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ABSTRACT. Recall that an assessment specifies a belief and a strat-
egy at each information set. We note that such an assessment de-
termines an “infinitely-less-likely relation” < between certain pairs
of nodes (as when, for example, the first node is outside, and the
second node is inside, the support of the belief at an information
set).

We use Farkas’ Lemma to show that this relation < has an ad-
ditive representation whenever the assessment is consistent. This
simple but fundamental observation allows us to simplify the proofs
of two old characterizations of consistency, to repair a nontriv-
ial fallacy in the Kreps-Wilson proofs regarding sequential equi-
librium, and to develop a new characterization of consistency in
terms of additive separability. (Our entire mathematical structure
employs only limits, linear algebra, and Farkas’ Lemma.)

In addition, we conveniently reformulate the statements of the
two old characterizations. We do this by introducing “monomials.”
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Economics Department for its hospitality during my sabbatical. (This paper is an
extended introduction for Streufert (2007), which in turn subsumes half of Streufert
(2006b) and all of Streufert (2006c).)
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This paper is an extended introduction for Streufert (2007). In par-
ticular, it introduces Theorems A, B, and C, which will be stated ex-
plicitly in this paper’s final section. That final section also explains
where these results appear in Streufert (2007).

1. INTRODUCTION

1.1. MONOMIALS

One of our contributions is to introduce monomials as a means of
understanding the characterizations of Kreps and Wilson (1982) and
Perea, Jansen, and Peters (1997). We do that in this subsection by
means of an example, and both the monomials and the example will
be useful when we introduce our other contributions in the next two
subsections.

Imagine that you have identical twin daughters. They are ten years
old, they like to giggle, and you are faced with the daunting task of
putting them to bed. For some reason, you cannot distract them with
songs, stories, or books, and further, you cannot reward them for good
behaviour. Instead, you just notice whether or not there is noise, and
then in the event of noise, you choose between two punishments, the
first of which is harder on the first girl and the second of which is
harder on the second girl. Note that because your twins are identical,
you cannot distinguish between their giggles, and thus, you cannot
distinguish between the first girl giggling, the second girl giggling, and
the two of them giggling simultaneously. All you can do is to notice
whether or not there is noise.

That was a verbal description of the game (without payoffs) that
appears in Figure 1(a). The three players are Twin 1, Twin 2, and
Parent. The first twin chooses between G (giggle) and S (sleep); the
second twin chooses between ¢ (giggle) and s (sleep); and the parent
chooses between § (the punishment that is harder on the first twin) and
¢ (the punishment that is harder on the second twin). Note that the
nodes are identified with the sequence of actions taken to reach them
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FIGURE 1. (a) The game (without payoffs) in full de-
tail. (b) An assessment in which both girls sleep and the
parent would blame the second girl for any noise (the
probabilities on § and ¢ are irrelevant for consistency).
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(0 is the original node). Accordingly, future figures, like Figure 1(b),
will not explicitly label any nodes. (This game resembles Kreps and
Ramey (1987, Figure 1).)

In the story, the girls might go to sleep in spite of the fact that you
could never tell who was giggling. For example, it might be that both
girls know (a) that you would believe that the second girl alone was
at fault, (b) that this belief would induce you to choose the second
punishment, and (c) that the threat of the second punishment is suf-
ficient to make them both behave. Or, alternatively, it might be that
both girls know (a) that you would believe that both girls are giggling
simultaneously, (b) that this would induce you to randomize in some
way between the two punishments, and (c) that the threat of this ran-
domized punishment is sufficient to make them both behave. (In each
example, steps (b) and (c¢) depend on exogenous payoffs which have
been left unspecified.)

Although either scenario makes sense superficially, the logic is murky
because it is unclear how the parent’s belief may or may not accord
with the girls’” behaviour. Since the girls’ good behaviour implies zero
probability at each of the nodes 0Gg, 0Gs, and 0S¢, we might say that
any belief over these three nodes accords with the girls’ behaviour.
Such thinking would admit both of the above scenarios. Ordinary
probability theory can provide no further guidance.

