improved diagnosing accuracy will dampen
hospital competition.

7This result is related to Dranove et al. (2003), who empirically analyze whether public disclosure of
patient health outcomes at the level of the individual physician or hospital (‘report cards’) is beneficial
to patients and social welfare. They find that report cards led to both selection behavior by providers
and improved matching of patients with hospitals. However, on net this led to higher levels of resource
use and to worse health outcomes (for sicker patients).
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is available, then there is no scope for direct regulation of GP attendance. Thus, the

treatment price is a sufficient instrument to induce second-best optimal quality and spe-

cialization of hospital care. Finally, we characterize the second-best equilibrium, showing

that first-best is generally not achievable for the regulator.

The paper relates to both the general literature on spatial competition and the litera-

ture on (imperfect) competition in health care markets. The interaction between quality

and location choices has been investigated by Economides (1989) under price competi-

tion and Brekke et al. (2006) under price regulation.8 The present paper contributes to

this literature by introducing imperfect information into the framework. As previously

mentioned, we find that the hospitals’ incentives to differentiate services crucially depend

on the degree of information in the market. In particular, we find that the presence of

uninformed consumers tends to soften the incentives for horizontal differentiation. In this

respect our findings are in the spirit of Bester (1998), who shows that quality competition

may induce minimum differentiation – i.e., agglomeration at the market center – when

consumers are uncertain about product quality and use observed prices to ascertain the

quality of goods.

The paper also relates to the more general literature on transparency in imperfectly

competitive markets.9 Increased transparency on the consumer side of the market typi-

cally leads to intensified price competition and thus to a more socially desirable market

outcome. Our paper contributes to this literature by analyzing the effects of improved

transparency in markets that are characterized by non-price competition. In this case,

more intense competition between firms does not necessarily improve social welfare. Im-

proved market transparency consequently has ambiguous welfare effects.10

8Two other related papers applied to the primary care market are Gravelle (1999) and Nuscheler
(2003). Both papers address the issue of competition between physicians by investigating the interaction
between quality and location choices when prices are regulated. They apply a circular model with
attention directed towards entry of physicians into the market, so the focus of these papers is clearly
quite different from ours. Calem and Rizzo (1995) also analyze horizontal and vertical differentiation of
hospitals. However, in contrast to our paper, they neither consider price regulation nor gatekeeping.

9See, e.g., Varian (1980), Burdett and Judd (1983), Lommerud and Sørgard (2003), Schultz (2004,
2005).

10Another related paper in this strand of the literature is Baye and Morgan (2001), who analyze the
competition effects of information gatekeepers on the Internet, where such gatekeepers create a market
for price information by charging fees to firms that advertise prices and to consumers who access the list
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Finally, our paper complements the multi-task agency literature on the economics

of general practice, e.g., Garcia Mariñoso and Jelovac (2003), Malcomson (2004) and

González (2004). These papers focus on the dual nature of GP activity, namely, on

diagnosing patients and treating or referring them. Optimal payment systems are derived

that, at the same time, induce GPs to exert diagnosis effort and give incentives for efficient

referral or treatment decisions, i.e., GP treatment for low severity diagnoses and referral

for high severity diagnoses.11 This also refers to the second gain of gatekeeping: the

allocation of patients to health care sectors improves since patients more appropriately

treated by a GP are screened out through costly diagnosing of all patients. On the

other hand, as Malcomson (2004) points out, patients who would not otherwise have been

referred, may be referred after being subject to costly diagnosis. Again, health care is used

more efficiently. In our paper, GPs are – on the one hand – perfect agents in the sense that

they truthfully convey the information about the secondary care market that they have,

but – on the other hand – imperfect agents in the sense that diagnosing is noisy. Although

we consider diagnosing accuracy to be exogenous, it can, in fact, be seen as a result of an

incentive contract like the ones derived in the above cited papers. Instead of analyzing

whether or not a patient should be referred to a hospital, we consider that all patients will

be referred and concentrate on the improved matching of patients to hospitals through

gatekeeping GPs.12 Although important for the social desirability of gatekeeping, this

has not been analyzed before. Moreover, we explicitly model the secondary care sector

and introduce imperfect competition, and thereby significantly advance the literature.

We demonstrate that the information acquired through gatekeeping affects competition

amongst secondary care providers and that this may generate – so far neglected – (adverse)

effects of such a system.

The remainder of the paper is organized as follows. The basic framework is presented

in Section 2. In Section 3, we analyze hospitals’ incentives for specialization and quality in-

of advertised prices.
11Given the optimal contracts, the question of whether a gatekeeping system dominates free access to

secondary care is analyzed. Without going into details here, the results are ambiguous.
12In the agency literature cited above, high severity patients finally end up with a specialist as GPs

are assumed to be unable to cure these patients. In this sense, our analysis deals with matching of high
severity patients to specialists or hospitals.
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vestments for a given GP attendance rate. In Section 4, we endogenize the GP attendance

rate and characterize the corresponding specialization-quality-consultation equilibrium.

Section 5 is devoted to welfare effects of gatekeeping and regulation of GP attendance,

as well as second-best price regulation. Finally, in Section 6 we provide some concluding

remarks.

2 The model

There is a continuum of patients with mass 1 distributed uniformly along the Hotelling

line S = [0, 1]. The location of a patient is denoted z ∈ S and is associated with the

disease he suffers from. A disease z can be seen as a realization of a random variable

Z which is uniformly distributed on S. All patients need one medical treatment to be

cured. There are two health care providers – henceforth called hospitals – both able

to cure all diseases. However, they are differentiated with respect to the disease they

are best able to cure. Specialization of a hospital – interpreted as a location on S – is

denoted xi, i = 1, 2. Like in Brekke et al. (2006) we make the following assumptions on

hospital specializations: x1 ∈
[
0, 1

2
− x

]
and x2 ∈

[
1
2

+ x, 1
]
, where x is a (small) positive

number. This is done in order to secure existence of pure strategy equilibria throughout

the analysis. As specialization is typically difficult to measure we consider x1 and x2

non-contractible.13

In addition to specialization, there is a second strategic variable used by the hospitals

to attract patients, namely the quality of care qi ∈
[
q, q

]
, i = 1, 2, where q is the minimum

quality level allowed by the regulator, and any qi < q can be thought of as malpractice.

Apart from malpractice litigation quality is, due to measurement problems, considered not

verifiable in a contractual sense. Without loss of generality we assume that q = 0. Quality

costs are assumed to be symmetric and quadratic, kq2
i , where k > 0. Placing an upper

bound q on quality investments is a (crude) way of capturing that it is insurmountably

13One may also argue that, although specialization is non-contractible, the regulator is able to prevent
that hospitals locate too closely. From the regulator’s perspective too close locations may be undesirable
since this would imply duplication of fixed costs without the benefit of diversified hospital services.
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costly to increase quality beyond a certain level.14 Quality costs are considered to be fixed,

i.e., they are independent of how many patients are actually treated. This implies that

quality has the characteristics of a public good at each hospital. Examples of such quality

investments are the cost of searching for and hiring more qualified medical staff, additional

training of existing medical staff, and investments in improved hospital facilities, which can

be related to both medical machinery and non-medical facilities such as room standard.15

Without loss of generality, other fixed costs are set to zero. Marginal production costs are

assumed to be constant and equal to zero. This cost structure stresses the importance of

fixed costs, which seems reasonable for the hospital market.

The price for one treatment is denoted p ≥ 0 and is set by some regulatory author-

ity.16,17 The expected profit of hospital i is given by

Πi = pDi − kq2
i , (1)

where Di is expected demand for hospital i treatment.

Patients derive utility from the quality of hospital care. Furthermore, we assume that

a patient’s utility is decreasing in the distance between the patient’s location (disease)

and the location (specialization) of the hospital where (s)he is treated. The utility loss

incurred from being treated by a less than perfectly suitable provider of care is referred to

as ‘mismatch costs’. More specifically, a patient’s (ex-post) utility when going to hospital

14We can, for instance, think of q as the best (state-of-the-art) technology or medical procedure available
in the market. Thus, increasing quality above this level is not possible.

