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Abstract. A “game form” is a subset of the objects in a game:
it includes nodes, branches, actions, and information sets, but ex-
cludes players, chance probabilities, and payoffs. To define such a
game form, it is standard to begin with nodes and branches, and
then to label branches with actions. Instead we begin with actions,
and then define each node as a set of actions. We show that such
action-based game forms are equivalent to node-based game forms
having perfect agent recall. The benefit is that, in our opinion,
action-based game forms are more elegant.

1. Introduction

Consider the standard definition of a game, as in Mas-Colell, Whin-

ston, and Green (1995) for example. This standard definition begins

with a “game tree” consisting of nodes (i.e. vertices) and edges (i.e.

branches). Next it labels the tree’s edges with actions, and groups the

tree’s nonterminal nodes into agents (i.e. information sets). Finally,

it groups the agents into players, assigns probabilities to the chance

player’s actions, and assigns payoffs to strategic players at each termi-

nal node.

If one were to interrupt this standard definition after its first two

steps, one would be left with nodes, edges, actions, and agents. We

refer to such a collection of objects as a “game form,” and note that our

usage of this term is broadly consistent with its appearance elsewhere,

as in Gibbard (1978) for example.

We will refer to the standard game form as a “node-based” game form

because its definition begins with the game tree’s nodes. In contrast,

this paper proposes an “action-based” game form which starts with

actions and then defines nodes as sets of actions.
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Our paper’s theorems demonstrate that the two specifications are

equivalent. In particular, we show that every action-based game form

determines a node-based game form having perfect agent recall, and

conversely, that every node-based game form having perfect agent re-

call determines an action-based game form. This “perfect agent re-

call” means that no path leaves an agent (i.e. information set) and

later returns to the same agent. It is a substantial restriction which

is nonetheless weaker than the perfect recall assumed by much of the

literature, including Kreps and Wilson (1982), for example.

Since beauty must always remain in the eye of the beholder, we can

never hope to prove that action-based game forms are more elegant

than node-based game forms. However, we can mention two aspects of

action-based game forms that we find particularly appealing.

First, many economists are well acquainted with the idea of a topol-

ogy, which is a collection of sets, each of which contains elements from

some underlying domain. Similarly, many are acquainted with the idea

of a σ-algebra, which is again a collection of sets, each drawing its el-

ements from some underlying domain. Here, a collection of nodes is

like a topology or σ-algebra: it is a collection of sets, each drawing its

elements from some underlying domain, which in this case, is the set

of actions.

Second, game theory is filled with the idea of multiplying together the

probabilities of the actions that lead to a node. This operation appears

whenever an agent calculates beliefs, and again whenever an agent

calculates the expected payoffs of available options. And yet, these

routine products-over-actions are difficult to express formally within

the standard node-based formulation because it is difficult to express

formally the set of actions that lead to a node. Within our action-

based formulation, the set of actions leading to a node is identical with

the node itself, and hence, these routine products-over-actions can be

transparently expressed.

2. Defining an action-based game form

Let A be a nonempty finite set of actions a. Then let T be a collec-

tion of nodes t, each of which satisfies t ⊆ A. Or, in other words, let

T ⊆P(A), where P(A) denotes the set of all subsets of A.

We now take an unexpected step. We derive from A and T the fea-

sibility correspondence F that is already implicit these two sets (later
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All nonterminal nodes All actions All noninitial nodes

(repeated as needed) (each listed once)

t∈T∼Z a∈A t∪{a}∈T∼{{}}
{} r1 {r1}
{} d1 {d1}
{r1} r2 {r1, r2}
{r1} d2 {r1, d2}
{r1, r2} d3 {r1, r2, d1}
{r1, r2} r3 {r1, r2, r2}

Table 2.1. Tabular portrayal of the action tree (A, T )
defined by A = {d1, r1, d2, r2, d3, r3} and T = { {}, {d1},
{r1}, {r1, d2}, {r1, r2}, {r1, r2, d3}, {r1, r2, r3} }.

we will impose an assumption of F ). In particular, let F be the corre-

spondence from T into A that satisfies

(∀t) F (t) = { a | a/∈t and t∪{a}∈T } .