Alternatively, we might be more restrictive. We might think that
both girls giggling is infinitely less likely than either of the two giggling
alone, simply because the coincidence of two zero-probability events
seems infinitely less likely than either zero-probability event alone.
Such thinking would rule out the second of the two scenarios.

This restriction is implied by the concept of consistency which Kreps
and Wilson (1982, henceforth KW) introduced as part of their path-
breaking sequential-equilibrium concept. Recall that a sequential equi-
librium is an assessment (that is, a list of strategies and beliefs) that
is both consistent and sequentially rational. Consistency means that
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the assessment is the limit of a sequence of full-support (i.e. positive-
valued) assessments, each of which has beliefs that are derived from
its strategies by means of the conditional-probability law of ordinary
probability theory (the law always works for full-support assessments).

For example, consider the assessment that is specified by the numbers
in Figure 1(b): the unboxed numbers are the strategies and the boxed
numbers are the beliefs. For instance, the boxed “1” at node 0S¢ states
that the parent would believe that the second girl alone is at fault, as
in our first scenario. This assessment is consistent because it is the
limit of the sequence of assessments that are specifed in Figure 2(a),
and because, at any n, the beliefs in Figure 2(a) are derived from the
strategies by the ordinary conditional-probability law.

Figure 2(a) typifies the manner in which economists have learned to
verify consistency. First, one assigns to each action a a monomial of the
form c(a)n®®, where the coefficient c(a) is a positive real, the exponent
e(a) is a nonpositive integer, and the n will become the sequence index
(e.g., the numerators in Figure 2(a) assign the monomial n=2 to action
G and the monomial 1 = n" to action S). Second, for a fixed n, the
monomials are normalized to create strategies (e.g., the strategy of the
first girl is m,(G) = 12% together with 7,(S) = 75=2). Third, again
for a fixed n, the beliefs are derived from the strategies by the ordinary
conditional-probability law. For example, the probability u,(0Sg) that
the parent places on only the second girl giggling is derived as

m (o) o
(G (9) + T (G)mn(s) + T (S)me(9)  nt4+n2+4+n-3"

And finally, it is verified that the assessment in question is the limit
of this sequence of assessments (e.g., Figure 1(b) is the limit of Fig-
ure 2(a)’s assessments.)

The third of these steps can be tedious because one must simplify
a fraction whose denominator is the sum of several products of frac-
tions. This denominator is particularly ugly when a game’s players do
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ure 1(b)’s assessment: (a) uses the definition of consis-

tency (or alternatively the easy half of Theorem A), while
(b) uses the easier half of Theorem B.
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not move in a predetermined order, for then, the denominator’s many
products often have different numbers of factors and hence different
denominators. And yet further, the ensuing algebra is not only tedious
but also frustrating because it often finishes with second-order nuisance
terms in the numerator.

Theorem B shows that all this tedium and complexity can be avoided.
The trick is to consider a monomial c(a)n®® as an extended sort of
probability number. Essentially, monomials with zero exponents ex-
press positive probabilities; and monomials with negative exponents
express different levels of zero probability (lesser, i.e., more negative,
exponents express lesser zero probabilities).

As in the standard technique, begin by assigning monomials to ac-
tions, but this time, be sure to impose two constraints on that assign-
ment: (1) if the assessment plays an action a with probability 7(a) > 0,
set the monomial c¢(a)n®® equal to 7(a) (the exponent is zero), and (2)
if m(a) = 0, choose a monomial so that its exponent e(a) is negative.
Then, as in the boxed monomials of Figure 2(b), derive a monomial
for each node by taking the product of the monomials of the actions
leading to it. These derived (boxed) monomials determine beliefs by
an extended sort of conditional-probability law: the support of the
belief over each information set is determined by the monomials with
the highest exponent, and then the probability is distributed across
that support in proportion to the monomials’ coefficients. Theorem B
shows that any assessment which can be derived from monomials in
this fashion is consistent.

Further, and much more subtly, Theorem B also shows that the
existence of such monomials is necessary for consistency. This is a
very useful result.