15The assumption of production-independent quality costs is widely used in the literature on quality
competition in health care markets (see, e.g., Calem and Rizzo, 1995; Lyon, 1999; Gravelle and Masiero,
2000; Barros and Martinez-Giralt, 2002). Including variable quality costs would obviously imply a more
general quality cost structure. However, since prices are fixed in our model, variable quality costs would
only weaken the incentives for investing in quality. It can readily be verified that this only complicates
the analysis without providing any qualitatively different results. Interested readers may consult Ma and
Burgess (1993) for the case of fixed locations or contact the authors for the case of endogenous locations.

16We mainly think of the price p as a third party payment from the regulator (payer) to the hospitals.
Since in our model all individuals are ill and in need for one unit of care, the price p can be interpreted
either as a payment per treatment (e.g., DRG-pricing) or per individual (capitation).

17All results we derive also hold for constant marginal costs MC > 0. Let p̃ denote the mill price, then
the mark-up is given by p = p̃−MC.
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i is given by18

uz
i = v + qi − t(z − xi)

2. (2)

The maximum gross willingness to pay for hospital treatment, v, is assumed to be suffi-

ciently large for the entire market to be covered. Thereby, we preclude monopoly and kink

equilibria and concentrate on competitive ones.19 Notice that this assumption essentially

means that all patients have access to hospital or specialist care, which seems reasonable,

at least for developed countries (without waiting lists). One may also argue that waiting

lists are implicitly modelled as part of the quality decision: a longer list implies lower

quality for patients and lower costs for hospitals.20 The last term measures the mismatch

costs incurred – assumed to be quadratically increasing in distance – when treated by

hospital i = 1, 2. The parameter t > 0 determines the importance of mismatch costs

relative to the quality of care.

Patients are ex ante uninformed about both their own diagnosis and the qualities and

specializations of hospitals. They only know v, the distribution of Z, and that hospital

treatment is required, but they cannot observe xi, qi, and z. For uninformed patients,

secondary care is an experience good, and the ex-post utility given by (2) can only be

learned through actual consumption. However, patients can obtain more information ex

ante by consulting a GP before accessing the hospital market. We assume that a GP will

convey accurate information about the secondary care market, i.e., hospitals’ qualities

and specializations, and give the attending patient a diagnosis, i.e., a location on S. This

diagnosis is noisy, though. We assume that the GP will provide the correct diagnosis with

an exogenous probability δ ∈ (0, 1), which we henceforth term ‘diagnosing accuracy’.

We then make the simplifying assumption that incorrect diagnoses – that occur with

probability (1− δ) – are uniformly distributed on S.21 Both the probability of a correct

18We could easily include a patient co-payment in the utility function, like, for instance, αp, where
α ∈ [0, 1] is the co-payment rate, or a flat fee f > 0. However, this will not affect any of our results, as
long as the co-payments are set by the regulator.

19In a circular model, Economides (1993) and Nuscheler (2003) make similar assumptions, whereas
Salop (1979) and Gravelle (1999) study monopoly and kink equilibria in detail.

20We thank an anonymous referee for suggesting this interpretation.
21This assumption eases the presentation of results, while still preserving the relevant features of

imperfect diagnosing. It may be more realistic to assume that the densities of incorrect diagnoses are
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diagnosis and the distribution of incorrect diagnoses are common knowledge. Thus, the

GP is a perfect agent in the sense that all information is truthfully conveyed to those

patients consulting the GP, but an imperfect agent in the sense that diagnosing accuracy

is not perfect.22

Realistically, there are some individual costs associated with attending a GP to ob-

tain information. To incorporate this, we assume cost heterogeneity with respect to GP

consultation, where y ∈ [0, 1] denotes the cost type of a patient. The associated costs

are then assumed to be ay, where a > 0. This heterogeneity can simply be justified by

an opportunity cost argument, e.g., by varying time costs due to different wage earning

abilities.23 There are no other (direct) costs of gatekeeping. To simplify the analysis we

assume that patient types are uniformly distributed on the disease space S. As a re-

sult, patients are uniformly distributed on the unit square with the disease (or diagnosis)

on one axis and cost type on the other. The share of patients who obtain information

through GP consultation is denoted by λ. This share is determined either by free choice

(voluntary gatekeeping) or by direct regulation (compulsory gatekeeping).

The available regulatory instruments for a social planner are assumed to be λ and p,

while hospital quality as well as hospital specialization are not verifiable in a contractual

sense.24 Regarding regulation on λ, it is – in theory – possible to imagine that the

regulator can influence the amount of information available to patients in the market

through several different means. We will, however, focus on what is probably the most

realistic regulatory instrument, namely introducing a strict gatekeeping regime, where all

patients are required to consult a GP before seeking secondary care. Thus, the scope for

regulating λ is restricted to setting λ = 1.

higher in the neighborhood of the true location of a patient. Note, however, that the masspoint at the
true location in fact approximates such a density.

22The assumption of perfect GP information on hospital characteristics is made for simplification only.
The mechanisms of our model are at work as long as GP consultation leads to more information on hospital
characteristics. Obviously, the benefit of a gatekeeping system is lower the poorer GP information.

23Without cost heterogeneity either all patients or no patients would approach a gatekeeping GP.
24This assumption is appropriate as the quality of care and the degree of specialization are, in general,

difficult to measure. To some extent the regulator may be able to control hospital quality and specializa-
tions. We capture this by imposing the restrictions that hospitals must provide quality above a minimum
threshold, and cannot offer exactly the same services (locate very close to each other).
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The effect of GP gatekeeping to the market for secondary care is analyzed in a 5-stage

game:

1. The regulator sets her available regulatory variables. These are one or both of p

and λ. Regulation on the latter variable is restricted to setting λ = 1.

2. The hospitals simultaneously decide on their specializations, x1 ∈
[
0, 1

2
− x

]
and

x2 ∈
[

1
2

+ x, 1
]
.

3. The hospitals simultaneously set their quality levels q1 ∈ [0, q] and q2 ∈ [0, q].

4. Patients choose whether to consult a gatekeeping general practitioner and obtain

accurate information about xi and qi, and a diagnosis with accuracy δ < 1. If the

regulator introduced compulsory gatekeeping at stage 1, there is no choice patients

have to make at this stage of the game.

5. All patients choose a hospital for secondary care treatment.

The sequential structure of the game is argued by the different degree of irreversibility

of strategic decisions. Clearly, the decision of whether to consult a gatekeeping GP and/or

which hospital to go to is the most flexible decision to be taken in the entire game.

Changing quality or specialization requires more effort and investment. In both cases

it may be necessary to replace some medical machinery and/or have the current staff

undergo significant training, or even hire new staff. Although it may sometimes be hard to

distinguish between quality investments and a change of specialization, it seems logically

consistent to assert that hospitals first decide what to produce (their service or speciality

mix), and then determine the quality of services.25 This sequential structure is common in

models that combine horizontal and vertical differentiation (see, e.g., Economides, 1989;

Calem and Rizzo, 1995; Bester, 1998; Gravelle, 1999).

That the regulator can determine λ and p at the beginning of the game essentially

means that we consider commitment power on her side. This assumption is, of course,

crucial as in most sequential games. With respect to λ, this can easily be justified since

25Calem and Rizzo (1995) discuss this in some more detail.
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introducing a strict gatekeeping system (i.e., setting λ = 1) must be regarded as a major

reform of the health care system. This may be less clear with the price. As in Brekke et al.

(2006) and Nuscheler (2003) there will be an incentive to reoptimize after specializations

have been chosen. Nevertheless, since commitment is valuable for the regulator, one

could argue that she should be able to obtain such commitment power, either through

reputation or by creating institutional mechanisms that makes it costly, or otherwise

difficult, to change the regulated price.26 In any case, since price regulation is not the

major focus of the present paper, we will concentrate on the full commitment case.

