
   
   
   

   
 

Social Interactions, Mechanisms, and 
Equilibrium: Evidence from a Model of 
Study Time and Academic Achievement  

by  

Tim Conley, Nirav Mehta, Ralph Stinebrickner and 
Todd Stinebrickner  

   

Working Paper # 2017-7                              July 2017 
 
   

   

Centre for Human Capital and Productivity (CHCP) 

Working Paper Series  
   

Department of Economics  
Social Science Centre  
Western University  

London, Ontario, N6A 5C2  
Canada  

  

 



Social interactions, mechanisms, and equilibrium:

Evidence from a model of study time and academic achievement

Tim Conley, Nirav Mehta, Ralph Stinebrickner, Todd Stinebrickner∗

May 18, 2017

Abstract

We develop and estimate a model of study time choices of students on a social

network. The model is designed to exploit unique data collected in the Berea Panel

Study. Study time data allow us to quantify an intuitive mechanism for academic social

interactions: own study time may depend on friend study time. Social network data

allow study time choices and resulting academic achievement to be embedded in an

estimable equilibrium framework. New data on study propensities allow us to directly

address potential sorting into friendships based on typically unobserved determinants

of study time. We develop a specification test that exploits the equilibrium nature of

social interactions and use it to show that our study propensity measures substantially

address endogeneity concerns. We find friend study time strongly affects own study

time, and, therefore, student achievement. We examine how network structure inter-

acts with student characteristics to affect academic achievement. Sorting on friend

characteristics appears important in explaining variation across students in study time

and achievement, and determines the aggregate achievement level.
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1 Introduction

Peer effects are widely believed to be important for determining academic achievement. Much

of the existing research in this context has focused on establishing a causal link between

peer characteristics and academic outcomes, in an effort to provide evidence about whether

peers matter. However, though crucial for policymaking, direct evidence on the mechanisms

generating peer effects is limited. In this paper we exploit unique data on college students

from the Berea Panel Study (BPS) to study peer effects in an academic setting. We focus

on what is likely the most relevant set of peers in our higher education context, a student’s

friends.

The goal of this paper is to better understand how peer effects are generated. One step

is to provide direct evidence about a mechanism underlying peer influences in our context.

This is in the spirit of Manski (2000), who stresses that, in order to understand relation-

ships between own and peer outcomes, it is important to clearly define mechanisms and to

obtain direct evidence about their relevance. Motivated by recent research hypothesizing

that student effort is likely to be an input that is readily influenced by peers in the short

run (Stinebrickner and Stinebrickner (2006), Calvó-Armengol et al. (2009), Cooley Frue-

hwirth (2013), and De Giorgi and Pellizzari (2014)), we focus on study time as an explicit

mechanism through which peer effects could arise in college.1

Another step is to better understand the role social networks play in the propagation

of peer effects. Not only may student i’s study time be influenced by i’s peers, but i’s

peers’ study time may be influenced by i. Moreover, these types of feedback effects could

work indirectly through students in the social network who are not directly connected to

student i. We focus on how the distribution of feedback effects depends on three interrelated

components. First, the graph describing links in a social network, which we refer to as

the “network structure”, may be important in and of itself (Calvó-Armengol et al. (2009),

Jackson and Yariv (2011)). Second, students with different characteristics may differ in

how much they are affected by their peers (Sacerdote (2011)). Third, students may form

links based on these characteristics. In particular, students may link to others with similar

characteristics, i.e., the network may exhibit “homophily.” Together, the network structure

and the specific manner in which heterogeneous students are arranged on the network may

determine how changes in behavior propagate throughout the network and affect equilibrium

outcomes.

To take these important next steps, we estimate an equilibrium model of study time

1For a non-education (financial) example of research that is interested in understanding why peer effects
exist, see Bursztyn et al. (2014). Richards-Shubik (2014) separates supply and demand mechanisms in a
model of sexual initiation.
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choice and resulting grade determination, given a social network. Estimating such a model

entails substantial data challenges. First, we need student-level data on study time. Unfor-

tunately, because collecting reliable time-use information is very difficult in annual surveys,

available data sources typically do not contain this type of information. Second, equilibrium

outcomes depend on the entire social network, necessitating data characterizing the full set of

peer connections as well as data on characteristics that likely determine study time choices.

Among existing sources of social network data, perhaps only one, the National Longitudinal

Survey of Adolescent Health (Add-Health), could potentially provide a full view of a social

network in an educational setting where academic outcomes and student characteristics are

also observed. Unfortunately, because the Add-Health dataset has a primary focus on ado-

lescent health and risk-related behaviors, it does not contain information about time spent

studying. Thus, to the best of our knowledge, there is no other data source that is able

to both fully characterize a social network of students and provide direct evidence about a

central input in the grade production function that has been hypothesized to generate social

interactions.

Our project is made possible by unique data from the Berea Panel Study (BPS), which

were collected specifically to overcome these current data limitations. The BPS surveyed

full cohorts of students at Berea College, which allows us to characterize the entire social

network. The BPS is also unique in its high frequency of contact with students each year,

allowing the collection of eight time-use diaries, which allow us to characterize study time,

and the measurement of friendships in each semester, which we use to define peers. We

combine these survey data with administrative data that include pre-college characteristics

and college grades.

We develop our model to exploit these unique data. The social network is known at the

beginning of a period. Subsequently, all students in the social network simultaneously choose

their study time to maximize their own achievement, net of studying costs. A student’s

studying cost depends on her own study time and friend study time, e.g., it may be more fun

to study if your friends are studying (alternatively, students may conform to their friends).

Cost functions are allowed to be heterogeneous across students. Achievement depends on

a student’s own study time and may also be heterogeneous across students, conditional on

own study time.

The social interactions literature has paid close attention to the endogeneity problem

that is present if there exist correlated unobserved variables, that is, unobserved information

related to both peer group membership (in our context, friendship choices) and outcomes

of interest (Manski (1993), Moffitt (2001), Epple and Romano (2011)). In our case, where

we focus on a social interaction in study time choices, a relationship between friends’ study
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times could arise because friends influence each other (peer effects) or because students

with similar unobserved determinants of study time become friends (correlated unobserved

variables). Institutional details, together with empirical checks we conduct, suggest that

correlated shocks arising through, e.g., coursework and dormitories, are not the most salient

type of correlated unobserved variables. The most relevant type of correlated unobserved

variable would seem to be an unobserved individual characteristic, which could be thought

of as a student’s propensity to study.

We adopt a two-step approach for dealing with this endogeneity problem. First, we

take advantage of a unique opportunity to directly measure students’ propensities to study.

Specifically, the day before freshman classes began, we collected information about how much

a student actually studied in high school and how much the student expected to study in

college. We find that both high school study time and expected college study time have

strong correlations with study time in college and are also strongly related to friendship

patterns in our data.

One cannot know a priori whether our study propensity data address the above endo-

geneity concern in a satisfactory manner, meaning we need some way to assess how well

our data have measured typical correlated unobserved variables. Given the importance of

this assessment, our second step is to develop a specification test based on our model. Our

specification test is designed to detect unobserved determinants of study time, exploiting the

fact that the equilibrium nature of social interactions implies that such unobserved deter-

minants would generate cross-sectional dependence in residuals. Crucially, our test is useful

even when unobserved determinants lead to inconsistently estimated parameters.

We estimate the model using data from two semesters. Under the baseline specification,

in which we use our study propensity data to estimate the model, we find no evidence of the

cross-sectional residual correlation described above. However, we do find significant cross-

sectional residual correlations when we re-estimate the model excluding our study propensity

data, i.e., using only measures of student characteristics that are typically available to re-

searchers. This suggests that our specification test has the power to detect unobserved deter-

minants of study time. Therefore, these findings provide evidence that our study propensity

measures play an important role in addressing endogeneity concerns.

Our estimates provide strong evidence that friend study time has a substantial effect on

one’s own study time. We also find that one’s own study time is an important determinant of

one’s own achievement. We estimate students to have different best response functions, i.e.,

they react differently to changes in friend study time. Hereafter, we will often refer to this as

heterogeneity in reactiveness. This heterogeneity potentially has equilibrium implications,

as it implies complementarities in students’ choice of study time. We estimate that two
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students with 75th percentile reactiveness, when paired with each other, would study almost

twice as much as would two students with 25th percentile reactiveness, when paired with

each other.

The extent to which heterogeneity in reactiveness affects total production depends on

the relationship between own and friend reactiveness. Therefore, it is also important to take

into account the social network to understand social interactions.2 We use our estimated

model to perform two counterfactual exercises. First, we examine how the network struc-

ture, combined with homophilous sorting into friendships, affects the response to changes

in friend study time. We exogenously increase (shock) the study time of each student and

assess how study times and achievement change for other students in the social network.

There is substantial heterogeneity in study time responses depending on which student is

shocked, with larger impacts associated with more central students and students connected

to more reactive peers. The specific manner in which students with different characteristics

are arranged on the network is important for responses. This exercise also provides a natural

framework for quantifying the importance of equilibrium interactions. On average, equilib-

rium responses produce a network-wide aggregate response that is 2.7 times larger than

their partial equilibrium counterparts, which only consider a shock’s effect on immediate

neighbors.

Our framework allows us to provide further evidence about the importance of homophily

in determining outcomes. As Golub and Jackson (2012) note, despite a large amount of work

documenting the existence of homophily and a smaller literature examining its origins, the

literature modeling the effect of homophily is in its infancy.3 In our second counterfactual,

we examine how achievement would differ if friend characteristics were identically distributed

across students, instead of being strongly correlated with one’s own characteristics, or ho-

mophilous, as in the data. On average, women, blacks, and students with above-median high

school GPAs have high propensities to study and tend, in the data, to sort into friendships

with students similar to themselves. Therefore, these groups tend to see declines in their

friends’ propensities to study in the counterfactual. Due to the estimated heterogeneity in

best response functions and the lack of assortative matching in the counterfactual networks,

these groups’ losses are not offset by gains of their complements.

The remainder of this paper is organized as follows. Section 2 discusses related literature.

2Kline and Tamer (2011) discuss the importance of distinguishing between estimates of technological
parameters and the equilibrium effects of social interactions.

3Jackson (2008) provides a discussion of work documenting the existence of homophily; see Camargo
et al. (2010) for a specific example. For theoretical models of homophily’s origins see Currarini et al. (2009),
Currarini et al. (2010), and Bramoullé et al. (2012). Badev (2013) allows for homophily in his empirical
study of friendship formation and smoking behavior.
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Section 3 contains a description of the BPS data. Section 4 presents our model. Section 5

presents our empirical specification. Section 6 develops our specification test and Section 7

discusses estimation results. Section 8 presents the results from our counterfactual exercises

and Section 9 concludes.

2 Related Literature

Academic Peer Effects and Social Interactions Models There is an extensive litera-

ture on academic peer effects, which has been recently surveyed by Epple and Romano (2011)

and Sacerdote (2011). As discussed in Sacerdote (2011), papers in this literature typically

do not directly examine mechanisms through which peer effects are generated. Cooley Frue-

hwirth (2013), Calvó-Armengol et al. (2009), De Giorgi and Pellizzari (2014), and Tincani

(2016) all stress the importance of equilibrium models of students’ effort choices, but lack

direct data on student effort. Cooley Fruehwirth (2013) and Calvó-Armengol et al. (2009)

estimate parameters of their respective models, identifying effort through residual variation

in peer outcomes. De Giorgi and Pellizzari (2014) and Tincani (2016) test the implications

of different theoretical models of social interactions using student achievement data.

In terms of goals, perhaps the paper closest to ours is Calvó-Armengol et al. (2009). As

in that paper, we develop a model that takes the social network as given to understand how

effort choices, made on the social network, affect academic achievement. Calvó-Armengol

et al. (2009), lacking direct input data, consider an environment in which a socially deter-

mined input choice is linked to network topology. This provides a behavioral foundation to

the Katz-Bonacich centrality measure. Our contribution is the direct measurement of an

input that likely affects achievement (study effort) and variables that likely are related to

sorting into friendships and the choice of this input (study propensity measures, like high

school study time and expected study time). These data are crucial for thoroughly investi-

gating the mechanism considered in this paper. They allow us to examine how the input of

interest (study effort) influences the output of interest (achievement). They also allow us to

quantify how the input of interest is influenced by peers. Our theoretical model differs from

that in Calvó-Armengol et al. (2009) in potentially important ways that are testable. We

allow for heterogeneous best response functions, which our data on input choices allow us to

identify. We also allow for nonlinearity in best response functions, which would break the

connection between network topology and equilibrium outcomes required in Calvó-Armengol

et al. (2009).

Our approach complements that of Calvó-Armengol et al. (2009) by allowing for a richer

understanding of social interactions. In our framework, someone concerned about a student’s
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low effort level may have an incentive to get the student to have more studious friends. Be-

cause we allow inputs to depend on student characteristics, there may be winners and losers

from changes in peer group composition. Moreover, potentially heterogeneous reactiveness

would allow total achievement to change, depending on the type of sorting in the baseline.

Such questions could not be assessed using the framework of Calvó-Armengol et al. (2009),

where counterfactuals are limited to changes in link structure.

There is a growing literature studying peer effects that has focused on modeling the

formation of social networks, an important and notoriously difficult problem (see Christakis

et al. (2010), Mele (2013), Badev (2013), de Paula et al. (2016), Sheng (2014), and Hsieh

and Lee (2016)). We cannot study how the network would change in response to a policy

because we do not model how friendships are formed. Therefore, in our counterfactuals,

we examine fully-specified networks of interest, such as those in the data and randomly

generated networks, in which student and friend characteristics are independent.