For instance, recall our second scenario in which the parent would
believe that both girls are giggling simultaneously. If one tried to ver-
ify that this assessment was consistent, one would repeatedly assign
monomials and keep coming up empty. This would leave one with the
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suspicion that the assessment was not consistent, but without a means
of proving this suspicion. In particular, the definition of consistency
would be of little use since it would require ruling out all elements in
the infinite-dimensional space of assessment sequences.

The necessity of monomials makes this proof of inconsistency a sim-
ple matter. No matter how you assign monomials to G and S, it must
be that e(G) is less than e(S) because the first girl goes to sleep. Thus
the exponent e(G)+e(g) on the monomial for oGg must be less than the
exponent e(S)+e(g) on the monomial for 0Sg. Hence oGg cannot have
the highest exponent in the parent’s information set {0Gg, 0Gs, 0Sg},
and hence any consistent belief must place zero probability on both
girls giggling simultaneously.

As stated at the outset, Theorem B and its cousin Theorem A are
reformulations of results in Kreps and Wilson (1982) and Perea, Jansen,
and Peters (1997). This reformulation is the first of our contributions,
and is certainly the least impressive from a technical standpoint.

Nonetheless, the reformulation contributes modestly to the agenda
of finding the “smallest” system of nonstandard numbers which is suf-
ficiently rich to express concepts such as sequential equilibrium and
perfect equilibrium (an overview appears in Hammond (1994)). Al-
though we have nothing to say about other equilibrium concepts, our
reformulation does show that the monomials are sufficiently rich for
sequential equilibrium. This fact might have been overlooked simply
because the set of monomials is not an extension of the real number
system. Rather, it is a (subset of) a group with only one operation (we
do not use addition).

1.2. THE PERSPECTIVE OF ADDITIVE REPRESENTATION

Our second and most important contribution is to introduce the idea
that consistency can be viewed from the perspective of additive repre-
sentation. Unfortunately, this new perspective will take a moment to
explain. It is an unfamiliar combination of elementary observations.
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We proceed gradually in four steps, the first two of which are indepen-
dent from one another.

(a) Ezponents as an Additive Representation. We first observe that
the exponents of monomials can be used to represent an ordering over
nodes. In particular, take any assignment e of exponents to actions
and construct the relation <€ by

(1) (Vt,r) t <°riff Ye < Xe,

where >;e denotes the sum of exponents assigned to the actions leading
to t. For example, the exponents e of Figure 2(b)’s monomials result
in Y,ge =e(G) = -2, X,se =e(5) =0, and X,e = @ = 0, and thus
oG <° o and 0S5 =¢ o. Further, that same e results in

Yoage = €(G)+e(g) = —24+—1= -3
Yoase = e(G)+e(g) = =240 = —2
S0 = e(8)telg) = 04—1= 1

and thus oGg <€ 0Gs, 0Gg <¢ 0Sg, and oGs <° 0Sg.

We regard such a representation as being “additive” across informa-
tion sets (i.e., agents). To make this “additivity” more familiar, this
paragraph momentarily digresses to consider a closely related represen-
tation over a standard Cartesian product. First, note that each of the
13 nodes in Figure 1(a) can be identified with one of the 27 tuples in

{G, S, no-Twin-1-action}x

{g, s, no-Twin-2-action} x

{6, e, no-Parent-action} .
Second, extend the assignment e into e* by setting e* equal to zero at
the three new “null” actions. And finally, define <** by applying (1),
with e* rather than e, over the 27 tuples rather than the 13 nodes.
This ordering <¢* is represented additively across information sets in

a manner that is compatible with standard preference theory. If one
identifies the 13 nodes with the corresponding 13 tuples, our ordering
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=<¢is merely a restriction of this additively separable <¢*. (The tuples,
the Cartesian product, and the extensions e* and <“* do not appear
outside this paragraph.)

Now momentarily forget about exponents e and the ordering <°.
(This is an abrupt but necessary break.)

(b) An Assessment’s Infinitely-Less-Likely Relation <. Start afresh
with an assessment and notice that an assessment determines the rela-
tive probability between many (but not all) pairs of nodes. Some (but
not all) of this information is embodied in the relation < that we are
about to define.