Although we have a game of imperfect information (the fraction 1 − λ of the popu-

lation is uninformed about hospital quality, hospital specialization and about their own

disease; the fraction λ(1− δ) receives accurate quality and specialization information but

a wrong diagnosis), subgame perfection is the appropriate solution concept. Note that

the standard Nash assumption applies zero conjectural variations, i.e., hospitals optimize

their own actions against a given action of the competitor (see, e.g., Bresnahan, 1981).

Moreover, there is no collusion amongst hospitals.27 We solve the game by backward in-

duction, starting with the demand for hospital care. Hospitals then play their sequential

specialization-quality game for a given value of λ. This yields reaction functions x∗i (λ)

and q∗i (λ) for i = 1, 2. This game is analyzed in Section 3.

As hospitals have no means to ‘signal’ their characteristics, neither specializations

nor qualities are observed by patients, although hospitals move before patients decide

about whether to consult a GP (and obtain information) or not. Therefore, patients have

to decide on GP consultation for given values of the hospitals’ strategic variables. So,

in a game-theoretic sense, consultation decisions are simultaneous to the specialization-

quality game. A reaction function λ∗(x1, x2, q1, q2) results, and the equilibrium of the

specialization-quality-consultation subgame is then, as usual, the intersection of the re-

action functions where actions are mutually best responses. This subgame is analyzed in

26The assumption that a regulator can credibly commit to a given price (or, more generally, a given
transfer) is extensively applied in the literature, see e.g., Ma and Burgess (1993), Wolinsky (1997) and
Beitia (2003).

27Schultz (2005) analyzes the effect of market transparency on tacit price collusion in a Hotelling
framework.
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Section 4.

The solution of the full game is relegated to Section 5, where social welfare and price

regulation is investigated.

3 Hospital specialization and quality

3.1 The demand for secondary care

A share 1−λ of the population does not consult a GP, and thus remains uninformed about

the actual quality levels and about specializations. Moreover, these patients do not know

the exact disease they suffer from. To make a decision about which hospital to approach,

patients have to evaluate their expected utility of attending each hospital. As the game

is fully symmetric and since hospitals have no means to signal their characteristics, we

adopt the standard tie-breaking rule where both hospitals receive half of the uninformed

patients, (1− λ) /2. Any other tie-breaking rule would yield qualitatively similar results.

As we concentrate on symmetric equilibria, we also impose symmetry here.

The residual fraction of the population, λ, consults a GP and obtains (perfect) informa-

tion about hospital characteristics. These patients are responsive to quality investments

and specialization decisions, since both strategic variables are observed. Furthermore,

the patients consulting a GP receive an imperfect diagnosis. The probability of getting a

correct diagnosis is δ and is independent of the disease. If a patient receives a diagnosis

z, the probability that he actually suffers from disease z is δ. With the remaining proba-

bility, 1− δ, z is just a draw from the uniform distribution over the unit interval S. Thus,

the expected utility of hospital i treatment, for a patient who has received a diagnosis z,

is given by

Euz
i = v + qi − δt (z − xi)

2 − (1− δ) t

∫ 1

0

(s− xi)
2 ds. (3)

Consider q1 ∈ [ql
1, q

h
1 ], where ql

1 = q2 + t (x2 − x1) (1− x2 − x1) − tδ (x2 − x1) and

qh
1 = q2 + t (x2 − x1) (1− x2 − x1) + tδ (x2 − x1). Then there exists a unique diagnosis,

z ∈ [0, 1], such that a patient who receives this diagnosis is, in expectation, indifferent

between the two hospitals. This diagnosis is found by solving Euz
1 = Euz

2 for z. If
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q1 < ql
1 all patients are – independent of the diagnosis they receive – strictly better off

with hospital 2, i.e. hospital 1 gets no demand from informed consumers. If q1 > qh
1

all patients are strictly better off with hospital 1 treatment. The expected demand for

hospital 1 from GP-patients is then given by the expected number of patients who receive

a diagnosis z ≤ z. Since both true and incorrect diagnoses are uniformly distributed on

S, and diagnosing accuracy is the same for all locations, the reported diagnosis is also

uniformly distributed on S, implying that the probability of receiving a diagnosis z ≤ z

is z. The share of informed patients that choose hospital 1 is thus given by

z (q1, q2; x1, x2) =





0 for q1 ≤ ql
1(q2)

1
2

+ q1−q2

2tδ(x2−x1)
− (1−x1−x2)

2δ
for q1 ∈ (ql

1, q
h
1 ).

1 for q1 ≥ qh
1 (q2)

(4)

Overall expected demand for hospital 1 is D1 = λz + (1− λ) /2. Like z the demand

function has kinks at ql
1 and qh

1 . Hospital 2 expects to receive the residual demand

D2 = 1−D1 = λ (1− z) + (1− λ) /2.

3.2 Quality competition

For given locations and given GP attendance, optimal quality investments are found by

inserting demand derived above into the profit function (1) and optimizing with respect

to qi. We assume that δ > 1
2
− x. For this case, we show in the Appendix that, if q is not

too high, a unique pure strategy equilibrium in the quality game exists for all p > 0 and

λ > 0, and for all locations x1 ∈
[
0, 1

2
− x

]
and x2 ∈

[
1
2

+ x, 1
]
. This equilibrium is given

by

q∗i (∆; λ, p) = min

(
pλ

4tkδ∆
, q

)
, i = 1, 2, (5)

where ∆ := x2−x1 ∈ [2x, 1]. We see that equilibrium quality levels in the interior solution

are always symmetric and depend only on the distance between hospitals’ locations. This

is due to the absence of price competition, where quality investments have a market

expanding effect which, due to the uniform distribution of patients, does not depend

on absolute locations. An immediate implication is that optimal specializations will be
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characterized by some certain distance and not by absolute locations.

Assuming an interior solution, the comparative static results are mostly straightfor-

ward. Less product differentiation (lower ∆) will intensify quality competition, i.e., com-

petition is intense when products are close substitutes. Furthermore, patients are more

responsive to quality improvements when mismatch costs are small, implying that t is a

measure of competition intensity. Not very surprisingly, an increase in the quality cost

parameter k has an adverse effect on quality provision. The better medical treatments

are paid, the higher are the benefits of capturing market from the competitor. At this

stage of the game the only means of competition is the quality of care, and thus hospitals

will improve their quality as a response to an increase in p.

The degree of information in the market is captured by the two parameters λ and δ. A

higher GP attendance (λ) leads to increased quality provision. This is quite intuitive, since

more patients obtain information about hospital qualities and thus become responsive to

possible quality differences between the hospitals. Improved diagnosing accuracy, on the

other hand, has the opposite effect, which might seem a bit surprising at first glance.28

The underlying mechanism is that lower diagnosing accuracy makes hospital quality a

relatively stronger signal for an imperfectly informed patient. If a patient is less certain

about his own location, and thus about the expected mismatch costs of attending each

hospital, he will attach more weight to hospital quality in making the decision of which

hospital to approach for treatment. In other words, improved diagnosing accuracy means

that information about hospital specialization becomes more valuable for the patient. All

else equal, a higher value of δ thus reduces the degree of competition in the market and

leads to lower quality provision in equilibrium.

3.3 Specialization

At this stage of the game hospitals decide on their specialization, taking, for a given λ,

the effects on quality competition and demand into account. We look for a symmetric

equilibrium in pure strategies. Inserting the optimal quality levels in the interior solution

28Remember that patients receive perfect information about qualities and specializations, while diag-
nosis information is imperfect.
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into hospital 1’s profit function, we obtain the following partial derivative with respect to

x1:
∂Π1

∂x1

= pλ

(
1

2δ
− pλ

8∆3kt2δ2

)
. (6)

As already mentioned, setting ∂Π1/∂x1 = 0 only yields ∆∗. There exists a continuum of

locations fulfilling x2−x1 = ∆∗. Imposing symmetry leads to a unique equilibrium, given

by29

x∗1 (λ, p) =
1

2
(1−∆∗) and x∗2 (λ, p) =

1

2
(1 + ∆∗) , (7)

where

∆∗ (λ, p) =

(
pλ

4t2kδ

) 1
3

. (8)

In addition, there are two possible corner solutions. If differentiation incentives are very

strong, the hospitals will locate at the endpoints, i.e., ∆∗ = 1. On the other hand, if the

upper bound on quality is sufficiently low, the locations given by (7)-(8) will induce a

corner solution, qi = q, in the ensuing quality game. In this case, the equilibrium in the

location game is a corner solution with minimal hospital differentiation, i.e., ∆∗ = 2x. In

the following, we focus on the interior equilibrium given by (7)-(8).30

The hospitals’ location incentives are governed by two opposing forces. Ceteris paribus,

each hospital can obtain a larger share of the market by moving closer to its rival (business

stealing effect). On the other hand, closer locations imply that quality competition is

intensified, as can be seen from equation (5).