Specification Test The specification test we develop is informative about the presence of

unobserved determinants of study time of the sort discussed in the introduction, even when

parameter estimates are biased. Our specification test exploits the fact that, in equilibrium,

all unobserved determinants of study time will typically enter all students’ outcome equa-

tions. This type of error structure has precedent in a social interactions context (see, e.g.,

Calvó-Armengol et al. (2009) and Blume et al. (2015)).4 Our contribution is that we develop

a specification test designed to detect unobserved variables of interest and show how it can

have the power to do so, even in the presence of inconsistently estimated parameters.

Goldsmith-Pinkham and Imbens (2013) posit a model of network formation and, within

this model, derive a testable implication of endogenous network formation (see Boucher

and Fortin (2016) for further discussion). In contrast, we do not test for a specific model

of network formation. Rather, the goal of our specification test is to detect unobserved

determinants of study time that we believe to be relevant to our context, taking as given

the network. Therefore, we view our work as complementary to that of Goldsmith-Pinkham

and Imbens (2013).

3 Data

The BPS is a longitudinal survey that was designed by Todd Stinebrickner and Ralph Stine-

brickner to provide detailed information about educational outcomes in college and labor

4There is a related literature on spatial autoregressive models; see Pinkse et al. (2002) and Lee (2004),
for example.
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market outcomes in the early post-college period. The BPS survey design involved col-

lecting information about all students who entered Berea College in the fall of 2000 and

the fall of 2001. Baseline surveys were conducted immediately before the start of first year

classes and students were subsequently surveyed 10-12 times each year during school. As has

been discussed in previous work that uses the BPS, caution is appropriate when considering

exactly how results from the BPS would generalize to other specific institutions (e.g., Stine-

brickner and Stinebrickner (2006, 2013)). At the same time, from an academic standpoint,

Berea has much in common with many four-year colleges. It operates under a standard

liberal arts curriculum and the students at Berea, which is in central Kentucky, are similar

in academic quality to, for example, students at the University of Kentucky (Stinebrickner

and Stinebrickner (2008b)).

Our study is made possible by three types of information that are available in the BPS.

First, the BPS elicited each student’s closest friends. Our analysis utilizes friendship obser-

vations from the end of the first semester and the end of the second semester. The survey

question for the end of the first semester is shown in Appendix A.1. The survey question

for the end of the second semester is identical (except for the date). Our friendship survey

questions have a full-semester flavor to them, as they asked students to list the four people

who had been their best friends that semester. Second, the BPS collected detailed time-use

information eight times each year; for our sample, this was done using the twenty-four hour

time diary shown in Appendix A.1. Finally, questions on the baseline survey reveal the

number of hours that a student studied per week in high school and how much the student

expects to study per week in college. We refer to these variables as our study propensity

measures. The survey data are merged with detailed administrative data on race, sex, high

school grade point average (GPA), college entrance exam scores, and college GPA in each

semester.

This paper focuses on the freshman year for students in the 2001 entering cohort.5 We

focus on understanding grade outcomes during the freshmen year for two primary reasons.

First, under the general liberal arts curriculum, students tend to have similar course loads

in their first year. Second, we are able to characterize the network most completely in the

first year both because survey response rates are very high in the first year and because over

80% of friends reported by students in their freshman year are themselves freshmen.6 These

5 We focus on this cohort because the survey contains more comprehensive time-use and friendship
information for them. Information about time use was collected using time diaries for the 2001 cohort,
while, for the 2000 cohort, this information was collected using questions that asked respondents to “think
carefully about how much time was spent studying” in the last twenty-four hours. First semester friendship
information was collected at the end of the first semester for the 2001 cohort, while, for the 2000 cohort,
first semester friendship information was collected retrospectively during the second semester.

6Approximately 88% of all entering students in the 2001 cohort completed our baseline survey, and
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advantages tend to fade in subsequent years as friendships change (in part, due to dropout

after the first year) and students’ programs of study specialize.

3.1 Sample Construction

Our focus is on students who stayed in school for the full first year. There were a total of

331 students who fit this description. Our estimation sample consists of the 307 students

(i.e., 93% of the 331) with friends in each semester. A student j is deemed to be a friend

of student i if either i lists j as a friend or j lists i as a friend. This means that a student

can have friends in a particular semester even if the student did not complete the friendship

question in that semester. However, pooling the two semesters, we find that about 85% of

the students in our final sample reported friendship information directly, via the friendship

survey.

3.2 Descriptive Statistics

Tables 1-3 contain descriptive statistics for the sample. Table 1 shows descriptive statistics

of student characteristics. The first row in each of the six panels shows overall descriptive

statistics for the variable of interest described in the first column. Forty-four percent of

students are male, 18% of students are black, the mean high school grade point average

for the sample is 3.39, the mean combined score on the American College Test (ACT) is

23.26, and, on average, students studied 11.24 hours per week in high school and expect to

study 24.96 hours per week in college. The subsequent rows in each panel show descriptive

statistics for the variable of interest in the first column for different groups. For example,

the third panel shows that, on average, males have lower high school grade point averages

than females (3.24 vs. 3.51) and blacks have lower high school grade point averages than

nonblacks (3.14 vs. 3.45). The fifth panel shows that blacks studied more, on average, in

high school than other students (15.29 vs. 10.36).7

Table 2 shows descriptive statistics of outcomes during the first year. The first rows of

panels 1 and 2, respectively, show that, on average, students study 3.45 hours per day in the

first semester and 3.48 hours per day in the second semester. The subsequent rows of the first

two panels show that, on average, males study less than females, blacks study more than

nonblacks, and students with above-median high school GPAs study more than students

response rates remained high for the eleven subsequent surveys that were administered during the freshman
year.

7The first two differences in means are significantly different at the 0.001 level. The averages of high
school study time for blacks and nonblacks are significantly different at the 0.01 level.
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with below-median high school GPAs.8 The first rows of panels 3 and 4, respectively, show

that the average first semester GPA is 2.89 and the average second semester GPA is 2.93.

The subsequent rows of the third and fourth panels show that males, blacks, and students

with below-median high school GPAs all have lower average GPAs than their counterparts.9

As described at the beginning of this section, we define friendship as the union of reported

links between two students that semester.10 Table 3 summarizes friend data for those who

have at least one friend in each semester, stratified by the same characteristics as in Table 1.

The top panel shows that students have 3.3 friends on average. The mean masks considerable

variation: the minimum number of friends is one, while the maximum number of friends is

10. The second and third panels show that male and black students (and, therefore, female

and nonblack students) sort strongly towards students with the same characteristics. For

example, 74% of the friends of male students are male, while only 18% of the friends of

female students are male. Similarly, 69% of the friends of black students are black, while

only 7% of the friends of nonblack students are black. The fourth and fifth panels show

that male and black students have friends with lower incoming GPAs and lower combined

ACT scores. The sixth and seventh panels show that males have friends who studied less

in high school and expect to study less in college (compared to females), while blacks have

friends who studied more in high school and expect to study more in college (compared to

nonblacks).

The last panel of Table 3 describes friend study time. Consistent with own study time

in Table 2, the first row shows that, on average, friend study time is 3.5 hours per day. The

second and third rows of the last panel show that average friend study time is much lower

for males than for females (3.16 vs. 3.76 hours per day).

Table 4 shows other network characteristics. Both the probability that a first-semester

friendship no longer exists in the second semester and the probability that a second-semester

friendship was not present in the first semester are 0.51. Consistent with the findings from

Table 3, the correlations on the right side of the table show substantial sorting on the basis

of observable characteristics.

Table 5 presents descriptive OLS regression results predicting own study time (left col-

umn) and GPA (right column), pooling observations over both semesters. The study time

regression shows evidence of significant partial correlations of one’s own study time (com-

puted as the average amount the student reports studying in the time diaries within a

8Pooling observations from both semesters, the first and last differences in means are significantly different
at a 0.05 level and, given the relatively small number of black students, the middle difference in means is
significant at a 0.10 level.

9Pooling observations from both semesters, all of these differences are significant at a 0.05 level.
10Therefore, the number of friends may exceed that elicited in the survey in Appendix A.1.
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Table 1: Own summary statistics

Variable Group N Mean SD Min q1 q2 q3 Max
(1) Male indicator all 307 0.44 0.5 0 0 0 1 1

given black 55 0.45 0.5 0 0 0 1 1
given nonblack 252 0.43 0.5 0 0 0 1 1
given above-med. HS GPA 155 0.33 0.47 0 0 0 1 1
given below-med. HS GPA 152 0.55 0.5 0 0 1 1 1

(2) Black indicator all 307 0.18 0.38 0 0 0 0 1
given male 134 0.19 0.39 0 0 0 0 1
given female 173 0.17 0.38 0 0 0 0 1
given above-med. HS GPA 155 0.10 0.31 0 0 0 0 1
given below-med. HS GPA 152 0.26 0.44 0 0 0 1 1

(3) HS GPA all 307 3.39 0.47 1.68 3.09 3.5 3.8 4
given male 134 3.24 0.51 1.68 2.9 3.21 3.7 4
given female 173 3.51 0.4 2.13 3.3 3.6 3.85 4
given black 55 3.14 0.46 2.24 2.78 3.1 3.52 4
given nonblack 252 3.45 0.46 1.68 3.19 3.53 3.8 4
given above-med. HS GPA 155 3.77 0.17 3.5 3.6 3.8 3.9 4
given below-med. HS GPA 152 3.00 0.35 1.68 2.8 3.08 3.29 3.47

(4) ACT all 307 23.26 3.61 14 21 23 26 33
given male 134 22.54 3.77 14 20 23 25 31
given female 173 23.82 3.39 17 21 24 26 33
given black 55 19.91 2.51 14 18 20 21 25
given nonblack 252 23.99 3.4 14 22 24 26 33
given above-med. HS GPA 155 24.45 3.53 17 22 25 27 33
given below-med. HS GPA 152 22.04 3.28 14 20 22 24 31

(5) HS study all 307 11.24 11.35 0 4 8 15 70
given male 134 11.43 11.94 0 3.12 8 15 70
given female 173 11.10 10.9 0 4 9 15 70
given black 55 15.29 14 0 5 10.5 20 70
given nonblack 252 10.36 10.51 0 3 7 14 70
given above-med. HS GPA 155 10.66 10.44 0 4 8 14.5 70
given below-med. HS GPA 152 11.84 12.21 0 3.38 8.25 15 70

(6) Expected study all 307 24.96 11.61 0 17 23 31 64
given male 134 22.72 11.08 0.97 16 20.75 27.38 64
given female 173 26.68 11.74 0 19 25.5 33 57.5
given black 55 28.56 13.56 0 19 25 38.5 57.5
given nonblack 252 24.17 11.01 0 17 22.5 30.62 64
given above-med. HS GPA 155 25.18 10.47 0 18 23.5 32 56
given below-med. HS GPA 152 24.72 12.69 0 16 22.25 30.12 64

Note: The rows in each panel show descriptive statistics for the variable of interest in the first column, for the group in the second column. GPA
is measured in GPA points (0-4). HS study and expected study are measured in hours/week.

semester) with own sex and own high school GPA. As for our study propensity measures,

we estimate a positive, significant partial correlation between own study time and own high

school study time. We do not estimate a significant correlation between own study time and

expected study time when both propensity measures are included. However, when expected
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Table 2: Own summary statistics for outcomes, by semester

Variable Group N Mean SD Min q1 q2 q3 Max
(1) Sem. 1 Own study all 296 3.45 1.67 0 2.33 3.29 4.50 10.33

given male 129 3.16 1.76 0 2.00 2.92 4.09 8.66
given female 167 3.67 1.56 0 2.62 3.38 4.62 10.33
given black 53 3.80 1.63 0 2.84 3.67 4.78 8.33
given nonblack 243 3.37 1.67 0 2.25 3.25 4.37 10.33
given above-med. HS GPA 153 3.60 1.7 0 2.41 3.34 4.75 8.58
given below-med. HS GPA 143 3.28 1.61 0 2.25 3.22 4.04 10.33

(2) Sem. 2 Own study all 278 3.48 1.6 0 2.23 3.34 4.75 9.00
given male 117 3.19 1.67 0 2 3 4.34 9.00
given female 161 3.68 1.52 0 2.58 3.41 4.79 7.75
given black 50 3.75 1.55 0 2.74 3.5 4.96 7.33
given nonblack 228 3.42 1.60 0 2.17 3.33 4.67 9.00
given above-med. HS GPA 145 3.69 1.47 0 2.66 3.67 4.83 7.92
given below-med. HS GPA 133 3.25 1.7 0 2.00 3.08 4.38 9.00

(3) Sem. 1 GPA all 307 2.89 0.78 0 2.49 3.06 3.46 4.00
given male 134 2.72 0.80 0.30 2.17 2.80 3.29 4.00
given female 173 3.02 0.74 0 2.66 3.13 3.55 4.00
given black 55 2.42 0.78 0 1.82 2.57 2.84 4.00
given nonblack 252 3.00 0.74 0.3 2.58 3.11 3.55 4.00
given above-med. HS GPA 155 3.19 0.62 0.52 2.81 3.29 3.69 4.00
given below-med. HS GPA 152 2.59 0.8 0 2.00 2.66 3.12 4.00