Since every action a in F (t) can be combined with the node t to produce

a new node t∪{a}, the set F (t) can be understood as the set of actions

that are feasible from t. Note that

F = { (t, a) | a/∈t and t∪{a}∈T }

since the notations a∈F (t) and (t, a)∈F are equivalent.

This notation departs from the literature in the sense that it is stan-

dard to let the symbol A denote not only the set of actions (as above)

but also the feasibility correspondence (which is denoted here by F ).

We need to make this distinction explicit, and accordingly, F (t) rather

than A(t) will denote the set of actions that are feasible from t.

Please see the examples defined in the captions of Tables 2.1 and

2.2. The rows of the table are in one-to-one correspondence with the

elements (t, a) of F : the first column of the row contains t and the

second column of the row contains a. For example, in Table 2.1, F =

{ ({}, d1), ({}, r1), ({r1}, d2), ({r1}, r2), ({r1, r2}, d3), ({r1, r2}, r3) }.
As a matter of convention, we will continue to denote the empty set

by {} rather than ∅ when we are regarding the empty set as a node.

This convention is already being used in the two examples.
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All nonterminal nodes All actions All noninitial nodes

(repeated as needed) (each listed once)

t∈T∼Z a∈A t∪{a}∈T∼{{}}
{} g1 {g1}
{} s1 {s1}
{g1} g2 {g1, g2}
{g1} s2 {g1, s2}
{s1} g2 {s1, g2}
{s1} s2 {s1, s2}
{g1, g2} p1 {g1, g2, p1}
{g1, g2} p2 {g1, g2, p2}
{g1, s2} p1 {g1, s2, p1}
{g1, s2} p2 {g1, s2, p2}
{s1, g2} p1 {s1, g2, p1}
{s1, g2} p2 {s1, g2, p2}

Table 2.2. Tabular portrayal of the action tree (A, T )
formally defined by A = {g1, s1, g2, s2, p1, p2} and
T = { {}, {g1}, {s1}, {g1, g2}, {g1, s2}, {s1, g2},
{s1, s2}, {g1, g2, p1}, {g1, g2, p2}, {g1, s2, p1}, {g1, s2, p2},
{s1, g2, p1}, {s1, g2, p2} }.

Let an action tree (A, T ) be a nonempty finite set A and a collection

T ⊆P(A) such that A =
⋃
T and such that

(t, a) 7→ t∪{a} is an invertible function

from F onto T∼{{}} .
(1)

The assumption A =
⋃
T holds without loss of generality because

A ⊇
⋃
T by construction and because A∼

⋃
T can be made empty by

eliminating unused actions.

More complicated is assumption (1). In Examples 1 and 2, this as-

sumption corresponds to the fact that each noninitial node appears

exactly once in the table’s third column. In general, (t, a) 7→ t∪{a} is

always a function from the set F into T∼{{}}. However, this unnamed

function’s invertibility is a substantial restriction: its surjectivity re-

quires that every non-initial node has an immediate predecessor, and

its injectivity requires that that immediate predecessor is unique. This
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assumption and the finiteness of A together imply that the N elements

of any nonempty node t can be uniquely numbered as a1, a2 ... aN in

such a way that a1 ∈ F ({}) and

(∀n∈{2, 3, ... N}) an ∈ F ({a1, a2, ...an−1})

(Proposition A.1). This implies (among many other things) that every

action tree must have {} as a node.

In any action tree, the set of nodes T can be partitioned into the set

of terminal nodes,

Z = { z∈T | F (z)=∅ } ,

and the set of nonterminal nodes,

T∼Z = { t∈T | F (t)6=∅ } .