An assessment’s strategies determine the probability of any node
relative to its predecessor. That relative probability is just the ordinary
probability that the strategy assigns to the action that leads to the node
from its predecessor. If that probability is zero, the node is infinitely-
less-likely than its predecessor and the pair belongs to <. On the other
hand, if that probability is positive, the pair belongs to ~. For example,
Figure 1(b)’s assessment induces oG < o and 0S & o (those two facts
are represented by the < and = (actually =) at the top of Figure 3).

An assessment’s beliefs determine the probability of any node relative
to any other node that is both in the same information set and in the
belief’s support. If the first node is outside the belief’s support and
the second node is both in the same information set and in the belief’s
support, then the first node is infinitely-less-likely than the second and
the pair belongs to <. On the other hand, if two distinct nodes are
both in the same information set and in the belief’s support, then
the pair belongs to . For example, Figure 1(b)’s assessment induces
0Gg < 0Sg and 0Gs < 0Sg (those two facts are represented by the <’s
near the lower dotted curves in Figure 3).

An assessment’s weak infinitely-less-likely relation =< is essentially
the union of this < and this ~ (a formal definition of < appears in
Streufert (2007) Section 3.1). Note that the < of a typical assessment
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F1GURE 3. The infinitely-less-likely relation < of Fig-
ure 1(b)’s assessment, being represented by the sum >.je
of exponents from Figure 2(b)’s monomials. (The ~’s
appear as =’s due to a software problem.)

is incomplete. For example, Figure 3 shows the =< induced by Fig-
ure 1(b)’s assessment, and this < makes no comparison between oGg
and oGs. (Further, there is no attempt to make an assessment’s =<
transitive or reflexive. Rather, < is made as small as possible.)

(c) Consistency. We now come to the crux of the matter: If an as-
sessment is consistent, there is an e whose <° is an extension of the
assessment’s infinitely-less-likely relation <. In other words, every con-
sistent assessment admits an additive representation of (an extension
of) its infinitely-less-likely relation.

For example, consider Figure 1(b)’s assessment. Because this assess-
ment is consistent, there should be an e such that <¢ is an extension
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of the assessment’s < in the standard sense that

(2a) (Vt,r) t < r implies t < r and
(2b) (Vt,r) t ~ r implies t ~° r .

In fact, such an e is provided by Figure 2(b)’s exponents. For instance,
we have seen that

oG < o0, 0S = o,
oGg < 0Sg, and oGs < 0Sg ,

and also that

oG <° 0, 05 =° o,
oGg <° 0oGs, oGg <° 0Sg, and oGs <° 0S¢

(it happens that <¢ but not =<, can compare oGg and 0Gs).
Measure theory often uses an alternative definition of additive rep-
resentation which would say that e additively represents < if

(3a) (Vt,u) t < u implies e < ¥,e and
(3b) (Vt,u) t ~ u implies Xe = Xye .

Although (1) and (3) are equivalent whenever the binary relation is
complete, the distinction is important here because the infinitely-less-
likely relation of an assessment is typically incomplete.

Conveniently, by the definition (1) of <¢, statements (2) and (3) are
equivalent. Thus, e represents (1) =¢ which extends (2) =< iff e repre-
sents (3) <. Hence our central observation can be reformulated without
reference to <¢ if an assessment is consistent, then its infinitely-less-
likely relation < has an additive representation in the sense of (3).

(d) Intuition. Although this subsection has roamed across preference
theory, game theory, and measurement theory, we have actually arrived
at something that is very close to the way that many of us first learned
to understand consistency.
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By working examples like the one in Subsection 1.1, many of us
learned that the trick to verifying the consistency of a given assessment
was to cleverly assign negative exponents to zero-probability actions in
such a way that they generate the support of the assessment’s beliefs
at zero-probability information sets.

In particular, if one node ¢ is outside the belief’s support and another
node 7 is both in the same information set and in the belief’s support,
then the exponents must have been cleverly chosen so that the sum of
the exponents on the path to ¢ is less than the sum of the exponents
on the path to r. This is part of what (3a) requires: the hypothesis of
the previous sentence implies ¢ < r and the conclusion of the previous
sentence is Y;e < X,e.