(4) Sem. 2 GPA all 301 2.93 0.78 0 2.53 3.05 3.46 4.00
given male 131 2.74 0.84 0 2.38 2.82 3.33 4.00
given female 170 3.07 0.71 0.44 2.66 3.20 3.54 4.00
given black 53 2.58 0.86 0.44 2.22 2.62 3.33 3.78
given nonblack 248 3 0.75 0.00 2.58 3.08 3.5 4.00
given above-med. HS GPA 155 3.21 0.66 0 2.82 3.36 3.74 4.00
given below-med. HS GPA 146 2.63 0.79 0.26 2.15 2.66 3.24 4.00

Note: The rows in each panel show descriptive statistics for the variable of interest in the first column, for the group in the second column. GPA
is measured in GPA points (0-4). Own study is measured in hours/day.

study time is the only study propensity measure included, we find that it has a positive, sig-

nificant partial correlation with own study time (t-statistic of 2.2). The overall contribution

of these two variables is substantial, with their omission reducing R-squared from 0.169 to

0.087 (see Table 12 in the appendix). Our novel measures of the propensity to study clearly

have content. One’s own study time also has a significant positive partial correlation with

friend study time (computed as the average over friends of their own study times). The

GPA regression shows that own GPA has a significant positive partial correlation with being

female, being nonblack, and having above-median high school GPA. Own GPA also has a

significant partial correlation with own study time.
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Table 3: Average friend summary statistics, pooled over both semesters

Variable Group N Mean SD Min q1 q2 q3 Max

(1) Num. friends all 614 3.31 1.58 1 2 3 4 10
given male 268 3.22 1.59 1 2 3 4 10
given female 346 3.38 1.57 1 2 3 4 9
given black 110 3.21 1.35 1 2 3 4 7
given nonblack 504 3.33 1.62 1 2 3 4 10
given above-med. HS GPA 310 3.34 1.62 1 2 3 4 10
given below-med. HS GPA 304 3.28 1.53 1 2 3 4 8

(2) Frac. male friends all 614 0.43 0.39 0 0 0.33 0.75 1
given male 268 0.74 0.31 0 0.5 0.82 1 1
given not male 346 0.18 0.25 0 0 0 0.33 1
given black 110 0.43 0.4 0 0 0.33 0.83 1
given not black 504 0.42 0.39 0 0 0.33 0.75 1
given above-med. HS GPA 310 0.35 0.38 0 0 0.25 0.67 1
given below-med. HS GPA 304 0.5 0.39 0 0 0.5 1 1

(3) Frac. black friends all 614 0.18 0.32 0 0 0 0.25 1
given male 268 0.18 0.32 0 0 0 0.25 1
given not male 346 0.17 0.33 0 0 0 0.2 1
given black 110 0.69 0.38 0 0.43 1 1 1
given not black 504 0.07 0.16 0 0 0 0 1
given above-med. HS GPA 310 0.10 0.22 0 0 0 0 1
given below-med. HS GPA 304 0.26 0.39 0 0 0 0.45 1

(4) Friend HS GPA all 614 3.37 0.32 2.24 3.2 3.41 3.62 4
given male 268 3.29 0.33 2.25 3.07 3.34 3.53 4
given not male 346 3.44 0.29 2.24 3.29 3.46 3.64 4
given black 110 3.18 0.34 2.25 2.96 3.19 3.41 4
given not black 504 3.42 0.30 2.24 3.25 3.45 3.63 4
given above-med. HS GPA 310 3.46 0.27 2.65 3.29 3.46 3.63 4
given below-med. HS GPA 304 3.29 0.35 2.24 3.08 3.35 3.55 3.92

(5) Friend ACT all 614 23.29 2.63 16 21.67 23.33 25 32
given male 268 22.72 2.64 16.33 21 23 24.64 31
given not male 346 23.74 2.54 16 22 23.67 25.5 32
given black 110 21.2 2.53 16 19.33 21 22.5 29
given not black 504 23.75 2.43 16.33 22.25 23.67 25.33 32
given above-med. HS GPA 310 23.79 2.42 17.5 22.23 23.67 25.33 32
given below-med. HS GPA 304 22.78 2.74 16 21 23 25 30

(6) Friend HS study all 614 11.03 7.64 0 6 9.5 14.47 70
given male 268 10.53 7.37 0.5 5.17 9 14 37.33
given not male 346 11.41 7.83 0 6.5 9.79 14.6 70
given black 110 14.62 7.31 2.5 9.18 13.92 18.75 37
given not black 504 10.24 7.49 0 5.5 8.68 13.19 70
given above-med. HS GPA 310 11.48 8.44 0.5 6 9.7 14 70
given below-med. HS GPA 304 10.57 6.7 0 6 9.17 14.64 37.33

(7) Friend expected study all 614 24.82 7.4 0 19.75 23.55 29.62 55
given male 268 22.89 6.97 4.06 18.23 21.65 27.05 55
given not male 346 26.33 7.38 0 21.02 25.06 31.38 52
given black 110 28.05 8.53 12 21.35 28.9 33.79 51
given not black 504 24.12 6.94 0 19.5 23 28.2 55
given above-med. HS GPA 310 24.72 7.42 0 20 23.55 29.48 55
given below-med. HS GPA 304 24.93 7.39 10.5 19.31 23.61 29.81 52

(8) Friend study all 614 3.5 1.72 0 2.47 3.26 4.28 11.93
given male 268 3.16 1.49 0.5 2.21 3 3.88 8.46
given not male 346 3.76 1.83 0 2.65 3.51 4.5 11.93
given black 110 3.78 1.77 0.5 2.7 3.52 4.47 10.81
given not black 504 3.44 1.7 0 2.4 3.2 4.24 11.93
given above-med. HS GPA 310 3.64 1.79 0 2.56 3.36 4.41 11.93
given below-med. HS GPA 304 3.36 1.64 0.5 2.36 3.17 4.13 10.81

Note: The rows in each panel show descriptive statistics for the variable of interest in the first column, for the group in the second column. GPA
is measured in GPA points (0-4). Own and friend HS study and expected study are measured in hours/week. Own and friend study are measured
in hours/day. The variable “Friend z” for student i in period t is the average of the variable z across i’s friends in period t.

4 Model

Students are indexed by i = 1, . . . , N and time periods (semesters) by t = 1, 2. We denote

the study time of student i in time period t as sit and let St define a column vector collecting

all students’ study times during that period. We treat the adjacency matrix representing the

network of friendships as pre-determined. This matrix in period t, denoted At, has a main

diagonal of zeros and an (i, j) entry of one if student i has j as a friend and zero otherwise.11

11Other than its being full rank, we impose no restrictions on At. Though in our baseline empirical
specification we use the union of reported links (i.e., At(i, j) = 1 if either i reports being friends with j, or
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Table 4: Network characteristics

Friendship transitions
Prob. friendship reported first 0.51
semester but not second
Prob. second semester 0.51
friendship is new

Correlations between
own and avg. of friends
Black 0.74
Male 0.71
HS GPA 0.23
Combined ACT 0.31
HS study time 0.23
Expected study time 0.14
Note: Pooled over both semesters

Table 5: Study time and GPA OLS regressions

Dependent variable:

Own study GPA

(1) (2)

Male −0.369∗∗ −0.131∗

(0.171) (0.076)

Black 0.116 −0.225∗∗

(0.214) (0.109)

HS GPA 0.413∗∗ 0.437∗∗∗

(0.188) (0.081)

ACT −0.032 0.040∗∗∗

(0.023) (0.013)

HS study 0.043∗∗∗ 0.001
(0.008) (0.004)

Expected study −0.002 −0.006
(0.009) (0.003)

Friend study 0.166∗∗∗

(0.039)

Own study 0.090∗∗∗

(0.022)

Constant 1.915∗∗ 0.417
(0.759) (0.362)

Observations 574 571
R2 0.169 0.259

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors clustered at the student level are in paren-
theses. GPA is measured in GPA points (0-4). Own and friend HS study and expected study are
measured in hours/week. Own and friend study are measured in hours/day. The variable “Friend
z” for student i in period t is the average of the variable z across i’s friends in period t.
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The average study time of i’s friends during period t is

s−it =

∑N
j=1At(i, j)sjt∑N
j=1At(i, j)

. (1)

Taking into account their friends, students make decisions about how much to study in

a particular semester by considering the costs and benefits of studying. The benefits of

studying come from the accumulation of human capital. The production function for human

capital, which we will also refer to as achievement, y(·), is:

y(sit, µyi) =β1 + β2sit + µyi, (2)

where µyi is a “human capital type” which allows the amount a person learns in school to

vary across people, conditional on her own study level. As will be discussed in Section 5, in

practice, this type will be constructed using observable characteristics that have consistently

been found to influence academic performance. We adopt a value-added formulation for the

evolution of human capital, i.e., the human capital type is assumed to a sufficient statistic

for the history of prior inputs.

The cost of studying, c(·), is determined by:

c(sit, s−it, µsi) = θ1sit + θ2γ(µsi)sit +
θ3sit
sτs−it

+
θ4γ(µsi)sit

sτs−it
+
θ5s

2
it

2sτs−it
, (3)

where friend study time enters the cost function by reducing the cost of one’s own studying,

with curvature given by the exponent τs. As we show below, this cost function produces a best

response function with desirable properties. Studying may be less arduous when one’s friends

are studying. We discuss below how this specification of the cost function is observationally

equivalent with one in which social interactions are instead driven by conformity forces. The

term µsi is i’s “study type,” which allows the disutility from studying to vary across students,

conditional on own and friend study levels. As will be discussed in Section 5, in practice,

this type will be constructed from observable characteristics that help explains one’s study

time choices. Study types enter the model through γ(·). We define

γ(µsi) =
1

exp(τµ,1µsi + τµ,2µ2
si)
, (4)

which allows the cost function to have intercepts and slopes that vary across people of

different study types. We refer to γ(µsi) as the “effective study type”. We do not include a

vice versa), the model could also accommodate non-reciprocal links (i.e., i may link to j without j linking
to i).
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fixed cost of studying because very few students report zero study time over the semester.

With knowledge of {A1, A2}, all students’ human capital types {µyi}Ni=1 and all students’

study time types {µsi}Ni=1, students simultaneously choose study times to maximize utility,

which we assume to be separable across periods:12

u(si1, si2) =

{
2∑
t=1

y(sit, µyi)− c(sit, s−it, µsi)

}
. (5)

4.1 Model Solution

Each student’s decision problem is additively separable across time periods, meaning each

student can solve each period’s problem separately.13 Student i’s best response to friend

study time in t is given by:

sit = arg max
s∈[0,24]

{y(s, µyi)− c(s, s−it, µsi)}, (6)

with the natural constraints that study time is nonnegative and cannot exceed 24 hours per

day. The first order condition of (6) with respect to own study time yields ∂y
∂s

= ∂c
∂s

, i.e., the

utility-maximizing study time equates the marginal return for increasing study time with

the marginal cost. Expanding the first order condition gives:

β2 = θ1 + θ2γ(µsi) + θ3
1

sτs−it
+ θ4

γ(µsi)

sτs−it
+ θ5

sit
sτs−it

. (7)

Solving for own study time yields the best response function, which expresses student i’s

study time as a function of friend study time, at an interior solution:

sit = −θ3
θ5
− θ4
θ5
γ(µsi) +

(β2 − θ1)
θ5

sτs−it −
θ2
θ5
γ(µsi)s

τs
−it. (8)

Equation (3) shows that the term associated with θ5 introduces curvature into the student’s

cost function. If θ5 were zero, the student’s objective in (6) would be linear in own study

time and there would not exist an interior best response to friend study time. Equation

(8) also shows that one of the preference parameters θ must be normalized. Therefore, we

normalize θ5 to one, resulting in the final form of the student best response function, for an

12The alternative assumption, where students know only the current adjacency matrix when choosing their
study times and calculate expectations over the future adjacency matrix, would have identical predictions
in our model. See Section 4.1.

13If utility were nonlinear in semester achievement or the argument of the cost function were study time
over the whole year, the problem would no longer be separable across time periods. We assume student
utility is linear in achievement because non-linearity of utility in achievement would be difficult to separate
from non-linearity in the cost function without relying on functional form restrictions.
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interior solution:

sit = −θ3 − θ4γ(µsi) + (β2 − θ1)sτs−it − θ2γ(µsi)s
τs
−it ≡ ψ(s−it, µsi). (9)

Note that while best response functions depend on study type µsi, it is sometimes no-

tationally convenient to suppress the study type and write the best response function as

ψi(s−it). Own study time is increasing linearly in the productivity of own study time β2

and may also be increasing in own effective study type, µsi, depending on θ2 and θ4. We

restrict parameters so that own study time has a strictly positive intercept and is a weakly

increasing and weakly concave function of friend study time.14

As shown in Section 4.1.1, concave best response functions ensure existence of a unique

equilibrium for the study time game. As shown in equations (8) and (9), the separable

form we adopt for the cost function has the benefit of producing a closed-form solution for

the student best response function. We show in Appendix B.1 that concavity of the best

response function would result from any cost function possessing the natural properties of

being strictly convex in sit and weakly concave in s−it.

4.1.1 Equilibrium

Definition 1 (Period Nash equilibrium). A pure strategy Nash equilibrium in study times

S∗ = [s∗1, s
∗
2, · · · , s∗N ]′ satisfies s∗i = ψ(s∗−i, µsi), for i ∈ N , given adjacency matrix A.

Claim 1. Let k be a number strictly greater than 24. There exists a unique pure strategy

Nash equilibrium if ψi : RN 7→ R are weakly concave and weakly increasing, ψi(0) > 0, and

ψi(k) < k for i ∈ N .

Proof. See Appendix B.2.

We compute the equilibrium by iterating best responses.