Let an action-based game form (A, T,H) be an action tree (A, T ) to-

gether with a family H ⊆P(T∼Z) of agents (i.e., information sets) h

such that H partitions T∼Z and such that

(∀t1, t2) [(∃h){t1, t2}⊆h] ⇒ F (t1)=F (t2) and(2a)

(∀t1, t2) [(∃h){t1, t2}⊆h] ⇐ F (t1)∩F (t2) 6=∅ .(2b)

The first of the two implications states that the same actions are fea-

sible from any two nodes in an agent. The second implication states

that if two nodes share an action then they must share an agent. Both

assumptions are standard.

3. Equivalence with a node-based game form

This section shows the equivalence between action-based game forms

and node-based game forms having perfect agent recall. Dots distin-

guish node-based symbols from analogous symbols in the action-based

formulation.

As is standard in the literature, let a game tree (Ṫ , o, E) be a set Ṫ

of nodes ṫ, an initial node o∈ Ṫ , and a set E⊆ Ṫ 2 of edges (ṫ1, ṫ2) such

that (∀(ṫ1, ṫ2)∈E) ṫ1 6=ṫ2 and such that

(∀ṫ)(∃!(ṫ0, ṫ1, ...ṫN))

ṫ0=o, ṫN=ṫ, and (∀n∈{1, ... N})(ṫn−1, ṫn)∈E.
(3)

This assumption states that every node ṫ has a unique sequence of

edges leading back to the initial node o. In the singular case ṫ=o, the

sequence (ṫ0, ṫ1, ...ṫN) is (ṫ0)=(ṫN)=(o).
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The above calls each (ṫ1, ṫ2)∈E an “edge,” as in graph theory. Alter-

natively, we might interpret (ṫ1, ṫ2)∈E to mean that ṫ1 “immediately

preceeds” ṫ2. From this alternative perspective, it is natural to re-

gard E as a binary relation and to observe that its transitive closure is

the precedence relation ≺ appearing in Kreps and Wilson (1982) and

elsewhere.

Let a labelled game tree (Ṫ , o, E,A, α) be a game tree (Ṫ , o, E) to-

gether with a set A of actions a and a surjective function α:E→A such

that

(∀ṫ) the restriction of α to {(ṫ1, ṫ2)∈E|ṫ1=ṫ} is injective.(4)

Since {(ṫ1, ṫ2)∈E|ṫ1=ṫ} is the set of edges leaving ṫ, this assumption

requires that actions unambiguously label the edges leaving any node

ṫ.

Let

Ḟ (ṫ) = α( {(ṫ1, ṫ2)∈E|ṫ1=ṫ} )

be the set of actions which label the edges leaving ṫ. As with F in the

previous section, the symbol Ḟ was chosen to abbreviate “feasibility”

because Ḟ (ṫ) specifies the set of actions that are feasible from ṫ. In

the literature, it is standard to let the symbol A denote not only the

set of actions (as above) but also the feasibility correspondence (which

is denoted here by Ḟ ). We need to make this distinction explicit, and

accordingly, Ḟ (ṫ) rather than A(ṫ) denotes the set of actions available

from ṫ.

Next partition set of nodes Ṫ into the set of terminal nodes

Ż = { ż∈Ṫ | Ḟ (ż)=∅ } ,

and the set of nonterminal nodes

Ṫ∼Ż = { ṫ∈Ṫ | Ḟ (ṫ) 6=∅ } .

Finally, let a node-based game form (Ṫ , o, E,A, α, Ḣ) be a labelled game

tree (Ṫ , o, E,A, α) together with a collection Ḣ ⊆P(Ṫ∼Ż) of agents

(i.e. information sets) ḣ such that Ḣ is a partition of Ṫ∼Ż and such

that

(∀ṫ1, ṫ2) [(∃ḣ){ṫ1, ṫ2}⊆ḣ] ⇒ Ḟ (ṫ1)=Ḟ (ṫ2) and

(∀ṫ1, ṫ2) [(∃ḣ){ṫ1, ṫ2}⊆ḣ] ⇐ Ḟ (ṫ1)∩Ḟ (ṫ2)6=∅ .
(5)
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As with (2a), the first of the two implications states that the same

actions are feasible from any two nodes in an agent. And as with (2b),

the second implication states that if two nodes share an action then

they must share an agent. Both assumptions are standard.