Further, if two nodes ¢ and r are both in the same information set
and in the belief’s support, then the exponents must have been cleverly
chosen so that the sum of the exponents on the path to r is equal to
the sum of the exponents on the path to r. This is part of what (3b)
requires: the hypothesis of the previous sentence implies that ¢ ~ r
and the conclusion of the previous sentence is X;e = X,€.

As many of us learned, finding such exponents comes close to verify-
ing the consistency of the assessment (via the definition of consistency
or via the easy half of Theorems A or B). Our central observation is

the converse: every consistent assessment admits such exponents (this
is the crux of the difficult half of Theorems A and B).

1.3. CONTRIBUTIONS FROM THE NEW PERSPECTIVE

Again, our central point is that if an assessment is consistent, then
its infinitely-less-likely relation < can be represented additively across
information sets. At one level, this new observation is a corollary of
Theorem B, which is in turn a reformulation of results in KW and PJP.

Yet a deeper level, we would suggest that this observation is fun-
damental. This new perspective suggests four tasks: (a) to derive an
additive representation in the simplest possible way, (b) to compare
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our derivation with the KW proofs, (c¢) to compare our derivation with
the PJP proofs, and (d) to wonder if additive representation can clarify
the concept of consistency itself.

(a) Our Derivation of Additive Representation. It is surprizingly easy
to show that a consistent assessment’s < has an additive representation.

While economists are more familiar with binary relations having con-
tinuous domains, there is a large literature in mathematical psychology
and measurement theory which studies binary relations having discrete
domains. A classic result there is Scott (1964)’s Theorem, which states
that a relation has an additive representation iff it satisfies a collection
of cancellation laws. Our proof intuitively derives (a slight variation
of) these cancellation laws from the definition of consistency while us-
ing nothing more complicated than limits (Streufert (2007), first full
paragraph of page 18).

Scott’s classic result is easily proven as a corollary of Farkas’ Lemma,
and accordingly, our proofs use nothing more complicated than limits,
Farkas’ Lemma, and linear algebra (none of our variables, other than
the sequence index n, equals or tends to infinity).

(b) The KW Proofs. The new perspective of additive representation
reveals a nontrivial fallacy in the KW proofs.

To be somewhat more specific, Theorem B extensively reformulates
the combination of KW Lemmas Al and A2. The proof of KW Lemma
A1l defines a relation > that can be regarded as an extension of our
<. Then, from our new perspective (and in spite of their very different
terminology), we can now see that they assert, but do not prove, that
their relation has an additive representation. This assertion is critical
to their proof of Lemma Al. Streufert (2007)’s Sections 4.1 and 4.2
explain the fallacy in more detail, and then its Section 4.3 derives KW
Lemmas Al and A2 from our Theorem B.

This repair is important because KW Lemmas Al and A2 are critical
to the two KW theorems which derive the generic finiteness of the set
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of sequential-equilibrium outcomes and the generic equality of that set
to the set of perfect-equilibrium outcomes. These well-known theorems
are textbook material (e.g., Fudenberg and Tirole (1991), Theorems 8.1
and 8.5).

(¢) The PJP Proofs. Our elementary derivation of additive repre-
sentation allows us to provide a simpler alternative to the PJP proofs.

To be more specific, Theorem B is a reformulation of a slight sharp-
ening of PJP Theorem 3.1, and its cousin Theorem A is a reformulation
of a slight sharpening of PJP Corollary 3.3. Our proofs of these results
are (subjectively) more intuitive in the sense that they naturally con-
struct an infinitely-less-likely relation and then follow Scott’s classical
representation theorem to derive its additive representation.

Further, our proofs are more economical in their use of mathematics.
In particular, we rely on Farkas’ Lemma while PJP relies upon the
Separating Hyperplane Theorem (PJP page 244). In hindsight, this
simplification rings true because the Separating Hyperplane Theorem
can be usefully regarded as an analytic generalization of Farkas’ Lemma,
(Ziegler (1995), page 40).

(d) A New Characterization of Consistency. Finally, the new per-
spective of additive representation does provide an insight into the
nature of consistency itself.