Consider an increase in the treatment price p. This will strengthen the business

stealing effect, since hospitals now receive a higher mark-up on each treatment. However,

a price increase also means that quality competition is amplified. From (8) we see that

the latter effect always dominates: a higher price implies that hospitals aim at dampening

the resulting increase in quality competition by locating further apart.

29It is easily shown that the second-order conditions are met. Moreover, note that symmetry always
implies x1 + x2 = 1.

30In the specialization equilibrium given by (7) and (8), hospital 1 might also have an incentive to
deviate by locating at 1

2 − x, if such a relocation induces a corner solution in the quality subgame. (Of
course, hospital 2 has symmetric incentives). It can easily be shown that such a deviation is not profitable
unless q is sufficiently low. We rule out this possibility by assumption.
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A similar mechanism determines the relationship between GP attendance and loca-

tions. More informed patients will result in stronger quality competition, and hospitals

will respond by differentiating more.31 A social planner thus faces a trade-off when setting

the price or taking measures to improve information in the market. The improved quality

has to be weighed against the change in aggregate mismatch costs.

Like in the quality game, increased information about the secondary care market

through higher GP attendance and improved diagnosing accuracy yield opposite incentives

for hospital competition. Since improved diagnosing accuracy reduces the intensity of

quality competition, hospitals choose to differentiate less.

We have already identified the mismatch cost parameter t as a measure of competition

intensity. A low t boosts quality provision and – to dampen this effect – hospitals locate

further apart. Finally, an increase in the quality cost parameter k reduces quality com-

petition, resulting in less product differentiation. When inserting (8) into (5) we obtain

the equilibrium quality levels of the game:

q∗ (λ, p) =

(
p2λ2

16tk2δ2

) 1
3

. (9)

The following Proposition summarizes the comparative statics results:

Proposition 1 The best responses of the specialization-quality game are both increasing

in treatment price and GP consultation, and decreasing in mismatch costs, quality costs

and diagnosing accuracy.

4 GP consultation

In the previous section we derived the equilibrium of the specialization-quality game for a

given value of λ, and equations (7), (8) and (9) show the respective best response functions

of the hospitals. To solve the game we now have to derive the best response of patients

to any given level of ∆ and q. This is done by letting patients make the choice of whether

31This result is clearly dependent on the mode of competition. If we allow the firms (hospitals) to
compete on prices, and not qualities, the opposite result would apply (cf. Schultz, 2004).
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or not to consult a GP to obtain more information, based on an assessment of expected

benefits and costs.

When deciding whether to approach a (randomly chosen) hospital directly or to con-

sult a GP first, a patient has to weigh the costs of going to a GP against the benefits.

As the game is common knowledge, patients know that hospitals provide the same qual-

ity. Moreover, the quality received is independent of whether a GP was consulted or

not and therefore the consultation decision is independent of qualities. Determining the

(individual) benefits of gatekeeping, and thereby the best response λ∗(∆), simply requires

ascertaining the reduction in expected mismatch costs for every degree of product dif-

ferentiation, ∆, in the market. To simplify the analysis we assume that patients know

that the equilibrium will be symmetric, i.e., that hospitals locate equidistantly from the

market center, but on opposite sides.32

For a given degree of differentiation, ∆, expected mismatch costs for a patient who

directly approaches a hospital are

M0 =
t

2

∫ 1

0

(
z − 1

2
(1−∆)

)2

dz +
t

2

∫ 1

0

(
z − 1

2
(1 + ∆)

)2

dz. (10)

The first term of equation (10) measures the expected mismatch costs when approaching

hospital 1 weighted with the probability that this hospital will actually be chosen (which,

applying our tie-breaking rule, is 1/2). Expected mismatch costs are calculated over the

entire disease space, since patients are unaware of their actual diagnosis. Accordingly, the

second term measures the expected mismatch costs when consulting hospital 2, weighted

with 1/2. When consulting a GP first, expected mismatch costs are reduced to

MGP = t

∫ 1
2

0

(
δ

(
z − 1

2
(1−∆)

)2

+ (1− δ)

∫ 1

0

(
s− 1

2
(1−∆)

)2

ds

)
dz (11)

+ t

∫ 1

1
2

(
δ

(
z − 1

2
(1 + ∆)

)2

+ (1− δ)

∫ 1

0

(
s− 1

2
(1 + ∆)

)2

ds

)
dz.

Through GP consultation the patient obtains a diagnosis z and seeks treatment of hospital

32This allows us to write the best response function λ∗(.) as a function of ∆. Otherwise the benefits
of gatekeeping would differ in absolute locations even if relative locations, i.e. ∆, remain unchanged.
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1 whenever z ∈ [
0, 1

2

]
. The associated expected mismatch costs are given by the first line

of equation (11). With probability δ the diagnosis z is correct and the corresponding

mismatch costs are given by the first term of the integrand (of the outer integral). With

the remaining probability 1 − δ the diagnosis z is false. The true disease may be at any

point of the unit interval and every disease is equally likely. The resulting mismatch costs

are given by the second term, i.e., by the inner integral. If z ∈ (
1
2
, 1

]
, the patient chooses

treatment of hospital 2 and, in expectation, incurs the second line as mismatch costs. The

expected benefit of gatekeeping is thus

B := M0 −MGP =
tδ∆

4
. (12)

The best response λ∗(∆) is now obtained by equating the expected benefits of gatekeeping

to its actual costs, tδ∆/4 = ay, and solving for y, which yields the critical cost type ỹ

who is indifferent between consulting a GP for diagnosis (and referral) and approaching

a hospital directly. Since the cost type is uniformly distributed on the unit interval the

share of patients seeking GP diagnosis is
∫ ey
0

dy = ỹ implying a best response function

λ∗(∆) =
tδ∆

4a
. (13)

The comparative static results can easily explained by the costs and benefits of GP

consultation. Of course, the higher consulting cost (a), the lower the share of patients

actually attending a GP for consultation. The benefits of gatekeeping are determined

by two different factors relating to three different variables or parameters. First, the

mismatch costs that, in expectation, can be saved through costly GP consultation are

positively related to the degree of horizontal differentiation of services ∆ and to the weight

t attached to the disease mismatch in the patients’ utility function. Thus, the higher t∆

the more costly, in terms of mismatch costs, to approach the ‘wrong’ hospital. Second,

the savings discussed above are realized with a higher probability the more accurate the

diagnosis of the GP, i.e. the larger δ.

Let us now turn to the solution of the game. Equations (8) and (13) define the two

reaction functions which determine the equilibrium attendance rate and differentiation,
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λ∗ and ∆∗, so that the level of GP attendance is the best response to hospital specializa-

tions, and vice versa. Assuming an interior solution for hospital differentiation and GP

attendance, the equilibrium values of ∆ and λ are found by simultaneously solving (8)

and (13), yielding

∆∗ (p) =
1

4

( p

tka

) 1
2
, (14)

λ∗ (p) =
δ

16

(
pt

ka3

) 1
2

. (15)

The corresponding quality levels are obtained by substituting equation (15) into (9),

yielding

q∗ (p) =
p

16ak
. (16)

We are now ready to state the comparative static results of the specialization-quality-

consultation subgame:

Proposition 2 The specialization-quality-consultation equilibrium has the following com-

parative static properties:

(i) GP attendance is increasing in treatment price, mismatch costs and diagnosing

accuracy, and decreasing in quality and attendance costs;

(ii) hospital differentiation is increasing in treatment price, decreasing in mismatch,

attendance and quality costs, and independent of diagnosing accuracy;

(iii) hospital quality is increasing in treatment price, decreasing in attendance and

quality costs, and independent of mismatch costs and diagnosing accuracy.