4.2 Model Discussion

4.2.1 Friend Study Time

We define friend study time as the average study times of one’s friends. Our framework could

also accommodate specifications where friend study time was defined to be the total study

14 The strictly positive intercept restriction corresponds to mini∈N{−θ3 − θ4γ(µsi)} > 0. The weakly
increasing restriction corresponds to mini∈N{(β2 − θ1) − θ2γ(µsi)} ≥ 0. Weak concavity corresponds to
further requiring τs ≤ 1. These restrictions, combined with sit ≤ 24, are sufficient to have the well-behaved
equilibrium described in Section 4.1.1. In practice, however, we are able to estimate the model using weaker
restrictions, described in Section 5.
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time of one’s friends. Indeed, we previously estimated a specification of our model in which

the denominator of (1) was α
∑N

j=1At(i, j) + (1− α), where α ∈ [0, 1], α = 1 corresponds

to the average of friends’ study times, and α = 0 corresponds to the total of friends’ study

times. We define friend study time to be the average of friends’ study times because we

found α to be 1.

4.2.2 Other Mechanisms Generating Social Interactions

Conformity Our specification of the cost function allows friend study effort to reduce

one’s own cost of studying. Others have allowed social interactions to emerge from a cost

of deviating from peer actions, i.e., from a force producing conformity (see, e.g., Brock and

Durlauf (2001), Moffitt (2001), Blume et al. (2015)). We show in Appendix B.3.1 that such

a specification would be observationally equivalent to the one we adopt.

Production Complementarities Another proposed mechanism is that social interac-

tions arise through production complementarities, where increases in peer inputs increase

the marginal product of one’s own input (e.g., Calvó-Armengol et al. (2009)). We show

in Appendix B.3.2 that, in the typical case, where one only had data on either the input

(e.g., study effort) or output (e.g., achievement), our cost-reduction-based specification (or,

equivalently, a conformity-based specification) would be observationally equivalent to a spec-

ification exhibiting production complementarities. This point is also made by Blume et al.

(2015). However, because we measure both inputs and outcomes, we can check for evidence

of production complementarities. As we discuss in Section 7.4, we do not find such evidence

in our context.

4.2.3 Dynamic Behavior

We assume the human capital type is constant between the periods. Though it is feasible

to extend our static framework to a dynamic framework allowing the human capital type

to evolve between periods, the benefits of doing this are mitigated by two facts: (1) each

model period corresponds to a semester, which is shorter than the period typically con-

sidered when estimating value-added production functions in an educational context (see

Hanushek (1979) and Todd and Wolpin (2003) for discussions of issues related to the esti-

mation of education production functions), and (2) we study students during their freshman

year, which, under the liberal-arts curriculum at Berea, is typically before they start taking

specialized course material (meaning second semester coursework does not build heavily on

first semester coursework). Consistent with these facts, as we discuss in Section 7.5, we find
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that out-of-sample outcomes, simulated from parameters estimated on only first-semester

data, fit second-semester data quite well.

5 Estimation

The model provides a mapping from the adjacency matrix At and all the students’ types

{(µsi, µyi)}Ni=1 to a unique equilibrium in study times for all students, S∗t . The equilibrium

study times S∗t generate achievement in equilibrium y∗it, via the production function y(si, µyi).

The model is operationalized by parameterizing a student’s types as linear combinations of

observable characteristics collected in a vector xi. That is, µsi = x′iωs and µyi = x′iωy,

where the parameter vectors ωs and ωy respectively determine study and human capital

types.15 The vector xi includes indicators for being black and being male, along with high

school GPA, combined ACT score, average hours per week of study time in high school,

and expected hours per week of study time in college. This allows us to express each

student’s equilibrium study time and achievement as a function of At and all students’

characteristics, which we collect in a matrix X. Given the full set of (model) parameters

Γ = (β1, β2, θ1, θ2, θ3, θ4, ωs, ωy, τµ,1, τµ,2, τs)
′, we write these outcomes for individual i as

s∗it = ψ(s∗−it, µsi) = δsi (At, X; Γ) (10)

and

y∗it = y(s∗it, µyi) = δyi (At, X; Γ), (11)

where s∗−it is defined by applying equation (1) to S∗t and At.

Our measure of achievement, denoted ỹit, is the student’s semester grade point average

(GPA), which is measured on a four-point scale. In our data, 7% of student-semester obser-

vations have a GPA of four and 1% have a GPA of zero. Therefore, we take a Tobit approach

to modeling GPA. We define latent GPA as y∗it + ηyit, where ηyit is a Gaussian measurement

error that is IID and independent from A and X. Our Tobit model, with censoring at zero

and four, is

ỹit =


4 if y∗it + ηyit ≥ 4

0 if y∗it + ηyit ≤ 0

y∗it + ηyit otherwise.

(12)

The GPA component of the likelihood function for individual i at time t is the likelihood for

15We set coefficient on high school GPA in the study type ωs,HS GPA = 1 to identify γ(·).
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this Tobit model:

Lyit = Φ

(
0− δyi (At, X; Γ)

σηy

)1{ỹit=0}

×
(

1− Φ

(
4− δyi (At, X; Γ)

σηy

))1{ỹit=4}

× 1

σηy
φ

(
ỹit − δyi (At, X; Γ)

σηy

)
,

(13)

where Φ and φ denote the CDF and PDF, respectively, of the standard normal distribution.

The likelihood function also takes into account study time outcomes. Our measures of

s∗it come from up to four 24-hour time diaries completed by each student i in semester t.

We use Rit to denote the set of reports for student i in semester t. Study time report r

for student i in semester t is denoted s̃rit, and is allowed to be a noisy measure of s∗it.
16

Because approximately 5% of our study time observations are zero, we use a Tobit approach

for reported study time. Defining latent study time as s∗it + ηsrit, reported study time is

s̃rit =

0 if s∗it + ηsrit ≤ 0

s∗it + ηsrit otherwise.
(14)

The likelihood contribution for report r of student i in semester t is

Lsrit = Φ

(
0− δsi (At, X; Γ)

σηs

)1{s̃rit=0}

× 1

σηs
φ

(
s̃rit − δsi (At, X; Γ)

σηs

)
. (15)

The total likelihood contribution for student i is therefore17

Li =

(∏
t

∏
r∈Rit

Lsrit

)
×

(∏
t

Lyit

)
, (16)

the sum of which across students we maximize to obtain our estimated parameters.18

6 Specification Test

This section develops a specification test that has power against alternative data generating

processes that have unobserved determinants of study time. It presents the test statistic,

16Stinebrickner and Stinebrickner (2004) document how reported study time varies within semesters.
17We allow for dependence in both types of measurement errors between semesters.
18 Note that the theoretical model assumes best response functions are strictly positive, nondecreasing, and

weakly concave. These restrictions are difficult to directly impose in terms of restrictions on the parameter
space when there is heterogeneity in best response functions. Therefore, we adopt an indirect approach, of
verifying whether best response functions derived from posited parameters satisfy the restrictions. Specif-
ically, when estimating the model, we use the weaker restrictions that the 75th percentile effective study
type’s best-response function is nonnegative and that equilibrium study times are strictly positive; we also
impose the natural upper bound on daily study time (24 hours a day). As we show in Section 7, none of
these restrictions are close to binding at our estimated parameters.
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shows how to calculate the residuals used to compute it, and shows how to decompose these

residuals in a way that facilitates our analysis of when the test has power. We develop the

test assuming there is one study time report and one period, which allows us to drop the

corresponding subscripts, and that there is no censoring in observed study times. We show

how we implement our test using more than one study time report and more than one period

in Section 7.2.

Let Γ̂ denote the vector of estimated parameters and let s̃i denote i’s reported study

time. The study time residual for student i is

η̂si = s̃i − δsi (A,X; Γ̂), (17)

and the average of i’s friends’ residuals is

η̂s,−i =

∑N
j=1A(i, j)η̂sj∑N
j=1A(i, j)

. (18)

Consider the following regression of a student’s own residual on the average of her friends’

residuals:

η̂si = a+ bη̂s,−i + ξ. (19)

Under the null hypothesis of proper specification, the error terms in our study time regression

are IID, so the true value of b is zero. Our test statistic is simply the t-statistic for a test of

b = 0 in regression (19), b̂/SE (̂b), which has a limiting standard normal distribution under

the null.

Our claim is that this specification test will have power against alternatives where omitted

variables are present. Intuitively, if there are important unobserved variables influencing

students’ decisions, they will generally induce cross-sectional correlation across students

because they will enter students’ best responses in equilibrium. Therefore, an absence of

correlation in residuals across students is consistent with a lack of omitted variables. We

show this more formally now.

Consider the following scenario with an (potentially) omitted variable. We examine the

special case with τs = 1. As we show in Section 7, this case is consistent with our baseline

empirical results, where we find that best response functions are linear.

Using a composite parameter c ≡ [β2 − θ1], define the subset of parameters identified

by just equation (9), the student’s policy function, as Γ2 = (c, θ2, θ3, θ4, ωs, τµ,1, τµ,2)
′. To

simplify notation, we refer to the terms in (9), [−θ3 − θ4γ(µsi)] and [(c− θ2γ(µsi)) s−i],

as f1(xi; Γ2) and f2(xi; Γ2), respectively. As in Section 5, xi contains student i’s observed

characteristics, which enter the policy function through effective study type γ(µsi). The
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equation for an individual student is

si =f1(xi; Γ2) + f2(xi; Γ2)s−i. (20)

In order to represent the system of equations for all students in a vector S, use F1(X; Γ2)

to denote a column vector stacking the f1(xi; Γ2) for all i. We use the notation W (X; Γ2)

for a matrix that has zeros in the same positions as the zeros in A and nonzero entries in

locations where A has ones. In place of the ones in row i of A, W (X; Γ2) contains

1∑N
j=1A(i, j)

[f2(xi; Γ2)]. (21)

The system of equations is thus:

S = F1(X; Γ2) +W (X; Γ2)S. (22)

Note that (22) is simply a re-written version of the baseline model we developed in Section

4. Solving for S, we obtain the equilibrium vector of study times

S∗ = (I −W (X; Γ2))
−1[F1(X; Γ2)], (23)

where the right side corresponds to the vector stacking δsi (A,X; Γ) for all students.19

Incorporating our measurement error ηs, we obtain the data generating process for ob-

served study time S̃ under the null hypothesis of correct specification:

S̃ = (I −W (X; Γ2))
−1[F1(X; Γ2)] + ηs. (24)

Now consider an alternative in which the model was misspecified. In particular, suppose

a vector of characteristics V was omitted by the econometrician but was observed by all

students, entering the best response system in the following manner:

S = F1(X; Γ2) +W (X; Γ2)S + V. (25)

Again solving for S, the equilibrium system of equations has the following form:

S∗ = (I −W (X; Γ2))
−1[F1(X; Γ2) + V ]. (26)

In general, the matrix (I−W (X; Γ2))
−1 will have many non-zero entries because students will

typically be directly or indirectly connected to many other students. Therefore, many, if not

19 Note that, as it expresses outcomes as a reduced form in terms of X and A, the specification test would
not be affected by the inclusion of “contextual effects” in the typical additively separable manner.

22



all, elements of V will influence a given student’s equilibrium study time in this alternative.

Decompose V into two components according to:

V = Π(X) + u, (27)

where we assume that u is mean independent of X (and, hence, F1(X; Γ2)) and W (X; Γ2).

We are agnostic about correlation patterns in u. For example, students with high xi may

have high, low, or average values of u. However, it may be the case that when a student

has a high xi and a high ui, she is likely to also have a friend with a high uj. Substituting

this expression for V into (26) and incorporating our measurement error ηs gives the data

generating process for observed study time under the alternative hypothesis :

S̃ =(I −W (X; Γ2))
−1[F1(X; Γ2) + Π(X) + u] + ηs

=(I −W (X; Γ2))
−1[F1(X; Γ2) + Π(X)] + (I −W (X; Γ2))

−1u+ ηs. (28)

It is convenient to re-write (28) with a composite error ε:

S̃ =(I −W (X; Γ2))
−1[F1(X; Γ2)] + ε, (29)

where ε =(I −W (X; Γ2))
−1Π(X) + (I −W (X; Γ2))

−1u+ ηs.

By definition, residuals must be computed using estimates of Γ2, rather than the true

value. To derive the residuals ε̃, consider the least squares estimator of Γ2 in the study

time regression, Γ̂2, i.e., the estimate of Γ2 that minimizes ε′ε in (29). The fitted values

for S̃ using Γ̂2 are (I − W (X; Γ̂2))
−1[F1(X; Γ̂2)]. Let Γ̃2 denote the probability limit of

Γ̂2. In large samples, the fitted values of S̃ based on our estimator would then be (I −
W (X; Γ̃2))

−1[F1(X; Γ̃2)], which we can add and subtract from (29), resulting in

S̃ = (I −W (X; Γ̃2))
−1[F1(X; Γ̃2)] + ε̃, (30)

where

ε̃ ≈{(I −W (X; Γ2))
−1[F1(X; Γ2) + Π(X)]− (I −W (X; Γ̃2))

−1[F1(X; Γ̃2)]}︸ ︷︷ ︸
“prediction bias”

+ (I −W (X; Γ2))
−1u︸ ︷︷ ︸

equilibrium propagation of u

+ηs. (31)

The first term (“prediction bias”) in ε̃ is due to the omission of Π(·), i.e., it represents a

mean misspecification in (30). As we show below, there will not necessarily be a prediction

bias. The second term is due to the influence of u upon equilibrium study effort. This second
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term is what our specification test is designed to detect. Γ̂2 will, in general, be inconsistent

for Γ2 if Π(·) 6= 0.