Roughly speaking, Theorem C states that an assessment is consistent
iff [1] its infinitely-less-likely relation < can be represented additively
across information sets (the necessity of this is our central observation),
and [2] certain finite relative probabilities can be specified multiplica-
tively across information sets. Part [1] is like the conventional notion
of independence from preference theory, and part [2] is like the conven-
tional notion of independence from ordinary probability theory. Thus
the two parts together seem to be a new sort of stochastic independence
for relative probabilities, that has been defined in the specific context
of an extensive-form game. Or in other words, the two parts together
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provide an extended concept of independence which says what it means
for the agents’ (i.e., information sets’) strategies to be “independent”
both on and off the equilibrium path. In this sense, Theorem C is able
to characterize consistency as a new sort of stochastic independence.

This leads in several directions.

First, recall the twins. In light of Theorem C, consistency requires
that the impossible event of Twin 1 giggling is “independent” of the
impossible event of Twin 2 giggling. And in accord with our earlier
discussion, that “independence” implies that the joint event of both
girls giggling simultaneously is infinitely less likely than either of the
two joint events in which one girl giggles and the other does not. In
brief, consistency rules out “correlation” between agents: it simplifies
things.

Second, Theorem C hints at how this entire paper is a natural out-
growth of Kohlberg and Reny (1997), who focussed on relative proba-
bilities and stochastic independence. In particular, their appealing fo-
cus on relative probability eventually led us to the infinitely-less-likely
relation =< that is central to this paper.

And finally, Theorem C makes one to wonder how to formulate
stochastic independence for relative probabilities, in a general set-
ting apart from extensive-form games. Some initial work appears in
Streufert (2006a), whose approach can again be traced to Kohlberg
and Reny (1997).

2. THEOREMS

Theorem A appears within Streufert (2007, Theorem 2.1) as the
equivalence of consistency with that theorem’s condition (b). As in KW,
p denotes the game’s exogenous chance probabilities (if any), a strategy
m:A—[0, 1] is defined over the set A of actions a, and a belief j1: X —[0, 1]
is defined over the set X of decision nodes x. Further, I, pum denotes
the probability of reaching node z, that is, it is the product of the
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chance probabilities p and the strategies m on the path to node x (the

(A3

u” notation may be of questionable value).

THEOREM A. An assessment (m, i) is consistent if and only if there
exist c:A—(0,1] and e:A—{...-2,-1,0} such that (7, ) is the limit of
the sequence {(my, pin)}n defined by

c(a)n®®

Ea’EAoA_l(a) C(a/)ne(a/)

(Va) mn(a) =

and

T, pum,,

(1) pin() = 5

x'€H (x) prUﬂ-n .

Theorem B appears within Streufert (2007, Theorem 2.1) as the
equivalence of consistency with that theorem’s condition (a). Here ¥ e
is the sum of the exponents e on the path to node z, and II,puc is
the product of chance probabilities p and coefficients ¢ along the same
path (the multiplication of monomials is a convenient way of calculating
these terms).

THEOREM B. An assessment (m, p) is consistent if and only if there
exist c:A—(0,1] and e:A—{...-2,-1,0} such that

(Ya) (a) = ( cla) i e(a) =0 ) and

0 ife(a) <0
1T, puc ,
if x € H(x
(Vo) p(x) = | Zwene@ o poc )
0 if v & Hé(x)

where H¢(x) = argmax{ Xy e|x'€H(x) }.

Both the definition of < and Theorem C are buried within the proof
of Streufert (2007, Theorem 2.1). In particular, the definition of =<
and the derivation of an additive representation for < appear in that
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paper’s Subsection 3.1. Here that derivation of an additive representa-
tion appears prominently, in the following theorem, as the necessity of
Condition [1]. That necessity is our paper’s key observation.

THEOREM C. An assessment (m, ) is consistent if and only if [1] its
weak infinitely-less-likely relation < has an additive representation (in
the sense of (3)) and [2] there exists c:A—(0,1] such that c¢(a) = 7(a)
whenever (a) is positive and I1,pUc/IL,pUc = p(x)/pu(y) whenever
and y are decision nodes such that x =~ y.
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