Several of these effects are quite intuitive. The share of the population attending a

GP increases in the mismatch cost, t, as this drives up the benefits of gatekeeping. It also

increases in the treatment price. This is an indirect effect stemming from specialization.

Price increases boost quality competition and, to dampen this effect, hospitals aim at

reducing the substitutability of their services, increasing the benefits of gatekeeping. Ob-

viously, λ∗ is a decreasing function of a. The higher the disutility incurred by consulting

a GP, the lower the share of patients who actually consult one. This reduces the com-

petitive pressure in the hospital market, leading to less differentiation and a lower supply

of quality. Equilibrium GP attendance is also increasing in the diagnosing accuracy, δ,
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since improved accuracy reduces expected mismatch costs and thus increases the benefits

of GP gatekeeping. Finally, an increase in the quality cost parameter, k, reduces quality

competition and thereby differentiation incentives. This, in turn, reduces the benefits of

gatekeeping, leading to a lower GP attendance in equilibrium.

There are also some effects that are less obvious. We see that the mismatch costs pa-

rameter t has no effect on equilibrium hospital quality. With exogenous GP attendance,

patients were more responsive to quality investments at lower values of t, amplifying qual-

ity competition. With endogenous GP attendance, however, this effect is counteracted by

the consultation effect. A lower t reduces the benefits of gatekeeping, resulting in lower

GP attendance and thus a less competitive market. With linear costs of GP consultation

and uniformly distributed consultation cost types these two effects exactly offset. Inter-

estingly, we also see that equilibrium hospital specialization and quality provision are not

affected by diagnosing accuracy, δ. For a given level of GP attendance, we know that

higher diagnosing accuracy reduces the degree of competition in the market, with lower

quality provision and less differentiation (direct effect). However, a higher diagnosing

accuracy also increases the value of information obtained by attending a GP, leading to

higher GP attendance, which, in turn, increases the degree of hospital competition (in-

direct effect). Thus, when the decision of whether or not to attend a GP is taken into

account, the indirect effect of improved diagnosing accuracy on hospital competition tends

to counteract the direct effect. In our specific model, with linear GP consultation costs,

these two effects exactly offset. Obviously, the indirect effect is eliminated if consultation

costs are so low that all patients choose to consult a GP before accessing the hospital

market. In this case, the equilibrium is a corner solution with λ∗ = 1, where improved

diagnosing accuracy dampens competition between secondary care providers.
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5 Social welfare

Consider a social planner who aims at maximizing social welfare, defined as the sum of

consumers’ and producers’ surpluses net of any government expenditures.33 Taking the

duopolistic market structure as exogenously given, imposing symmetry, and noting that

aggregate GP consultation costs are a
∫ λ

0
sds = 1

2
aλ2, expected social welfare is given by

W = v + q (1− 2kq)− [(1− λ) M0 + λMGP ]− 1

2
aλ2,

or, when substituting for M0 and MGP from equations (10) and (11),

W = v + q (1− 2kq)− t

12
[1− 3∆ (λδ −∆)]− 1

2
aλ2. (17)

The interpretation of (17) is straightforward. In addition to the gross utility of hospital

treatment (1. term), expected social welfare consists of the social net benefit of quality

provision (2. term) net of expected aggregate mismatch costs (3. term) and aggregate

GP consultation costs (4. term).

5.1 Should GP attendance be made compulsory?

Introducing a strict gatekeeping system is equivalent to setting λ = 1. For illustration, let

us first assume that the regulator can decide the optimal rate of GP attendance directly,

by choosing any λfb ∈ [0, 1]. From (17), the rate of GP attendance that maximizes social

welfare, for a given level of hospital differentiation ∆, is given by

λfb =
tδ∆

4a
. (18)

Comparing (18) and (13) we see that, for a given degree of hospital differentiation, pri-

vate and social incentives for GP attendance coincide. So why should a regulator distort

GP consultation? The reason is that, for a given price p, the ‘laissez-faire’ equilibrium,

33If we interpret p as a per treatment or per patient reimbursement from a government agency, we
implicitly assume that the third party (i.e., the regulator) is able to raise the necessary funds in a non-
distortionary manner.

22



given by (14), not necessarily produces socially optimal hospital differentiation. Quality

provision (16) may also be inefficient. It may therefore be desirable to make GP atten-

dance compulsory, in order to affect both hospital specializations and quality investments

in a socially desirable direction, even if this means that GP attendance costs increase

beyond the socially (and privately) optimal level.

With voluntary GP consultation, expected social welfare is found by inserting the

equilibrium expressions for ∆∗ (p), λ∗ (p) and q∗ (p) from (14)-(16) into the welfare function

(17), yielding

W ∗ (p) = v − t

12
+

(24a− 4p + tδ2) p

512ka2
. (19)

If the regulator enforces compulsory GP consultation, expected social welfare is found by

setting λ = 1 in the equilibrium expressions for ∆∗ (λ, p) and q∗ (λ, p) in (8) and (9), and

substituting into the welfare function (17), yielding

W ∗ (p)|λ=1 = v − t

12
− a

2
+

1

16

[
2

(
2tδ2p

k

) 1
3

+ 3

(
4p2

k2tδ2

) 1
3

− 4

(
2p4

kt2δ4

) 1
3

]
. (20)

Whether or not an introduction of a strict gatekeeping system is (for a given price)

socially desirable is then determined by the sign of the difference between (19) and (20).

Unfortunately, it is not feasible to characterize this difference analytically. However, we

have done several numerical simulations that produce a clear picture. The details of the

simulations are available upon request; here we will only summarize the main findings.

It is instructive to express the results with respect to the key parameters t and δ. Our

main finding is that enforcing compulsory GP consultation is socially desirable only if t or

δ are sufficiently high. Hospital competition is then relatively moderate and insufficient

quality and too little hospital differentiation may result. We know that improved patient

information in terms of GP consultation (i.e., an increase in λ) increases the degree of

competition in the market. The introduction of a strict gatekeeping system thus stimulates

competition and may affect both quality and specialization in a socially desirable direction.

In contrast, if t or δ are relatively small hospital competition is already strong. Making GP

consultation compulsory might then lead to excessive competition with too high quality

and too much specialization.
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5.2 The treatment price as an additional regulatory instrument

The above result hinges on the assumption that the treatment price is exogenous. We

will now relax this assumption and assume that the regulator is able also to use the price

as a regulatory instrument in an optimal way. Assuming second-best price regulation, the

following result obtains:

Proposition 3 With second-best price regulation and endogenous GP consultation deci-

sions, there is no scope for direct regulation of GP attendance.

Proof. Inserting (8) and (9) into (17) yields a welfare function W (p, λ). By defining

p̂ := pλ we can define a new welfare function Ŵ (p̂, λ) := W (∆∗ (p̂) , q∗ (p̂) , λ). Maxi-

mizing W (p, λ) with respect to p and λ is then equivalent to maximizing Ŵ (p̂, λ) with

respect to p̂ and λ. Taking the partial derivative with respect to λ yields

∂Ŵ (p̂, λ)

∂λ
= −aλ +

tδ

4
∆∗ (p̂) . (21)

By comparing (13) and (21) we see that social and private incentives for GP attendance

coincide for every given value of ∆. The regulator can then use p̂ to induce the optimal

(second-best) levels of q and ∆ and let patients choose the socially optimal level of GP

attendance themselves.

When second-best pricing is available, there is no longer any need to use strict gate-

keeping as a regulatory mechanism to induce socially more desirable hospital differentia-

tion and quality provision. From (8) and (9) we know that p and λ have identical effects

on equilibrium differentiation and quality provision. Thus, by using the price instrument

properly, the regulator can induce exactly the same specialization-quality outcome for

any given value of λ. If the regulator uses the price instrument to induce second-best dif-

ferentiation and quality provision, an optimal trade-off between expected mismatch cost

reductions and consultation costs will secure the socially optimal level of GP attendance.