In general, our test will have power, i.e., the ability to detect the type of alternative (25),

because the error ε̃ will exhibit cross-sectional correlation when V 6= 0. We show this by

considering cases (i) without prediction bias and (ii) with prediction bias.

There would be no prediction bias (i.e., we would be in case (i)) if there exists a Γ̈2 such

that F1(X; Γ̈2) nests F1(X; Γ2)+Π(X).20 In principle, this nesting could be accomplished by

adopting a sufficiently flexible functional form for F1(·; ·). Therefore, in this case, although

elements of Γ2 may be inconsistently estimated (i.e., plim Γ̂2 6= Γ2), residuals obtained

from (30) would only include components based on u and ηs. That is, bias in Γ̂2 would not

pervade to the residuals.21 Of course, in practice, it may be necessary to impose restrictions

on F1(X; ·), meaning there may potentially be prediction bias in study time. We discuss this

in case (ii).

Case (i): No prediction bias: Consider first the case with no prediction bias, leaving

us to focus on the u component of ε̃ in (31). In general, the term (I −W (X; Γ2))
−1u will

exhibit cross-sectional dependence because its elements are linear combinations of many of

the components of u.

In order for there to be no cross-sectional covariance in (I −W (X; Γ2))
−1u, the shocks u

would need to have a covariance matrix that was orthogonalized by (I −W (X; Γ2))
−1. For

example, consider the case where u was generated according to

u = (I −W (X; Γ2))e, (32)

with e IID and E [ee′] = I. For reasonable ranges of W (X; Γ2) in our application, such

a u process would possess strong negative correlations among closely linked students. For

example, consider our point estimate for Γ2, which we present in Section 7, and our baseline

adjacency matrix for the first semester, A1. For the process in (32), in order for u to be

orthogonalized by (I−W (X; Γ2))
−1, the ratio of the average covariance of u between friends

to the average variance across students would have to be -0.31.

The main focus of the literature is on the case of positive assortative matching.22 There-

20This is because the u are mean independent from X and W (X; Γ2), which means that the least-squares
estimate of Γ2, which minimizes ε′ε, would minimize the prediction bias component of ε̃.

21For example, this would be true in the commonly considered case where we can write F1(X; ∆1) = X∆1

and Π(X) = X∆2, where ∆1 and ∆2 are matrices of parameters, in which case the estimated ∆̂1 would have

plim ∆̂1 = ∆1 + ∆2.
22Epple and Romano (2011) contains a thorough discussion of sorting in the presence of peer effects. Zeitlin

(2011) studies peer effects in a social learning context, finding that own and friend information shocks are
negatively correlated. This finding is unsurprising in a learning environment, where one may gain more when
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fore, we believe such a negative correlation is not the most salient one. Further note that the

necessary orthogonalization could not occur when u are independent in the cross section.

Moreover, even in the presence of negative cross-sectional correlations in u, only specific

correlation structures could produce the necessary orthogonalization. In our example above,

negative covariances in u that were either larger or smaller than -0.31 would generate corre-

lated residuals (ε̃). In summary, our test will have power to detect the omitted variables u

as long as they do not have very specific covariance structures.

Case (ii): Prediction bias: In the case where there is a prediction bias in study time

(which can only occur if there is an omitted variable bias, i.e., Π(·) is nonzero), our test

would not have power if the first term in equation (31), the prediction bias term, offset

cross-sectional correlations in (I−W (X; Γ2))
−1u, such that there would be no cross-sectional

covariance in ε. For example, negative covariances in the bias term could, in principle, exactly

cancel with the positive covariances that we anticipate in (I −W (X; Γ2))
−1u. Our strong

prior is that this scenario is implausible, due to the positive covariances across friends in

their values of xi and the bias term being a smooth function of xi. Intuitively, because

friends have similar observed characteristics (xi), the prediction errors of students and their

friends—which would only exist due to the inability of F1(X; ·) to fit study time for students

with certain observed characteristics—will likely be positively correlated. Most importantly,

prediction bias would have to exactly cancel out the u component to not have power against

the alternative hypothesis. Such a problematic scenario would be a knife-edge case.

To make the test developed above more concrete, in Appendix E we develop an example

environment with dyadic, separate networks with homogeneous best responses. In addition

to simplifying notation, the specification developed in Appendix E corresponds to case (i),

i.e., there is no prediction bias.

7 Estimation Results

Table 6 contains parameter estimates. The top panel presents the parameters that enter the

achievement production function. The key parameter is the marginal product of own study

time on achievement, β2. The point estimate of 0.254 implies that increasing own study

time by one hour per day increases achievement by about a quarter of a GPA point, ceteris

paribus. It is reassuring that this result is quantitatively similar to that from Stinebrickner

and Stinebrickner (2008a), who estimate that, for freshman at Berea, an extra hour per

day of studying would increase GPA by 0.36 points (with a standard error of 0.183 points),

one’s friends have different information.
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using whether a randomly assigned roommate brought a video game as a shifter for one’s

own study time. Table 6 shows that students with high GPAs in high school and high ACT

scores have significantly higher human capital, and black students have significantly lower

human capital.

Table 6: Parameter Estimates

Parameter Estimate SE Description

Production function: y = β1 + β2sit + µyi and µyi = x′iωy
β1 -0.350 0.4185 intercept
β2 0.254 0.0651 marginal product of own study time
ωy,HS GPA 0.470 0.0808 coefficient on HS GPA in human capital type
ωy,ACT 0.047 0.0112 coefficient on ACT in human capital type
ωy,Black -0.213 0.1074 coefficient on Black in human capital type
ωy,Male -0.037 0.0849 coefficient on Male in human capital type
ωy,HS study -0.007 0.0042 coefficient on HS study in human capital type
ωy,expected study -0.005 0.0035 coefficient on expected study in human capital type

Study cost function: c = θ1sit + θ2γ(µsi)sit + θ3sit
sτs−it

+ θ4γ(µsi)sit
sτs−it

+
s2it

2sτs−it
and µsi = x′iωs

θ1 -1.074 0.1551 study cost terms
θ2 0.874 0.2351 study cost terms
θ3 -0.907 0.8097 study cost terms
θ4 0.096 1.2800 study cost terms
τs 1.000 – curvature on friend study time∗

τµ,1 0.105 0.0601 linear term for study type
τµ,2 -0.003 0.0028 quadratic term for study type
ωs,HS GPA 1.000 – coefficient on HS GPA in study type, fixed to 1
ωs,ACT -0.063 0.0870 coefficient on ACT in study type
ωs,Black -0.735 0.7459 coefficient on Black in study type
ωs,Male -1.065 0.7892 coefficient on Male in study type
ωs,HS study 0.344 0.1554 coefficient on HS study in study type
ωs,expected study 0.005 0.0309 coefficient on expected study in study type

Shocks
σηy 0.721 0.0185 sd measurement error for human capital
σηs 2.159 0.0377 sd measurement error for observed study time
∗ Recall that we allowed for τs ∈ [0, 1], but, finding it to be indistinguishable from 1, we fixed τs = 1 and
re-estimated.

As can be seen in equation (9), the curvature in the best response function is given by

τs, the exponent on s−it. We estimated the model allowing τs to be in the set [0,1], nesting
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the assumption of a linear best response function (i.e., that τs=1).23 However, because our

initial estimation provided evidence that τs is indistinguishable from 1, we re-estimated the

model fixing τs=1.

Estimates of the parameters in the study cost function appear in the second panel of

Table 6. To ease their interpretation, we substitute them into the best response function,

yielding

ψ̂(s−it, µ̂si) = {0.907− 0.096γ̂(µ̂si)}+ {1.328− 0.874γ̂(µ̂si)} s−it. (33)

The first bracketed term in equation (33) represents the intercept of the best response func-

tion for student i, i.e., how much this student would study even if her friends did not study

at all. This term consists of −θ3 =0.907, the common component of the intercept across

students, and −0.096γ̂(µ̂si), the component characterizing variation in the intercept across

students. Likewise, the second bracketed term in equation (33) reveals the slope, or reactive-

ness, of the best response function, that is, how a student’s choice of study time depends on

the study time of her friends. This term consists of (β2−θ1) = 1.328, the common component

of the slope across students, and −0.874γ̂(µ̂si), the component characterizing variation in

the slope across students. The negative point estimate for θ1 means that the common slope

component of student study times was higher than could be explained by only the marginal

product of study time in producing achievement (β2). With γ(µsi) = 1
exp(τµ,1µsi+τµ,2µ2

si)
, the

latter component in both the first and second bracketed terms depends on the estimated

values of τµ,1 = 0.105 and τµ,2 = −0.003, which indicate that γ(·) is decreasing and convex

in one’s study type, µs. In turn, the value of one’s study type, µs, is determined by the

cost function parameters ωs. As seen at the end of Table 6, study type is increasing in high

school GPA and high school study time, but is smaller for males.24

To provide a better sense of the total effect of peer study effort in the best response

functions, Figure 1 plots best response functions for several effective study types, γ̂(µ̂s): the

lowest (lower dotted green line), 25th percentile (lower dashed purple line), median (dot-

dashed red line), and 75th percentile (higher dashed purple line), and the highest (higher

dotted green line). The table just below Figure 1 calculates equation (33) for each of these

effective study types, presenting the type-specific intercept (i.e., the first bracketed term

in equation (33)) in the top row and the coefficient on friend study time (i.e., the second

bracketed term in equation (33)) in the bottom row. The first row shows that there is

little heterogeneity in the intercepts of best response functions. The second row shows that

23See Blume et al. (2015) for an extensive discussion of linear social interactions models. We have verified
that (the row-normalized) At are not idempotent, facilitating estimation of linear best response functions.

24Though black students study considerably more than nonblack students, the coefficient on being black
is negative. Black students have much higher high school study levels, which we find to be an important
determinant of study type.
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reactiveness to peer study time is increasing in effective study type. It is important to note

that, even for the lowest effective study type (lower dotted green line, or first column of the

table), the effect of peer study time is positive. Combining the slope and intercept terms,

one’s optimal study choice is increasing in study type. That is, the best response is always

increasing in s−it and is often substantial.25

To get a sense of whether the estimated heterogeneity in reactiveness is significant, in

Table 7 we present 95% confidence intervals for differences in best response slopes for dif-

ferent groups of students. Females have significantly steeper best response functions than

males, students with above-median high school GPAs have significantly steeper best response

functions than those with below-median high school GPAs, and students with above-median

high school study time have significantly steeper best response functions than those with

below-median high school study time.

Table 7: Means and 95% confidence intervals for difference in slope of best response function,
by group

Comparison Mean 2.5% 97.5%
Female-Male 0.058 0.015 0.115
Black-Nonblack 0.014 -0.013 0.044
High HS GPA-Low HS GPA 0.034 0.015 0.056
High Study HS-Low Study HS 0.177 0.077 0.299
“High-” and “Low HS GPA” respectively refer to above- and below-
median high school GPA. “High-” and “Low Study HS” respectively
refer to above- and below-median high school study time.

In addition to describing individual heterogeneity in best response functions, Figure 1

provides evidence about the implications of this heterogeneity. To see this, note that the

intersection of each best response function with the identity function indicates the equilib-

rium study outcome in a hypothetical scenario in which a student and someone of the same

effective study type were paired. Therefore, by comparing where the different types’ best

response functions intersect the identity function (solid black line), we can identify equilibria

when each student is matched with someone of her respective study type. When two 75th

percentile effective study types are paired they would study almost 5 hours each, almost twice

the amount two 25th percentile types would study when paired. Our estimates indicate that

the game exhibits a complementarity. If matched by study type, students may study more

in total, and therefore, have higher total achievement. However, whether students will take

advantage of this complementarity depends on how they sort into friendships.

Figure 2 shows that the model closely fits mean observed study time (left panel) and GPA

25As noted in Section 5, we did not need to impose that best response functions are increasing in estimation.
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Figure 1: Estimated study best response functions for different effective study types γ̂(µ̂s)
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Effective study type γ̂(µ̂s): Lowest 25th pctile Median 75th pctile Highest
Intercept 0.81 0.83 0.84 0.85 0.87
Coefficient on s−it 0.46 0.66 0.74 0.82 0.95
Note: Own and friend study times are measured in hours/day. Each column represents the
estimated best response function for an effective study type. For example, the middle column
indicates that the median effective study type has the estimated best response function sit =
0.84 + 0.74s−it.

(right panel), both in total and by student characteristics.26 Even though the relationship

between own and friend study time is not explicitly targeted (i.e., friend study time outcomes

do not enter the likelihood), the model also closely captures this relationship. Figure 3 plots

own versus friend study time, for both the data (solid red line) and simulated outcomes

(dashed blue line).

In the remainder of this section we discuss potential endogeneity problems, present the

results from our specification test, and present evidence about the robustness of our esti-

mates.

26Model outcomes are simulated by first solving for equilibrium outcomes given Γ̂ and then applying
measurement errors, using the specification in Section 5.
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Figure 2: Fit of mean study time (left) and GPA (right), by group
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Note: “obs” are means computed using the data and “sim” are means of outcomes simulated from the model.
“High-” and “Low HS GPA” respectively refer to above- and below-median high school GPA.