3.1. Sufficiency of an action-based game form.

First we will show that every action-based game form determines a

node-based game form. In addition, we will show that that node-based

game form (Ṫ , o, E,A, α, Ḣ) must have perfect agent recall in the sense

that

(/∃h, (ṫ0, ṫ1, ...ṫN)) {ṫ0, ṫN}⊆ḣ and (∀n∈{1, ... N})(ṫn−1, ṫn)∈E .

Perfect recall precludes the existence of a path which leaves an agent

and later returns to the same agent.

Theorem 3.1. Suppose (A, T,H) is an action-based game form.

Then (T, o, E,A, α,H) is a node-based game form, where o = {},

E = { (t1, t2) | (∃a/∈t1) t1∪{a}=t2 } , and

(∀(t1, t2)∈E) α(t1, t2) is the a/∈t1 such that t1∪{a}=t2 .

Further, (T, o, E,A, α,H) has perfect agent recall. And finally, F=Ḟ

and Z=Ż, where F and Z are derived from (A, T ), and Ḟ and Ż are

derived from (T, o, E,A, α). (Proof in Appendix B.)

3.2. Necessity of an action-based game form.

Next we show the converse, namely, that every node-based game form

having perfect agent recall determines an action-based game form. To

express this result, define S:Ṫ→P(A) by

(∀ṫ) S(ṫ) = α( {(ṫn−1, ṫn)|n≥1} ) ,

where (ṫ0, ṫ1, ...ṫN) specifies the unique sequence of edges leading from

o to ṫ. Thus S maps a node ṫ to the set S(ṫ) of actions leading to it.

Then let

T = S(Ṫ ) .

T is the range of the function S, that is, the collection of action sets

that are each the image of some node in Ṫ . Finally, let

H = { S(ḣ) | ḣ∈Ḣ } .



8 STREUFERT

Each agent h∈H is, for some ḣ∈Ḣ, the collection of action sets that

are each the image of some node in ḣ. Thus each h is a subcollection

of T just as each ḣ is a subset of Ṫ .

Theorem 3.2. Let (Ṫ , o, E,A, α, Ḣ) be a node-based game form with

perfect agent recall, and define S:Ṫ→T and H⊆P(T ) as above. Then

S is invertible, (A, T,H) is an action-based game form, and

(∀ṫ, ḣ) ṫ∈ḣ ⇔ S(ṫ)∈S(ḣ) .(6)

Further,

(∀ṫ, a) (ṫ, a)∈Ḟ ⇔ (S(ṫ), a)∈F ,

and (∀ṫ) ṫ∈Ż ⇔ S(ṫ)∈Z .
(7)

where Ḟ and Ż are derived from (T, o, E,A, α) and F and Z are derived

from (A, T ). (Proof in Appendix B.)

4. Defining an action-based game

A game is a node- or action-based game form together with players

which group its agents, probabilities for the chance player, and payoffs

for each strategic player at each of the terminal nodes. This section

merely specifies these three additional components in our paper’s no-

tation.

Since all the nodes of an agent h have the same set of feasible ac-

tions by assumption (2a), it is natural to call this set the agent’s

set of feasible actions, and to denote it by F (h). Formally, as with

any correspondence, the value F (h) of F at the set h is defined to

be {a|(∃t∈h)a∈F (t)}. This construction is particularly natural here

because assumption (2a) implies that (∀t∈h) F (t) = F (h).

Further, (F (h))h is an indexed partition of A, that is, {F (h)|h}
partitions A and h 7→ F (h) is an invertible function. Proposition A.2

derives this fact from assumptions A=
⋃
T , (1), and (2).