This is exactly the trade-off that patients make themselves in the described game.
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5.3 The second-best optimum

Let us now derive and characterize the second-best price and briefly discuss the efficiency

properties of the optimal solution.34 We focus on an interior solution, where the optimal

price is sufficiently low to ensure q < q.35 Maximizing (19) with respect to p yields the

following second-best treatment price:

psb = 3a +
1

8
tδ2. (22)

The optimal price is increasing in diagnosing accuracy, although δ does not affect

quality and specializations in equilibrium. The reason is that higher diagnosing accuracy

increases the degree of information about hospital specializations in the market, implying

that the socially optimal differentiation is larger. The regulator must then stimulate

more differentiation by increasing the treatment price. The effects of the consultation

and mismatch cost parameters a and t are more straightforward. An increase in either

type of cost dampens hospital competition, leading to less differentiation and lower quality

provision, effects that can by counteracted by increasing p.

From the price given in (22), the following equilibrium outcome obtains:

∆sb =
1

4

[
1

k

(
3

t
+

δ2

8a

)] 1
2

, qsb =
3

16k
+

tδ2

128ak
, and λsb =

δ

64

(
2t (24a + tδ2)

a3k

) 1
2

. (23)

The efficiency properties of the second-best interior solution36 are summarized as follows:

34For a discussion of optimal price regulation under complete information, i.e., where λδ = 1, see
Brekke et al. (2006).

35It is straightforward to show that the regulator will never induce a corner solution if

(
24a + tδ2

)2

8192ka2
+ q (2kq − 1) +

tx2
(
8a− tδ2

)

8a
> 0.

36It is straightforward to show that second-best pricing yields an interior solution with respect to GP
attendance for a subset of the parameter values, defined by k > k, where

k :=
tδ2

(
24a + tδ2

)

2048a3
.

Thus, if k ≤ k we have a corner solution with λsb = 1, implying a de facto strict gatekeeping regime.
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Proposition 4 The second-best (interior) solution of the specialization-quality-consultation

game has the following efficiency properties:

(i) for tδ2 < 8a, there is too much differentiation given λsb, and too low quality provi-

sion;

(ii) for tδ2 = 8a, differentiation is first-best given λsb and first-best quality is imple-

mented;

(iii) for tδ2 > 8a, there is insufficient differentiation given λsb, and too high quality

provision.

Proof. First-best specialization, ∆fb = λδ/2, and first-best quality, qfb = 1
4k

, is

obtained by partially differentiating equation (17) with respect to ∆ and q respectively.

From (23) we find that

∆sb − λsbδ/2 =
1

128a

√
48a + 2tδ2

akt

(
8a− tδ2

)
> (<) 0 if tδ2 < (>) 8a

and

qsb − qfb =
tδ2 − 8a

128ka
< (>) 0 if tδ2 < (>) 8a.

The first-best outcome with respect to both hospital differentiation and quality provi-

sion is – apart from the knife-edge case (ii) – never achieved. This is not surprising, since

the regulator has more policy goals than regulatory instruments.

To see the intuition for the general efficiency characteristics of the second-best equilib-

rium, consider regimes (i) and (iii), where the benefits of gatekeeping are either low or high

compared to its costs. In the former case, GP attendance will be low in equilibrium and

social welfare is maximized at a relatively low degree of differentiation. Consequently,

the price that yields first-best differentiation is not high enough to generate efficient

quality provision. Higher quality can then only be obtained at the expense of excessive

differentiation, and these considerations are optimally traded off at a price which yields

under-provision of quality and too much differentiation. In the latter case, though, GP

attendance and thus the first-best level of differentiation are relatively high. The op-

timal degree of differentiation is then obtained at a price that yields over-provision of
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quality. Consequently, optimal regulation implies accepting a less than optimal degree of

differentiation in order to avoid too much over-investment in quality.

6 Concluding remarks

Equipping GPs with a gatekeeper role in the health care system is a major issue in the

debate on health care reforms. Among politicians, the conventional wisdom is that gate-

keeping contributes to cost control. This is somewhat surprising since evidence is lacking,

as was demonstrated in an empirical study by Barros (1998). As GPs are usually better

informed than patients about the characteristics of the secondary health care market,

e.g., about quality and specialization of hospitals, matching of patients to hospitals may

be improved by gatekeeping. However, this argument neglects the potential competitive

effects in the hospital market. We have presented a model that analyzes the competitive

effects of gatekeeping in the presence of hospital non-price competition.

While prices were regulated, we allowed for competition in specialization and quality.

We found that when the price is exogenously given, strict gatekeeping may reduce social

welfare, especially if mismatch costs and diagnosing accuracy are both sufficiently low. In

this case, making it compulsory to attend a GP before receiving secondary care will boost

competition to such an extent that excessive hospital specialization and quality occur.

This raises doubts about whether gatekeeping improves efficiency. Things change when

allowing for second-best price regulation. In this case, we showed that there is no scope

for direct regulation of GP attendance, since consultation decisions of patients are the

same as what a social planner would implement. Actually, a de facto strict gatekeeping

regime arises endogenously if the benefits of gatekeeping are sufficiently high (improved

matching outweighs the potentially negative competitive effects) compared to its costs.

Finally, we considered the (interior) second-best equilibrium, showing that the solution, in

general, will be characterized by inefficient levels of quality and specialization, depending

on the relative values of mismatch costs, consultation costs and the diagnosing accuracy.

GP consultation, however, was found to be efficient given specializations of hospitals.

The analysis demonstrates that efficiency gains that are usually attributed to GP
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gatekeeping cannot be taken for granted when the secondary care sector is endogenized

and non-price competition amongst providers is considered. In the short run, efficiency

gains may indeed be obtained by better matches. However, quality provision may still be

inefficient. In the long run, hospitals will adjust their specialization so that differentiation

increases, which might counteract the positive short run effect.

We have assumed a prospective payment system, where the regulator sets the price

per treatment. This payment system corresponds well with DRG-pricing systems, which

are extensively used by several countries as a way to reimburse hospitals for their medical

treatments. The DRG-price is based on the average cost of treating particular diagnostic

groups, where the average cost is derived from reported costs by a representative sample of

hospitals. An alternative mechanism is to give hospitals budgets (block grants) based on

capitation, which is a payment per individual enrolled in a given health plan (or district).

The capitation payment is based on the expected overall costs of treating the individu-

als in the health plan, which depends on the distribution of diseases, the corresponding

probabilities of falling ill, and the treatment costs. In our model there is no uncertainty

with respect to health status. Every individual is ill and in need for one unit of care. As

a consequence, the regulated price can be interpreted either as a payment per treatment

(e.g., DRG-price) or per individual (capitation). As long as the hospitals are not able to

affect the payment per patient nor the probability of falling ill, our results can be gen-

eralized to also include capitation systems. However, if the hospitals can manipulate the

payment per patient by, for instance, upcoding or cream-skimming activities, capitation

systems need a separate analysis. This is left for future research.

Appendix. Equilibrium in the quality game

We will show that equation (5) is indeed a pure strategy equilibrium of the quality game.

What is required is a properly defined upper bound on quality, q. Moreover, this equi-

librium is unique. Uniqueness can be established quite straightforwardly by deriving the

best response functions for both hospitals and showing that these functions intersect only

once, i.e. at the equilibrium given by (5). Interested readers can contact the authors for
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details; here we concentrate on giving a rigorous proof of existence.

To establish existence, we need to check that q∗1 and q∗2 are mutually best responses.

It is thus sufficient to show that there exists no profitable deviation for hospital 1 from

q∗1 given q∗2, and vice versa. Since the problem at hand is symmetric we restrict attention

to hospital 1.