Figure 3: Fit of own study time against friend study time
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Note: “obs” correspond to data and “sim” correspond to model simulations. Each point corresponds to a
pair of own and friend study time (both are measured in hours/day). The lines are fitted values from a local
quadratic regression. For each value of friend study time the fit is computed using the closest 75% of the
observations via weighted least squares, with weights proportional to (1− (distance/max. distance)3)3). See
stat smooth in the R package ggplot2 for details (Wickham (2009), R Core Team (2015)).
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7.1 Endogeneity

Our primary endogeneity concerns arise from the potential for the relationship between a

student’s study effort and that of her peers to be due, in part, to friendships being formed on

the basis of potentially unobserved determinants of study time. One possible concern is that

the relationship between own and friend study time is driven by institutional factors. One

prominent example is that if students in science courses tend to study more and befriend

students in their courses, there may be a spurious relationship between own and friend study

time. We find that a version of the descriptive regression in Table 5, including both own

and friend fraction of courses which are science, does not appreciably change the partial

correlation between own and friend study time (0.166 vs. 0.160).27 This is not surprising

given that students may make friends outside their classes, the large majority of curriculum

choices for freshman are required general or introductory classes, and there is not much

variation in the number of classes taken.28 In the same vein, dormitories are not specialized

at Berea (e.g., there are not “study” dormitories or separate dormitories for student athletes).

Perhaps a more important concern is that students arrive at school with differing propen-

sities to study, which affects how they sort into friendships. We address this concern by

taking advantage of our survey collection to obtain direct measures of students’ propensities

to study. Our baseline survey elicited information about: 1) how much a student expected

to study in college and 2) how much a student studied in high school. As we discussed

in Section 3.2, these measures of the propensity to study clearly have content, as they are

strongly correlated with how much a student studies. We stress a crucial feature of this

information on study propensity is that our survey design allowed this information to be

collected immediately after students arrived on campus, before students could be influenced

by their friendships at Berea.

As is always the case, it is difficult to know a priori whether observable characteristics

can address potential endogeneity concerns. Therefore, we next present results from our

specification test, which was designed to detect a wide variety of unobserved determinants

of study time, in particular, those underlying endogeneity concerns.

7.2 Specification Test Results

To simplify exposition, in Section 6 we developed our specification test for one period and

one study time report. This section starts by showing how we implement the test using

our data for two periods (semesters) and multiple study time reports. Recall that predicted

27See Table 13 in the appendix.
28On average, students take about one additional course in their area of specialization per semester in

their freshman year.
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equilibrium study time for student i in semester t is δsi (At, X; Γ̂).29 We define i’s semester-t

study time residual as the average residual over i’s semester-t study time reports, s̃rit:

η̂sit ≡
1∑

r∈Rit 1

∑
r∈Rit

(
s̃rit − δsi (At, X; Γ̂)

)
= s̃it − δsi (At, X; Γ̂), (34)

where s̃it is i’s average study time over reports r in semester t. To implement the test,

we average student’s residuals over both semesters, i.e., η̂si = η̂si1+η̂si2
2

. We then compute

the average of friends’ average residuals for each student in each semester according to

η̂s,−it =
∑N
j=1 At(i,j)η̂sj∑N
j=1 At(i,j)

.

Our test statistic is the t-statistic for a test of zero slope in a regression of η̂si on η̂s,−it,

pooled across semesters. Under the baseline specification, in which our new measures of

study propensity (high school study time and expected study time) enter students’ study

types, our test statistic has a p-value of 0.716, corresponding to a correlation between own

and friend study time residuals of 0.017.30 Thus, our test results suggest that our model

is well-specified. There is no evidence of an endogeneity problem arising from students

positively sorting into friendships based on unobserved determinants of study time.

In the presence of an omitted characteristic that generates an endogeneity problem, our

test should indicate a positive relationship in own and friends’ residuals. To demonstrate

that our test can detect a relationship in such a scenario, we construct an example where

there is likely an endogeneity problem, by estimating a restricted version of our model in

which we purposefully omit our novel measures of study propensity. Notably, this restricted

specification uses only measures of student characteristics that are typically available to

researchers. Because our empirical results show that these measures are both determinants

of study time and also related to our measures of incoming human capital and friendship

choices, their omission should generate a correlation across friends’ residuals. The estimated

correlation in this scenario is 0.208, and the test statistic for a slope coefficient of zero has a

p-value of 1.12e-6, providing strong evidence against the null hypothesis of a slope of zero.

Taking these two residual correlations together, our test results suggest that our new

measures of study propensity play a crucial role in addressing endogeneity concerns in our

context.

Note that failing to reject the null model does not imply that we perfectly predict ob-

served student study effort. Rather, failing to reject the null hypothesis means there are not

29To be consistent with our specification test, we also re-estimate Γ̂ assuming there is no censoring in study
time and then use this estimate to compute the test statistic. Given the very small number of observations
that were censored, the estimated Γ̂ (and corresponding test statistics) are virtually identical between the
censored and non-censored versions. Details are available upon request.

30We use a distribution approximation for this test that allows correlation within students.
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significant determinants of study time that would introduce detectable correlations between

own and friend residuals. For example, independently distributed reporting errors, e.g., of

the type we assume in Section 5, would create a divergence between model and reported

study time.

7.3 Human Capital Spillovers (“Contextual Effects”)

We have focused on a mechanism wherein friend study time may affect one’s own study

time, which in turn may affect one’s achievement via a production function. An alternative

mechanism often considered in the literature involves peer human capital directly entering

the achievement production technology (“contextual effects”). For example, friends with

high human capital may provide quick and reliable answers to questions, or may know more

about specific course requirements.

As a starting point, we augment the GPA prediction regression in Table 5, which regressed

own GPA on own characteristics and own study time, by adding friend characteristics. Con-

sistent with the results shown in Table 5, own study time remains a significant predictor

of own GPA. However, friend characteristics are not significant predictors of students’ own

GPAs; adding friend characteristics increases the adjusted R2 of the regression from 0.246

to 0.247.31

Given the literature’s interest in direct transmission of peer characteristics and our abil-

ity to separately identify them from endogenous social interactions, it is worthwhile to look

beyond the prediction equation described above, and estimate a specification allowing for

friend incoming human capital to directly affect one’s achievement, via the production func-

tion. To this end, we re-estimated the model, extending the technology (2) to allow for direct

human capital spillovers:

y(sit, µyi) =β1 + β2sit + β3µy,−i,t + µyi, (35)

where µy,−i,t ≡
∑N
j=1 At(i,j)µyj∑N
j=1 At(i,j)

, i.e., the average of period-t-friend human capital types. A

human capital spillover in the production of student achievement would correspond to β3 6= 0.

As discussed in detail in Appendix C.1, we fail to reject that β3 is zero, with a point estimate

of β̂3 = 0.111 that has an accompanying standard error of 0.128. Based on a likelihood-

ratio test, we would not reject the baseline model for that with contextual effects at any

conventional significance level (the likelihood ratio test statistic has a p-value of 0.548).

Because we have data on both inputs and outcomes, there is more than one place in

31For example, the partial correlation coefficients for friend high school GPA, friend combined ACT score,
and friend high school study have t-statistics of 0.75, .286, and -0.5, respectively.
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which contextual effects could enter our model. We chose the above extension instead of,

say, including a direct effect of friend characteristics in the cost function (3), because the

results from our specification test do not provide strong evidence of omitted characteristics

in the determination of study time choices. These results lead us to conclude that mech-

anisms involving a direct role of friends’ incoming human capital are not motivated in our

application.

7.4 Production Complementarities

As we show in Appendix B.3.2, our data on (study time) inputs and (achievement) outcomes

allow us to separately identify production complementarities from cost-based mechanisms.

Therefore, we check for evidence of production complementarities in own and friend study

time, by adding an interaction of own and friend study time to the GPA prediction regression

in Table 5. We find that the estimated interaction between own and friend study time is

insignificant and very small, with a partial correlation coefficient of 0.005 and standard error

of 0.01.

7.5 Dynamic Behavior and Model Validation

We discussed in Section 4.2.3 why it seemed reasonable to assume that the human capital

type µyi was constant across semesters. In principle, however, first-semester achievement

could increase students’ human capital coming into the second semester, in which case, a

model estimated using first-semester data may have difficulty fitting second-semester out-

comes. On the other hand, if the out-of-sample fit turned out to be good, this would suggest

a limit to the potential improvement in model fit from the addition of first-semester human

capital or other dynamic considerations. Indeed, such an exercise could also be useful in dis-

cerning, more generally, whether the assumed micro-structure of our model (e.g., functional

form assumptions, etc.) does a reasonably good job of capturing the key moving parts in

our context.

Based on the above reasoning, we conducted an out-of-sample validation exercise by

re-estimating our model using only data from the first semester and seeing how well it fit

second-semester outcomes. As discussed in Appendix C.2, the second-semester fit is good.

Therefore, we conclude that the static model may be appropriate for the relatively short

time frame we consider in this paper.

34



8 Quantitative Findings

How much does it matter who your friends are? We use our estimated model to conduct

two counterfactual exercises. First, we characterize how students respond to changes in

friend study time by exogenously increasing (shocking) the study time of each student and

measuring how outcomes would change for other students in the network. In addition to

providing evidence about how network structure and student characteristics jointly determine

how students are affected by their peers, this exercise provides a natural framework for

quantifying the importance of equilibrium effects as well as the importance of heterogeneity

in the effect of peers. Second, because peer effects are a function of not only how students

respond to changes in peer inputs but also who is friends with whom, we examine how

outcomes would differ if, instead of sorting into friendships as shown in Table 4, students

were randomly assigned friends. This exercise provides a natural comparison point from

which we can assess the importance of homophily in friendships.

Throughout this section, we compare outcomes between baseline and counterfactual sce-

narios for achievement, own study time, and friend study time. We use scfit and sbaselineit to

denote student i’s study time in the counterfactual and baseline scenarios, respectively. We

define the treatment effect on achievement for student i in period t as ∆y
it ≡ y(scfit, µyi) −

y(sbaselineit , µyi). Treatment effects for own and friend study time are defined analogously.

8.1 Network Structure, Student Characteristics, and the Response

to Peer Input Changes

To provide quantitative evidence about how students respond to changes in peer study time,

we estimate the impulse response to an impulse of increasing study effort. Specifically, we

increase (shock) the study time of a single student by one hour per day in a particular

semester and examine the responses of all other students in the network in that semester.

We summarize our findings when we perform this exercise 614 times (once for each of the

307 students in each of the two semesters).

The averages in the first row of Table 8 show how the mean effect of the study shock

evaluated at the new equilibrium, i.e., taking into account the full set of feedback effects

in the network, varies with a student’s distance from the shocked student. For example,

to obtain the number in the second column we first compute, for each student j in each

of the two semesters t, the mean response in achievement for all students who are one link

away from j when j is shocked in semester t. Averaging this mean response over all shocked

students j and both semesters shows that students who are one link away from the shocked

student have an average achievement gain of 0.078 GPA points. Similarly, the third, fourth,
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and fifth columns, respectively, show that students who are two links, three links, and four

links away from the shocked student, respectively, have average achievement gains of 0.022,

0.006, and 0.002 GPA points, respectively. The final column involves first computing, for

each student j in each of the two semesters t, the total response in achievement,
∑

i 6=j ∆y
it,

for all students (other than j) who are in the network when j is shocked in semester t.

Averaging this total response over all students and semesters shows that, on average, the

total effect of the shock is 0.52 GPA points.

Effects evaluated at the new equilibrium will be larger than partial equilibrium effects,

which only take into account how the shock to a student influences students who are directly

linked to her (i.e., iterating best response functions once). To quantify the importance of

this difference, the second row of Table 8 shows the partial equilibrium effects. The average

effect on students who are one link away from the shocked student is about 1/4 smaller

under partial equilibrium than when than under the new equilibrium (0.059 vs. 0.078 GPA

points), while, by definition, the effect on the (typically) large number of students who are

two or more links away from the shocked student is zero in the partial equilibrium case. The

last column shows that, on average, the total response of the shock is only 0.19 GPA points.

Therefore, if we considered only partial equilibrium effects we would, on average, understate

the achievement response by 64%.

Table 8: Average change in achievement (GPA points)

Avg. response, by distance from shocked node Total
Dist. from shocked stud.: 0 1 2 3 4 response
New equilibrium 0.254 0.078 0.022 0.006 0.002 0.52
Partial equilibrium 0.254 0.059 0.000 0.000 0.000 0.19
Note: The top row presents the mean effect on achievement (averaging over shocked students and
semesters) at the new equilibrium, by distance from shocked student, where the shocked student
has distance 0. The bottom row presents the mean effect on GPA immediately due to the impulse,
by distance from shocked student. The mean total response, in the last column, is the average
GPA response to shocking students j over periods t, excluding the effect on the shocked student,

i.e., 1∑
j,t 1

∑
j,t

(∑
i 6=j ∆y

it

)
.

We next examine how much the total response
∑

i 6=j ∆y
it varies, depending on which

student j is shocked in t. We find that the total response in achievement varies substantially

depending on which student is shocked. For example, the first quartile, median, and third

quartile of the total increase in achievement at the new equilibrium are 0.33, 0.49, and

0.66 GPA points, respectively. To get a better sense of why shocking different students

can produce such different gains, the left panel of Figure 4 shows the relationship between

the centrality of the shocked student and the total response at the new equilibrium.32 As

32We use what is called a “closeness” centrality measure, given by the reciprocal of the sum of short-
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Figure 4: Total achievement response (GPA points), by centrality of shocked student
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Note: The vertical location of each dot represents the total achievement response to shocking a different
student; the left panel presents the total gain at the new equilibrium and the right panel presents the partial
equilibrium total gain. The x-axis indicates the shocked student’s centrality to other students and dot size
denotes the degree of the shocked student.

before, this calculation excludes the mechanical gain in achievement experienced by the

shocked student. Each dot records the total achievement response (y-axis) by the percentile

centrality that semester, i.e., by how central the shocked student is (x-axis). The size of each

(blue) dot shows the degree (i.e., number of friends) of the shocked student. Larger dots are

concentrated at the top-right, and smaller ones at the bottom-left. That is, students with

more friends tend to have higher centrality indices and larger achievement gains. Intuitively,

because the effects of effort changes are stronger the closer students are, the total response is

higher when the shocked student is more centrally located.33 The right panel of Figure 4 plots

partial equilibrium effects (red dots). We can see here that, though shocked students have

the same degree (dot sizes), the average response is not as strongly increasing in centrality

of the shocked student. This is the case because the equilibrium effects play a larger role the

more densely connected the shocked student is to the rest of the network.