A game will specify a partition P of the set of agents h into players

p. Because the set of agents h partitions the set of nonterminal nodes,

(
⋃

h∈ph)p is an indexed (and likely coarser) partition of the set of non-

terminal nodes. Further, because (F (h))h is an indexed partition of the

set of actions by the previous paragraph, (
⋃

h∈pF (h))p is an indexed

(and likely coarser) partition of the set of actions. Thus we may un-

ambiguously speak of “a player’s agents,” “a player’s nodes,” and “a
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player’s actions:” p itself is the set of player p’s agents,
⋃

h∈ph is the

set of player p’s nodes, and
⋃

h∈pF (h) is the set of player p’s actions.

A game may or may not have a distinguished player p̃ known as

the chance player. As with any other player, the chance player p̃ has

its own set p̃ of agents, its own set
⋃

h∈p̃h of nodes, and its own set⋃
h∈p̃F (h) of actions. If P does not contain p̃ (that is, if there is no

chance agent), then both
⋃

h∈p̃h and
⋃

h∈p̃F (h) are empty. A strategic

player is an element of P∼{p̃}, that is, a non-chance player.

A game (A, T,H, P, ρ, u) is an action-based game form (A, T,H) to-

gether with (1) a collection P ⊆P(H) of players p which partition H

and which may or may not contain the distinguished player p̃, (2) a

function ρ :
⋃

h∈p̃F (h)→ (0, 1] which assigns a positive probability to

each of the chance agent p̃’s actions, and (3) a function u : (P∼{p̃})×Z
→R which specifies a payoff up(z) to each strategic player p at each ter-

minal node z. The chance probabilities must satisfy (∀h∈p̃) Σa∈F (h)ρ(a)

= 1 so that they specify a probability distribution for each chance agent

h∈p̃. If P does not contain p̃, that is, if there is no chance player, then

the function ρ is empty because ∪h∈p̃F (h) is empty.

Although beauty does remain in the eye of the beholder, some may

find it pleasing that P ⊆P(H), H ⊆P(T ), and T ⊆P(A). We have

built a tower of boxes containing boxes: players are sets of agents,

agents are sets of nodes, and nodes are sets of actions.

Appendix A. Properties of action-based game forms

The text refers to two results which follow from the definition of an

action-based game form. Here they are.

Proposition A.1. Let (A, T ) be an action tree, take any nonempty

t∈T , let N be the number of elements (i.e., actions) in t, and define

tN=t. Then there exist a unique (t0, ... tN−1) such that

(∀n∈{1, ... N}) (∃an /∈tn−1) tn−1∪{an}=tn .

Further, the accompanying (a1, ... aN) is unique, t0=∅, and

(∀n∈{1, ... N}) tn = {a1, a2, ... an} .

Proof. The invertibility of the function (t, a) 7→ t∪{a} from F onto

T∼{∅} implies the following: For any nonempty t, there exists a unique
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t− for which

(∃a/∈t−) t−∪{a}=t ,
and further, the accompanying a is unique.

We now prove by backward induction on m that for all m ∈ {1, ... N}
there exists a unique (tm−1, ... tN−1) such that

(∀n∈{m, ... N}) (∃an /∈tn−1) tn−1∪{an}=tn ,
and further, the accompanying (am, ... aN) is unique, tm−1 has m−1

elements, and

(∀n∈{m, ... N}) tm−1∪{am, ... an}=tn .
At the initial step of the induction (m=N), apply the preceding para-

graph to tN . At each successive backward step (m∈{1, ... N−1}), apply

the preceding paragraph to tm.

The conclusion of the last paragraph at m=1 reveals that there is a

unique (t0, ... tN−1) such that

(∀n∈{1, ... N}) (∃an /∈tn−1) tn−1∪{an}=tn ,
and further, the accompanying (a1, ... aN) is unique, t0 has 0 elements,

and

(∀n∈{1, ... N}) t0∪{a1, ... an}=tn
t0 must be ∅ because it has zero elements. 2

Proposition A.2. {F (h)}h∈H is an indexed partition of A. In other

words, {F (h)|h} partitions A and h 7→ F (h) is invertible.