Consider first an interior solution, i.e. q∗1 = q∗2 < q. The profit of hospital 1 is then

given by

Πint
1 (p, λ) =

p

2

(
1− λ

δ

(
1− x1 − x2 +

pλ

8t2kδ∆2

))
, (A1)

where ∆ := x2−x1 ∈ [2x, 1] and the superscript int refers to interior solutions. Let us now

check for possible profitable deviations for hospital 1. First note that one implication from

the first-order conditions is that a deviation from q∗1 (given q∗2) implying z ∈ (0, 1) can

never be profitable. In this range the profit function is strictly concave since the demand

function is linear in q1 and the cost function is strictly convex in q1 (see equations (4) and

(1), respectively). Thus, the first order condition guarantees that q∗1 maximizes hospital

1’s profit in that range. Moreover, given q∗2, any quality level q1 implying z = 1 cannot be

optimal. Like the demand function (4), the profit function (1) has a kink at q1 = qh
1 (q∗2).

Beyond this quality level demand does not react to quality, but quality costs do make the

profit function even more concave in this area. To summarize, the first order condition

and the strict concavity of the profit function on the set {q1|0 < z(q1, q
∗
2) ≤ 1} guarantee

that q∗1 is a best response to q∗2 on that set. When checking for profitable deviations of

hospital 1 we can therefore direct attention to situations where z = 0. However, when

hospital 1 receives no demand from informed consumers, it maximizes its profit by not

investing in quality at all. The optimal deviation thus implies q1 = 0 and a payoff

Π̂1 (p, λ) =
(1− λ) p

2
. (A2)

Deviation is not profitable if Φint
1 (p, λ) := Πint

1 (p, λ) − Π̂1 (p, λ) ≥ 0, where Φint
1 can be

expressed as

Φint
1 (p, λ) =

pλ

2

[
1− 1

δ

(
1− x1 − x2 +

pλ

8t2kδ∆2

)]
. (A3)

Let us now study the properties of Φint
1 . Since p = 0 yields Πint

1 (0, λ) = Π̂1 (0, λ) = 0, we
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have Φint
1 (0, λ) = 0. So, not surprisingly, there is no incentive to deviate when the price

is zero. The first and second order partial derivatives with respect to p are

∂Φint
1 (p, λ)

∂p
=

λ

2δ

(
x1 + x2 + δ − 1− pλ

4kδt2∆2

)
, (A4)

∂2Φint
1 (p, λ)

∂p2
= − λ2

8kt2δ2∆2
< 0, (A5)

which confirms that Φint
1 is concave in p. For a deviation to be unprofitable for small

values of p we need to have

lim
p→0

∂Φint
1 (p, λ)

∂p
=

λ

2δ
(x1 + x2 + δ − 1) > 0. (A6)

It is easy to show that inequality (A6) holds for all x1 ∈
[
0, 1

2
− x

]
and x2 ∈

[
1
2

+ x, 1
]

if δ > 1
2
− x. Thus, there exists a sufficiently low value of p such that deviation is not

profitable provided that λ > 0 and δ > 1
2
− x.37

When there is no upper bound on quality we know that Φint
1 → −∞ if p → ∞.

Together with the concavity of Φint
1 , shown in equation (A5), and the assumptions made

above, we know that Φint
1 has exactly two roots, one at p = 0 and one at some p̂ ∈ (0,∞),

where p̂ depends on locations, i.e. p̂ = p̂(x1, x2). Thus, for sufficiently high prices, i.e. for

p > p̂(x1, x2), deviation to q1 = 0 is profitable. We now define an upper bound on quality,

q, such that this will never happen.

Define p̂(x1, x2) implicitly as the positive solution to Φint
1 (p, 1) = 0. From (A3), this

is given by

p̂(x1, x2) = 8kt2∆2δ (δ + x1 + x2 − 1) .

Note that this critical price is, given the assumptions made so far and given the prop-

erties of Φint
1 , always well defined. Moreover, since equation (5) establishes the mono-

tonicity of q∗i (p, λ) in p and λ, the critical price implies a critical quality level q̂(x1, x2) :=

q∗i (p̂(x1, x2), 1), i = 1, 2. Now assume that p ≤ p̂(x1, x2); then the candidate equilib-

rium (q∗1, q
∗
2) has quality levels below q̂(x1, x2) and there is no incentive to deviate. If

37Note that we have not made use of symmetry in locations. But consider locations were symmetric,
then x1 + x2 = 1, implying that (A6) would be satisfied for any diagnosing accuracy δ > 0.
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p > p̂(x1, x2) there is no incentive to deviate if (i) the upper bound on quality q is not

above q̂(x1, x2) and if (ii) the hospital has no incentive to deviate from q. Let

p := min

{
p̂(x1, x2)|x1 ∈

[
0,

1

2
− x

]
, x2 ∈

[
1

2
+ x, 1

]}

Then the definition

q := q∗1(p, 1)

guarantees that hospital 1 never has an incentive to deviate from the candidate equilibrium

– independent of locations.38 Due to symmetry, the exact same argument applies of course

for hospital 2.

Now consider the corner solution. Due to the first-order conditions, where quality

incentives depend on relative, but not absolute, locations, the corner solution must also

be symmetric; q∗1 = q∗2 = q. In this case, the profit of hospital 1 is given by

Πcor
1 (p, λ, q) =

p

2

(
1− λ (1− x1 − x2)

δ

)
− kq2, (A7)

where the superscript cor refers to corner solutions. Optimal deviation profits are still

given by (A2), implying

Φcor
1 (p, λ, q) =

λp

2

(
1− (1− x1 − x2)

δ

)
− kq2. (A8)

Since Φcor
1 is necessarily – by the definition q := q∗1(p, 1) – non-negative at q, the properties

∂Φcor
1 (p,λ,q)

∂p
> 0 and

∂Φcor
1 (p,λ,q)

λ
> 0 guarantee that no profitable deviation exists.

To summarize, a symmetric pure strategy equilibrium exists for all δ > 1
2
− x, p and

λ, and all locations x1 ∈
[
0, 1

2
− x

]
and x2 ∈

[
1
2

+ x, 1
]
. This equilibrium is given by (5).

Q.E.D.

38If x is sufficiently small, p̂(x1, x2) is minimized when the hospitals locate as close as possible. Then,

p = 32k (tδx)2 ,

which implies
q = 4tδx.
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[17] González, Paula, 2004. The “Gatekeeping” Role of General Practitioners. Does Pa-

tients’ Information Matter? mimeo, CORE-Université catholique de Louvain.
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Supplementary Material

to Brekke, Nuscheler and Straume’s

Gatekeeping in Health Care

Regulation of GP attendance: numerical simulations

In Tables 1 and 2 we present numerical examples of the effects of strict gatekeeping,

focusing on the key parameters t and δ. For the remaining parameters of the model we

assume v = 1, p = 0.5, k = 0.5 and a = 0.25. Before we turn to the interpretation of

the tables, note that first-best quality provision and first-best hospital differentiation are

found by partially differentiating equation (17) with respect to q and ∆ respectively. We

find qfb = 1
4k

= 0.5 and ∆fb = λδ/2.

Let us first concentrate on a low diagnosing accuracy (δ = 0.6) and investigate the

role of the mismatch cost parameter t. With voluntary GP attendance (Table 1), higher

mismatch costs dampen incentives for quality competition, leading to less differentiation

in equilibrium. Since an increase in t directly increases the benefits of gatekeeping, more

patients will consult a GP and, as a result, the incentives to invest in quality improve. In

our model these two opposing effects exactly offset so that equilibrium quality provision

remains unchanged. Compared to the first-best solution, quality is too low and there is

excessive differentiation for the given degree of information in the market (∆∗ > λ∗δ/2).

The bold numbers in Table 2 reveal that compulsory gatekeeping is socially desirable for

t = 2.0, 2.5, 3.0 but not for t = 1.0, 1.5. The intuition is clearly traceable, but perhaps

not immediately obvious.1 For low values of t, quality competition is tight. Since there is

no consultation effect that softens quality competition (λ is fixed to 1), there is excessive

quality competition (for t = 1.0) and excessive product differentiation. Thus, for suffi-

ciently strong competitive effects the introduction of compulsory gatekeeping lowers social

welfare. For high values of t, on the other hand, compulsory gatekeeping makes quality

move in direction of the first-best. As the competitive effects are relatively moderate,

the impact on product differentiation is small. It is difficult to assess the contribution of

1The most obvious intuition is maybe the following: for high mismatch cost parameters the benefits
of gatekeeping are high, so compulsory gatekeeping is likely to be desirable. This intuition, however, is
wrong, since social and private incentives to see a GP coincide.