Figure 4 evinces variation in the total achievement response (i.e., the y-axis) to shocking

different students who are similarly central (i.e., the x-axis) and who also have the same

number of friends (i.e., dot sizes). We use two examples to illustrate how the structure of

est distances between that student and every other student in the graph. Average distance to others for
unconnected students is set to the number of students (Csardi and Nepusz (2006), Freeman (1979)).

33The notion that certain students may disproportionately affect other students is related to the concept
of a “key player”, studied in Ballester et al. (2006).
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the social network interacts with the distribution of best response functions to determine

how changes in students’ actions affect other students.

The left panel of Figure 5a shows the subgraph containing students within three degrees

of the student whose shock creates the largest total achievement response (1.29 GPA points).

The right panel shows the subgraph containing students within three degrees of the student

whose shock creates the smallest total achievement response (0.087 GPA points). In each

case, the shocked student is denoted by a red star. Squares represent males and circles

represent females. Shapes corresponding to black students are shaded and those correspond-

ing to nonblacks are unshaded. The area of the circle or square representing a student

other than the shocked student is proportional to the slope of that student’s best response

function, where larger shapes correspond to more reactive students. Both subgraphs show

homophilous sorting: black students tend to be friends with other black students (and non-

blacks with nonblacks), males tend to be friends with males (and females with females). In

general, students with steeper best response functions tend to be friends with each other.

Differences in the total response can be due to differences in link structure and how

heterogeneous students are arranged on the network. The link structures of the subgraphs

are very different. The shocked student in the left panel has more friends (6 vs. 1) and more

students within three degrees (39 vs. 12).34 In addition to the structure of links, how the

heterogeneous students are arranged on the network matters. Although the average slope of

best response functions is roughly similar between the subgraphs, 0.759 in the left vs. 0.698

in the right, the friends of the shocked student in the left panel have steeper best response

functions than the friend of the shocked student in the right panel. In the right panel,

the shock is immediately dampened by being passed through the student’s only, relatively

nonreactive friend.

Figure 5b shows the analogous plot, where the area of the shape is now proportional to

the achievement gain for that student. The effect of the shock dies off in the same pattern

illustrated by the first row of Table 8, that is, shapes further from the star tend to be smaller.

Friends of the shocked student in the left subgraph gain much more than the friend of the

shocked student in the right subgraph. Due to the much steeper best response functions of

the shocked student’s friends, the impulse dies out much less quickly in the left subgraph.

Indeed, the gains for students who are two links from the shocked student in the left subgraph

are about as large as the gain for the student directly connected to the shocked student in

the right subgraph. This persistence comes from both the steeper best response functions

of direct friends of the shocked student and the fact that many of them are also connected

34We limit this illustration to students within three degrees based on the first row of Table 8, which shows
the total impact dies off quite quickly in distance from the shocked student.
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to each other, further augmenting the effects of the shock through feedback. This implies

the effectiveness of policies targeting students may depend critically on how they fit into the

arrangement of the social network.35

8.2 The Effect of Sorting into Friendships

Section 8.1 studied how students respond to the input choices of others, taking into account

the baseline network, which exhibits homophily. To directly examine homophily and, there-

fore, provide further evidence about the importance of peers, we compare achievement under

the baseline social network with achievement under a counterfactual where friends are homo-

geneously distributed across students. In this counterfactual, for each semester, we maintain

the marginal distribution of friends per student observed in the data, but replace reported

links with random draws from the entire sample of students. We then form a counterfactual

symmetrized A matrix in the same manner as it was formed for the actual data, as described

in Section 3. Repeating this process 300 times for each of the two semesters produces 300

pairs of simulated adjacency matrices.36

Table 9 summarizes changes in model outcomes between the baseline and counterfactual,

averaged over all 300 simulated networks. Achievement is measured in GPA points and

study times are in hours per day. The first column shows the average change in study time,

across all students and all simulated networks, that results from moving to homogeneous

(i.e., randomly assigned) friends. The first row shows that, on average, moving to this

counterfactual would reduce own study time by 0.10 hours. Intuitively, students who in

reality (i.e., under the baseline) have friends with high study types are most harmed by the

move to a homogeneous distribution, which makes them much more likely to have lower

study type friends. This explains why females, blacks, and students with above-median high

school GPAs, who tend to be high study types and are seen in Table 4 to often have friends

with high-study-type characteristics under the baseline, see own study time fall by 0.20,

0.25, and 0.15 hours, respectively. Conversely, males, who have less studious peers under

the baseline, tend to study more when friends are homogenized. Importantly, the estimated

complementarities, which arise due to the heterogeneity in best response functions combined

with sorting into friendships based on effective study type, imply that the gains of lower

study types are smaller than the losses of the higher study types. This explains the overall

35See Fryer Jr (2011) for an example in which students are incentivized based on inputs to achievement.
36For example, in the first semester the algorithm starts with IID draws of counterfactual “friends per

student” from the empirical marginal distribution of friends per student in A1, divided by two and rounded
to the nearest integer, because A1 has been union-symmetrized. The number of directed links per student
is set to the student’s “friends per student” draw. Directed links are IID draws from the whole set of other
students.
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Figure 5: Subgraphs corresponding to students producing the largest and smallest total
achievement responses

(a) Slope of best response functions for students within three degrees of the student producing largest
total response when shocked (left) and smallest total response when shocked (right)

(b) Gain in achievement for students within three degrees of the student producing largest total response
when shocked (left) and smallest total response when shocked (right)

Note: Red star indicates shocked student, males are square (females are circles), blacks are shaded (nonblacks
are unshaded), and area of squares and circles is proportional to outcome of interest for corresponding
students (i.e., (a) slope of best response function or (b) gain in achievement from shocking starred student)
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decrease in own study time. Removing the sorting in the manner of our experiment does not

merely re-allocate output, but also lowers total output. Accordingly, the standard deviation

of own study time drops by 30%. A similar story drives both the overall results and the

stratified results associated with changes in friend study time in the second column of Table

9.

The third column of Table 9 shows the average change in achievement across all students

and all simulated networks that result from the changes in study time found in the first

column. The first row shows that, on average, moving to the counterfactual would reduce

achievement by 0.02 GPA points. However, as expected given the findings of study time, the

declines are largest for black students, female students, and students with above-median high

school GPAs. As before, the losses to these groups are not offset by the gains to other groups.

Homogenizing the distribution of friends’ characteristics would increase the baseline GPA

gap between nonblack and black students of 0.5 GPA points by 14%, reduce the baseline

GPA gap between female and male students of 0.31 GPA points by almost 20%, and reduce

the baseline GPA gap between students with above-median and below-median high school

GPAs of 0.60 GPA points by 7%. Overall, homogenizing friends would reduce the standard

deviation of achievement by 5%.

To gauge whether the effects reported above are significantly different from the baseline,

we also report the range of the change in mean achievement, by group discussed above,

across simulations. Figure 6 illustrates the 2.5th and 97.5th percentiles of the mean change

for each group, along with the average mean changes presented in Col. (3) of Table 9.

Intervals for black students, females, and students with above-median high school GPAs are

all well below zero, as is the interval for the total change in achievement; only the group with

below-median high school GPAs has an interval that contains zero. The significant effects

indicated by these intervals reinforce our finding that sorting significantly affects student

achievement.37

37 We have also obtained results that incorporate the estimated uncertainty in our parameters. Even here,
95% confidence intervals for black students, females, and students with above-median high school GPAs are
all below zero, as is the interval for the effect over all students (“total”), reinforcing the finding that sorting
significantly affects student achievement. The reason that females and black students lose significantly more
when friendships have been homogenized is that these groups have other characteristics associated with
higher estimated study types (as do their friends). For example, Table 1 of the manuscript shows that
females have high school GPAs that are, on average, over half a standard deviation higher than males, while
having similar average high school study time. On average, black students have over 40% of a standard
deviation higher high school study time than nonblack students.
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Table 9: Average changes for study time (hours/day) and achievement (GPA points) result-
ing from counterfactual homogeneous distribution of friend characteristics, across simulated
networks

Own study time Friend study time Achievement
(1) (2) (3)

Total -0.10 -0.09 -0.02

Nonblack -0.07 -0.04 -0.01
Black -0.25 -0.36 -0.07

Female -0.20 -0.25 -0.05
Male 0.05 0.12 0.01

Below-med. HS GPA -0.03 0.02 0.00
Above-med. HS GPA -0.15 -0.20 -0.04
Note: Means are computed over simulated networks.

Figure 6: Effect of homogenizing friends on average achievement (GPA points), across sim-
ulated networks

-0.09

-0.06

-0.03

0.00

0.03

nonblack black female male low hsgpa high hsgpa total

A
v
g.

ch
an

ge
in

ac
h
ie

ve
m

en
t

Note: The lower and upper ends of each bar respectively denote the 2.5th and 97.5th percentile of the mean
change in achievement across all simulations, for the group indicated on the x-axis. The mean over all
simulations for each group (presented in Col. (3) of Table 9) is denoted by a circle.
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9 Conclusion

This paper presents an equilibrium model of student study time choices and the production

of achievement. Social interactions are present because costs of study time for a student

depend on the study times of that student’s peers. We estimate this model and provide

evidence that this mechanism is important in the production of academic achievement. Our

approach was made possible by three key features of the BPS: direct measurements of study

time, measurements of a social network for a cohort of Berea students, and measures of

student propensities to study. We develop a specification test that can detect unobserved

determinants of study time.

We use the structural model to examine counterfactuals that are informative about the

role of network feedback effects and sorting in peer characteristics. Heterogeneity in student

characteristics and how students are interconnected determine the distribution of responses

to changes in a student’s study time. Our results indicate that equilibrium effects, mediated

by the whole social network, are quantitatively important in determining the responses of

network-wide study time and achievement to shocks in study time. In addition, our results

indicate that homophily, or sorting in peers’ characteristics, plays an important role in the

production of achievement. The results of our specification test suggest that our study

propensity measures play a crucial role in addressing endogeneity concerns.
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A Data

A.1 Survey questions

Figure 7: Time diary question
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Figure 8: Friends question
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B Additional Model Material

B.1 Concavity of Best Response Function

The optimal choice of study time for the period game solves the function G(s, s−i) =
∂c
∂s
−β2 = 0. To find how s varies with friend study time, use the Implicit Function Theorem:

∂s

∂s−i
= −

∂G
∂s−i
∂G
∂s

= −
∂2c

∂s∂s−i

∂2c
∂s2

.

If friend study time decreases the cost of increasing one’s own study time, the numerator is

positive. If the cost of studying is convex in own study time, the denominator is negative,

meaning the overall sign is positive. Moreover, if friend study time enters c(·) in a weakly

concave manner, e.g., τs ≤ 1, the numerator is weakly smaller in absolute value for larger

values of s−i, i.e., study time is weakly concave in friend study time.

B.2 Proof of Existence and Uniqueness of Equilibrium

Claim 2. Let k be a number strictly greater than 24. There exists a unique pure strategy

Nash equilibrium if ψi : RN 7→ R are weakly concave and weakly increasing, ψi(0) > 0, and

ψi(k) < k for i ∈ N .

Proof. Define S = [0, k]N , i.e., a compact and convex set. Define a function Ψ:

Ψ : S 7→ S =


ψ1(x−1)

ψ2(x−2)
...

ψN(x−N)

 .

Existence: Ψ(·) is a continuous self map on the compact set S, so an equilibrium exists

by Brouwer’s Fixed Point Theorem.

Uniqueness: If Ψ(·) is strictly concave and weakly increasing we can apply Kennan

(2001). Next, consider the case where Ψ(·) is linear, in which case we can prove Ψ(·) is a

contraction. Write the linear form of Ψ(·) as

Ψ(X) =


α11 + α21x−1

α12 + α22x−2
...

α1N + α2Nx−N

 ,
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where, by assumption, maxi∈N{α2i} < 1. Let distance be calculated according to the taxicab

distance, i.e., d(X1, X2) =
∑

g∈N |X1g − X2g| for X1, X2 ∈ S. The Contraction Mapping

Theorem holds if d(Ψ(X1),Ψ(X2)) ≤ bd(X1, X2), for b ∈ (0, 1). Calculating this for the

special case where Ψ is a linear map, we have

d(Ψ(X1),Ψ(X2)) =
∑
i∈N

α2i|X1 −X2| ≤ max
i∈N
{α2i}|X1 −X2| < d(X1, X2),

i.e., the condition for the Contraction Mapping Theorem is satisfied, where b = maxi∈N{α2i} ∈
(0, 1).