Proof. We begin with three observations.

(1) Each F (h) is nonempty. This holds because each h is a subset of

nonterminal nodes.

(2) If h1 6=h2 then F (h1)∩F (h2) = ∅. To see this, take any h1 6=h2,

any t1∈h1, and any t2∈h2. SinceH is a partition, we have (/∃h){t1, t2}⊆h,

and hence F (t1)∩F (t2) = ∅ by the contrapositive of (2b). This implies

F (h1)∩F (h2)=∅ because F (t1)=F (h1) by t1∈h1 and (2a), and because

F (t2)=F (h2) by t2∈h2 and (2a).

(3)
⋃
{F (h)|h} = A.

⋃
{F (h)|h}⊆A follows from the definition of

F . To see the converse, take any a. By the assumption A=
⋃
T , there

exists some t such that a∈t. By Proposition A.1, there exists some tn−1

and tn such that tn−1∪{a}=tn. Hence a∈F (tn−1) by the definition of

F . Finally, since H partitions the collection of nonterminal nodes and
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tn−1 is nonterminal, there is some h containing tn−1. So a∈F (h) by the

last two sentences.

{F (h)|h} partitions A by observations (1)-(3). If h 7→ F (h) were

not invertible, there would be h1 6=h2 such that F (h1)=F (h2). Since

both F (h1) and F (h2) are both nonempty by observation (1), we would

then have h1 6=h2 such that F (h1)∩F (h2)6=∅. This would contradiction

observation (2). 2

Appendix B. Proofs of theorems

B.1. Sufficiency of an action-based game form.

Proof of Theorem 3.1. Let (A, T,H) be an action-based game form

and define o, E, and α as in the proposition’s statement.

(T, o, E) is a game tree. The definition of E yields that (∀(t1, t2)∈E)

t1 6=t2. To prove (3), take any t. By Lemma A.1 there exist unique

(t0, ... tN) such that t0 = ∅, tN = t, and

(∀n∈{1, ... N}) (∃an /∈tn−1) tn−1∪{an}=tn .

By the definition of o we have t0 = o, and by the definition of E we

have (∀n∈{1, ... N} (tn−1, tn)∈E.

(T,∅, E,A, α) is a labelled game tree. To see that α:E→A is surjec-

tive, take any a. Since {F (h)|h} partitions A by Lemma A.2, there is

some h such that a∈F (h). Take any t∈h. Since F (t)=F (h) by (2a),

a∈F (t). Hence we have a/∈t and t∪{a}∈T by the definition of F , and

therefore a=α(t, t∪{a}) by the definition of α.

To prove (4), take any t and any distinct (t, t1) and (t, t2) in E.

By the definition of E, there exist distinct a1 and a2 such that a1 /∈t
and t∪{a1}=t1 and such that a2 /∈t and t∪{a2}=t2. Thus α(t, t1)=a1 is

distinct from α(t, t2)=a2 by the definition of α.

(T,∅, E,A, α,H) is a node-based game form. Derive Ḟ and Ż from

the labelled game tree (T,∅, E,A, α). By the definitions of Ḟ , E, α,

and F ,

Ḟ (t) = α( {(t, t+)∈E} )

= { α(t, t+) | (t, t+)∈E }
= { α(t, t+) | (∃a/∈t) t∪{a}=t+ }
= { a | (∃t+) a=α(t, t+) and (∃a/∈t) t∪{a}=t+ }
= { a | (∃t+) a/∈t and t∪{a}=t+ }
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= { a/∈t | t∪{a}∈T }
= F (t) .

Hence Ż = {t|Ḟ (t)=∅} = {t|F (t)=∅} = Z. Because Ḟ=F and Ż=Z,

(5) is equivalent to (2).

Perfect Recall. If perfect agent recall were violated, there would be

an h and a (t0, t1, ...tN) such that

{t0, tN}⊆h and (∀n∈{1, ... N})(tn−1, tn)∈E .