1



product differentiation to social welfare, since the efficient benchmark λ∗δ/2 changes with

the introduction of compulsory gatekeeping. In our example, mismatch costs are reduced

for all values of t and the reduction is larger for higher values of t. For t = 3.0 we get

close to the efficient degree of specialization.

Table 1: Voluntary GP consultation

Low accuracy: δ = 0.6 High accuracy: δ = 0.9

t λ∗ q∗ ∆∗ λ∗δ/2 W ∗ λ∗ q∗ ∆∗ λ∗δ/2 W ∗

1.0 0.30 0.25 0.50 0.09 1.053 0.45 0.25 0.50 0.20 1.067

1.5 0.37 0.25 0.41 0.11 1.017 0.55 0.25 0.41 0.25 1.038

2.0 0.42 0.25 0.35 0.13 0.981 0.64 0.25 0.35 0.29 1.009

2.5 0.47 0.25 0.32 0.14 0.945 0.71 0.25 0.32 0.32 0.980

3.0 0.52 0.25 0.29 0.16 0.909 0.78 0.25 0.29 0.35 0.951

Assumptions: v = 1, p = 0.5, k = 0.5, a = 0.25

Table 2: Compulsory GP consultation

Low accuracy: δ = 0.6 High accuracy: δ = 0.9

t λ q∗ ∆∗ λδ/2 W ∗ λ q∗ ∆∗ λδ/2 W ∗

1.0 1.00 0.56 0.75 0.30 1.011 1.00 0.43 0.65 0.45 1.077

1.5 1.00 0.49 0.57 0.30 1.006 1.00 0.37 0.50 0.45 1.059

2.0 1.00 0.44 0.47 0.30 0.986 1.00 0.34 0.41 0.45 1.033

2.5 1.00 0.41 0.41 0.30 0.958 1.00 0.31 0.35 0.45 1.003

3.0 1.00 0.39 0.36 0.30 0.927 1.00 0.30 0.31 0.45 0.971

Assumptions: v = 1, p = 0.5, k = 0.5, a = 0.25

Notes: Bold numbers indicate that compulsory gatekeeping improves

social welfare.

Let us now turn to the effect of diagnosing accuracy δ on the desirability of gatekeep-

ing. The comparative static analysis of the voluntary gatekeeping equilibrium, shown in

equations (14)-(16), demonstrated that δ only affects equilibrium GP consultation but

2



not quality and specialization (see also Table 1). The inefficiency in both variables is

independent of δ and, in principle, an introduction of compulsory gatekeeping can, via

the competition effect, improve the outcome. As already discussed above, the competi-

tion effect can be very strong for low values of t such that, for a low diagnosing accuracy,

excessive quality provision and too much differentiation make compulsory gatekeeping

socially harmful. However, from our analysis of the specialization-quality game we know

that, for a given λ, an increase in diagnosing accuracy reduces the competitive pressure

and thereby quality and differentiation incentives. The competitive effects of introducing

strict gatekeeping are thus smaller for higher levels of diagnosing accuracy. Therefore,

compulsory gatekeeping is more likely to be beneficial for small values of t when δ is high.

From our example in Table 2 we see that compulsory gatekeeping is socially beneficial for

all reported values of t when δ = 0.9, whereas it is not when δ = 0.6.

Finally, note that compulsory gatekeeping is beneficial in 8 cases while, in our example,

it never arises endogenously. This confirms our general intuition that it can pay off to

distort GP consultation in order to improve on the other endogenous variables.

Uniqueness of the quality equilibrium

It remains to show that the equilibrium given in (5) is unique. We do this by deriving

the best response functions for both hospitals and showing that these functions intersect

once, i.e. at the equilibrium discussed in the Appendix. In Figure 1 the profit of hospital

1 is depicted for a number of different situations. If hospital 1 provides no quality and

receives no demand from informed consumers it gets payoff p1−λ
2

as in point P0. The

curve π1(q1; z = 0) is the profit hospital 1 earns when investing in quality but receiving

no demand from informed consumers. As quality costs are strictly convex this curve is

downward sloping and strictly concave. Thus, for strictly positive quality levels hospital

1’s profit maximum will never be on that curve. If hospital 1 successively increases its

quality it will at some quality threshold start to attract informed consumers. By the same

arguments as in the Appendix the profit function is strictly concave for z > 0 and has a

kink at qh
1 (q2) where z reaches 1. Note that the profit function gets more concave beyond

qh
1 (q2) and that ∂qh

1 (q2)/∂q2 = 1 > 0. But the profit function is not globally concave as

3



Figure 1 shows. Consider hospital 2 provides quality q2
2, then hospital 1 maximizes its

profit at the interior solution pλ
4tkδ∆

provided that pλ
4tkδ∆

< q. For q2 = q2
2 the profit function

of hospital 1 is given by the bold line in Figure 1, i.e. by Π1(q1; q
2
2) = max{π1(q1; z =

0), π1(q1; q
2
2)}. Note that this line is compatible with the Appendix as deviation to q1 = 0

is not profitable. So if q2
2 = pλ

4tkδ∆
then the equilibrium is given by P2. For q2 = q3

2 > q2
2,

hospital 1 is indifferent between zero quality and the interior solution. For even higher

quality q4
2 > q3

2, the received informed demand is too small to compensate for quality

costs so that zero quality is strictly preferred. For very low quality levels of hospital 2,

like q1
2, hospital 1 receives informed demand with the first marginal quality investment.

The profit function is upward sloping at q1 = 0 and globally strictly concave.

We have not dealt with three special cases yet: First, the payoff of hospital 1 when

q1 = 0 may be higher than p1−λ
2

. This implies informed demand for hospital 1 although no

quality is provided. This can only be the case when hospital 2’s quality is very low. This

situation, however, changes nothing as the profit function is globally strictly concave in

this scenario. Second, qh
1 (q2) may be smaller than pλ

4tkδ∆
. Then there is no local maximum

at quality level qh
1 (q2) yet it may be a global maximum (if profit at q1 = 0 is smaller).

Third, q may be smaller than pλ
4tkδ∆

. Then a situation where hospital 1 profit is below

p1−λ
2

for all q1 ≤ q, as with q2 ≥ q3
2, cannot obtain. This is exactly what we ruled out by

proper definition of q. But then the profit function must be upward sloping at q1 = q and

yield profit higher than at q1 = 0.

This discussion on the properties of the profit function enables us to determine the

best response of hospital 1 to any given quality level of hospital 2, q∗1(q2), and vice versa.

Consider point R1 in Figure 2. Hospital 2 provides zero quality and hospital 1 sets its

quality such that it receives all informed consumers (z = 1). Since ∂qh
1 (q2)/∂q2 = 1 the

reaction function is upward sloping until the interior optimal quality level is reached (at

R2). Note that the line between R1 and R2 – depending on the parameters – may not

exist, i.e. R1 = R2. For quality levels of hospital 2 between points R2 and R3 hospital 1

quality is independent of q2. At R3, however, the informed demand hospital 1 gets exactly

compensates it for quality costs and the hospital is indifferent between R3 and R4. This

compares to the points P3 and P0 in Figure 1. For quality levels of hospital 2 beyond R4,

4



hospital 1 provides zero quality and only receives half of the uninformed consumers and

thus payoff p1−λ
2

. By the same arguments the reaction function of hospital 2 is derived and

Figure 2 shows both functions for symmetric locations. Symmetry in locations implies

symmetric thresholds for zero quality provision. As the graph shows, reaction functions

only meet once and the intersection in point RNE is the interior Nash equilibrium discussed

in (i). Of course, the Nash equilibrium may be a corner solution, where both hospitals

provide quality q. Then the equilibrium would be in a point such as R5 = (q, q) and the

reaction functions would be given by the dotted thick lines.
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