B.3 Other Mechanisms for Social Interactions

B.3.1 Conformity Specification of Cost Function

We refer the cost function specification in (3) as the “cost-reduction model”. Consider the

alternative effort cost function, which we refer to as the “conformity model”:

c(s, s−i, µsi) = (δ1 + δ2γ(µsi)) s+
δ3
2
s2 +

δ4
2

(
s− (1 + δ5γ(µsi)) s

τs
−i
)2
. (36)

Solving the student’s problem results in the best response function

si =
β2 − δ1
δ3 + δ4

− δ2
δ3 + δ4

γ(µsi) +
δ4

δ3 + δ4
sτs−i +

δ4δ5
δ3 + δ4

γ(µsi)s
τs
−i. (37)

If we make a similar normalization as was performed for the cost-reduction model, by setting

δ3 = 1, we obtain

si =
β2 − δ1
1 + δ4︸ ︷︷ ︸
−θ3

+
−δ2

1 + δ4︸ ︷︷ ︸
−θ4

γ(µsi) +
δ4

1 + δ4︸ ︷︷ ︸
(β2−θ1)

sτs−i +
δ4δ5

1 + δ4︸ ︷︷ ︸
−θ2

γ(µsi)s
τs
−i. (38)

That is, we can represent the parameters in equation (36) above in terms of parameters

in (3), which are in braces beneath their counterparts in the conformity model in (38).

Therefore, the distinction between the different formulations of the cost function—a cost of

deviating from friend behavior vs. a cost (reduction) from studying with ones friends—has

no empirical content.

What matters, then, is interpretation and intuition of the two cost specifications. The

cost-reduction model captures the intuitive notion that friends studying more, i.e., a higher

s−i entering the denominator in the last three terms of equation (3), would reduce the cost

of studying by making it more enjoyable. At the same time, it also makes intuitive sense

that there would also be a private component to the cost of studying (the first two terms in
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the expression). Note that τs also has an intuitive meaning in the cost-reduction model, as

it represents the degree to which the utility gains from friends’ studying diminish. If friends

studying more reduces your marginal cost of studying because you enjoy spending time with

them, then it would be natural to allow this benefit to decrease the more they study, i.e.,

τs < 1.

Now consider the conformity model, first setting τs = 1 and δ5 = 0. The interpretations

of δ1 and δ2 are quite natural: students have private costs of studying, which may be het-

erogeneous. The interpretation of δ4 is also quite natural: if positive, this creates a force

inducing friends to behave similarly by conforming in their choice of study time.

Now consider τs < 1 and assume δ4 > 0 (but maintain δ5 = 0). We believe the inter-

pretation in this case for the conformity model is less clear than it is in the cost-reduction

model. If s > s−i for a particular student then reducing τs would create a bigger cost of

deviating. On the other hand, if s < s−i then reducing τs would decrease the cost of devi-

ating. The interpretation of δ5 6= 0 (maintain τs = 1) is also slightly less clear, for similar

reasons: The thing one is conforming to is not the same as one’s choice: A student might

choose to study four hours a day to “conform” to her friends who study five hours, not due

to the private cost of studying. (Note that instead having the heterogeneous term outside

the quadratic term (i.e., added to δ4) would break the observational equivalence of the two

cost functions.) Therefore, though in the homogeneous, linear model it does appear that

conformity has a nice intuition, we believe the cost-reduction specification is a bit more

intuitive when considering nonlinear and/or heterogeneous best response functions.

B.3.2 Production Complementarities

Suppose we did not have achievement data. For simplicity, consider the homogeneous, lin-

ear, best response specification (i.e., θ2, θ4 = 0); the following result also obtains in the

more general specification of the cost function. Consider the following specification of our

achievement equation:

y(sit, µyi) = β1 + β2sit + β3
sit
s−it

+ µyi, (39)

where sit is own study effort and s−it is friend study effort. If β3 < 0, then increases in peer

effort increase the marginal product of one’s own effort.38 The student’s problem would still

38Note, one could instead have defined the production complementarity according to β3sits−it, where
β3 > 0 would correspond to production complementarities. Though such a functional form would technically
produce identification in the cost-reduction model we consider, it would not in the conformity model (where
the interaction above, β3sit/s−it, for similar reasons, would produce identification via functional form).
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be separable across periods, resulting in the best response function

sit = (β3 − θ3) + (β2 − θ1)s−it. (40)

It is obvious from (40) that we cannot separately identify β3 and θ3 without having data

on the marginal product of inputs (i.e., data on achievement outcomes). Indeed, this is

the same argument that, without data on achievement, we could not identify the extent to

which students study because it is enjoyable (θ1) versus doing so because it affects their

achievement (β2). On the other hand, having both study time and achievement data would

clearly allow one to identify the extent to which production complementarities underlie social

interactions.

C Additional Estimation Results

C.1 Contextual Effects

This section presents the estimation results of our specification allowing for contextual effects

in achievement, described in Section 7.3. Table 10 presents the baseline estimates (Col. (1))

and re-estimated parameters allowing for contextual effects (Col. (2)). We obtain a point

estimate on the achievement contextual effect parameter of β̂3 = 0.111, which has a standard

error of 0.128. That is, we cannot discern that contextual effects are different from zero,

which is consistent with the similarity between the parameters estimated under the baseline

(Col. (1)) and under the augmented technology (Col. (2)). Moreover, based on a likelihood-

ratio test, we would not reject the baseline model for that with contextual effects at any

conventional significance level (the likelihood ratio test statistic has a p-value of 0.548).

Because we find a negligible effect of direct human capital spillovers, we have retained our

baseline specification for the exposition of our results.

C.2 Out-of-Sample Validation

Table 11 presents the baseline parameter estimates (Col. (1)) and those obtained when

using only first-semester data (Col. (2)). The sets of parameters are strikingly similar

between the two columns; this is confirmed by their having very similar (first-semester-only)

log likelihoods, which are presented at the bottom of each column. This suggests that the

out-of-sample fit of second-semester outcomes may be reasonable when based on parameters

estimated using only first-semester data.

To further investigate, we compare model fit for the first-semester data, which was used
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Table 10: Parameters Under Baseline and Contextual Effects Specifications

Baseline Contextual
(1) (2)

β1 -0.350 -0.591
β2 0.254 0.258
β3 — 0.111
ωy,HS GPA 0.470 0.462
ωy,ACT 0.047 0.046
ωy,Black -0.213 -0.182
ωy,Male -0.037 -0.021
ωy,HS study -0.007 -0.007
ωy,expected study -0.005 -0.005
ω∗s,HS GPA 1.000 1.000
ωs,ACT -0.063 -0.065
ωs,Black -0.735 -0.720
ωs,Male -1.065 -1.081
ωs,HS study 0.344 0.347
ωs,expected study 0.005 0.004
ση 2.159 2.159
σε 0.721 0.721
τ ∗∗s 1.000 1.000
τµ,1 0.105 0.105
τµ,2 -0.003 -0.003
θ1 -1.074 -1.068
θ2 0.874 0.870
θ3 -0.907 -0.918
θ4 0.096 0.098
Log Likelihood: -4696.36101 -4696.18025
LLR stat: 0.362
p-value: 0.548
Note: ∗: Normalized to 1. ∗∗: Fixed to 1. Col. (1)
presents estimates from baseline model, when achieve-
ment is defined according to (2). Col. (2) presents
results allowing for contextual effects in achievement,
where achievement is defined according to (35).
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Table 11: Parameters Under Baseline and Only-First-Semester Data

Baseline Only First Semester
(1) (2)

β1 -0.350 -0.154
β2 0.254 0.230
ωy,HS GPA 0.470 0.400
ωy,ACT 0.047 0.053
ωy,Black -0.213 -0.278
ωy,Male -0.037 -0.035
ωy,HS study -0.007 -0.009
ωy,expected study -0.005 -0.005
ω∗s,HS GPA 1.000 1.000
ωs,ACT -0.063 -0.121
ωs,Black -0.735 -0.765
ωs,Male -1.065 -0.873
ωs,HS study 0.344 0.271
ωs,expected study 0.005 0.000
ση 2.159 2.203
σε 0.721 0.709
τ ∗∗s 1.000 1.000
τµ,1 0.105 0.127
τµ,2 -0.003 -0.005
θ1 -1.074 -1.103
θ2 0.874 0.848
θ3 -0.907 -1.138
θ4 0.096 0.144
Log Likelihood: -2375.58255 -2373.61342
(first-semester)
Note: ∗: Normalized to 1. ∗∗: Fixed to 1. Col. (1) presents
estimates from baseline model and the log likelihood in the first
semester. Col. (2) presents results when parameters were esti-
mated using only first-semester data and the log likelihood in the
first semester.
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Figure 9: In and-Out-of-sample fit; study time
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to estimate model parameters, and the validation data from the second semester. We can

see that the out-of-sample fit for study time (Figure 9), GPA (Figure 10), and own-vs.-friend

study time (Figure 11) all seem quite good.

D Additional Tables
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Figure 10: In- and-Out-of-sample fit; GPA
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Figure 11: In- and-Out-of-sample fit; own vs. friend study time
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Table 12: Study time regressions controlling for different sets of characteristics, pooled over
both semesters

Dependent variable: Own study

(1) (2) (3) (4)

Male −0.369∗∗∗ −0.328∗∗ −0.391∗∗∗

(0.136) (0.140) (0.135)

Black 0.116 0.333∗ 0.324∗

(0.186) (0.192) (0.172)

HS GPA 0.413∗∗∗ 0.392∗∗

(0.149) (0.156)

ACT −0.032 −0.029
(0.021) (0.022)

HS study 0.043∗∗∗

(0.006)

Expected study −0.002
(0.006)

Friends study 0.166∗∗∗ 0.198∗∗∗ 0.202∗∗∗ 0.228∗∗∗

(0.037) (0.039) (0.039) (0.038)

Constant 1.915∗∗∗ 2.167∗∗∗ 2.850∗∗∗ 2.648∗∗∗

(0.671) (0.679) (0.172) (0.152)

Observations 574 574 574 574
R2 0.169 0.087 0.076 0.058

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 GPA is measured in GPA points (0-4). HS study
and expected study are measured in hours/week. Own and friend study are measured
in hours/day. The variable “Friend z” for student i in period t is the average of the
variable z across i’s friends in period t.

E Dyadic, Separate Networks with Homogeneous Best

Responses

To make the test statistic more concrete, in this section we develop an example environment

with dyadic, separate networks with homogeneous best responses.
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Table 13: Study time regressions, pooled over both semesters

Dependent variable: Own study

(1) (2)

Male −0.369∗∗∗ −0.365∗∗∗

(0.136) (0.137)

Black 0.116 0.115
(0.186) (0.187)

HS GPA 0.413∗∗∗ 0.389∗∗∗

(0.149) (0.150)

ACT −0.032 −0.034
(0.021) (0.021)

HS study 0.043∗∗∗ 0.041∗∗∗

(0.006) (0.006)

Expected study −0.002 −0.002
(0.006) (0.006)

Own share science courses 0.349
(0.390)

Friend study 0.166∗∗∗ 0.157∗∗∗

(0.037) (0.038)

Avg. friend share science courses 0.880
(0.562)

Constant 1.915∗∗∗ 1.873∗∗∗

(0.671) (0.684)

Observations 574 574
R2 0.169 0.176

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 GPA is measured in GPA points (0-4).
Own and friend HS study and expected study are measured in hours/week.
Own and friend study are measured in hours/day. The variable “Friend z”
for student i in period t is the average of the variable z across i’s friends in
period t.
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Example 1 (Dyadic, separate networks with homogeneous best responses). Consider the

following special case, with

F1(Γ2) = Xλ1 (41)

Wt(X; Γ2) = Wλ2 (42)

Π(X) = Xλ3, (43)

where λ1, λ2 are scalars, λ3 is a matrix of parameters, and W = IN ⊗ I2 is a block diagonal

matrix with I2 (i.e., two-by-two Identity matrices) along the diagonal, representing the fact

that each student is friends with exactly one other student. Then (31) would become

ε̃ ≈ {(I −Wλ̃2)
−1[X(λ1 + λ3)]− (I −Wλ̃2)

−1[Xλ̂1]}+ (I −Wλ2)
−1u+ ηs. (44)

Note that plim λ̂1 = (λ1 + λ3), i.e., where will be no prediction bias, meaning we are in

Case (i) above. Because W is block diagonal, it is sufficient to consider the top-left 2 × 2

block, representing the first friendship dyad. The expression (44) for these students then,

eliminating the ηs, which are independently distributed from all other variables and therefore

qualitatively immaterial in the following calculation, is[
ε̃1

ε̃2

]
≈ 1

1− λ22

[
1 λ2

λ2 1

][
u1

u2

]
=

1

1− λ22

[
u1 + λ2u2

λ2u1 + u2

]
, (45)

giving the product of residuals for students in the first dyad:
(

1
1−λ2

2

)2
(λ2u

2
1 + (1 + λ22)u1u2 + λ2u

2
2) .

Under the maintained assumption that λ ≥ 0, the expectation of this product can only be zero

if u1u2 < 0, i.e., own and friend errors u are negatively correlated, and in exactly the right

way.
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Bramoullé, Y., S. Currarini, M. Jackson, P. Pin and B. W. Rogers, “Homophily and Long-

Run Integration in Social Networks,” Journal of Economic Theory, 147(5):1754–1786,

2012.

Brock, W. A. and S. N. Durlauf, “Interactions-Based Models.” in J. J. Heckman and E. E.

Leamer, eds., “Handbook of Econometrics,” vol. 5, pp. 235–260, Amsterdam: North-

Holland Press, 2001.

Bursztyn, L., F. Ederer, B. Ferman and N. Yuchtman, “Understanding Mechanisms Under-

lying Peer Effects: Evidence From a Field Experiment On Financial Decisions,” Econo-

metrica, 82(4):1273–1301, 2014.
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