Let a0 = α(t0, t1). By (∀n∈{1, ... N}) (tn−1, tn)∈E and the defini-

tion of E, we have a0 ∈ tN , and thus by the definition of F , we have

a0 /∈ F (tN). And yet, by a0 ∈ F (t0), {t0, tN}⊆h, and (2b), we have

a0 ∈ F (tN). 2

B.2. Necessity of an action-based game form.

Proof of Theorem 3.2. Invertibility. S is surjective because T was

defined to be its range. If S were not injective, there would be ṫ1 and

ṫ2 such that ṫ1 6=ṫ2 and yet S(ṫ1)=S(ṫ2). Let ṫ0 be the node at which

the path from o to ṫ1 diverges from the path to ṫ2. Then let a1 label

the edge leaving ṫ0 toward ṫ1 and let a2 label the edge leaving ṫ0 toward

ṫ2.

Note that a2 6=a1 because the two edges leaving ṫ0 are distinct, and

because α is assumed to be injective on the edges leaving any node.

Also note that a2∈S(ṫ1) because S(ṫ1)=S(ṫ2) by assumption, and be-

cause a2∈S(ṫ2) because it labels an edge leading to ṫ2.

Because a2 6=a1 and a2∈S{ṫ1}, there must be some ṫ00 6=ṫ0 on the path

to ṫ1 such that a2∈Ḟ (ṫ00). By its definition, a2 also belongs to Ḟ (ṫ0),

and thus by (5b), ṫ0 and ṫ00 belong to the same agent. Since the path

from o to ṫ1 passes through both ṫ0 and ṫ00, it must pass through their

common agent twice, in violation of perfect agent recall.

An Intermediate Step. The next four paragraph show

(∀ṫ, ṫ+, a) [ (ṫ, ṫ+)∈E and a=α(ṫ, ṫ+) ]

⇔ [ a/∈S(ṫ) and S(ṫ)∪{a}=S(ṫ+) ] .
(8)

The easier half is ⇒. Assume (ṫ, ṫ+)∈E and a=α(ṫ, ṫ+). Let

(ṫ0, ṫ1, ṫ2, ... ṫN) = (o, ṫ1, ṫ2, ... ṫ)
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denote the unique path from o to ṫ. Since (ṫ, ṫ+)∈E,

(ṫ0, ṫ1, ṫ2, ... ṫN , ṫN+1) = (o, ṫ1, ṫ2, ... ṫ, ṫ+)

specifies the unique path from o to ṫ+. Thus

S(ṫ) = { α(o, ṫ1), α(ṫ1, ṫ2), ... α(ṫN−1, ṫ) } and

S(ṫ+) = S(ṫ) ∪ {α(ṫ, ṫ+)} .

Hence a=α(ṫ, ṫ+) yields S(ṫ+) = S(ṫ)∪{a}, and further, a/∈S(ṫ) because

S(ṫ)6=S(ṫ+), which follows from the invertibility of S and the fact that

ṫ6=ṫ+ because (ṫ, ṫ+)∈E.

The trickier half is⇐. To begin, this paragraph shows by contradic-

tion that S(ṫ1) ⊆ S(ṫ2) implies that ṫ1 is on the path to ṫ2. Accordingly,

suppose that S(ṫ1) ⊆ S(ṫ2) and yet ṫ1 is not on the path to ṫ2. Then

there would be some ṫ0 at which the path to ṫ1 diverges from the path

to ṫ2. Let a1 label the edge leaving ṫ0 toward ṫ1. Since a1 is also in

S(ṫ2) because S(ṫ1)⊆S(ṫ2), there must be a ṫ00, other than ṫ0, and yet

on the path to ṫ2, from which a1 can be chosen. Since a1 can be chosen

from both ṫ0 and ṫ00, (5b) implies that these two nodes are in the same

agent. Then since both are on the path to ṫ2, the path to ṫ2 must enter

their agent twice, in contradiction to perfect agent recall.

Now assume that a/∈S(ṫ) and S(ṫ)∪{a}=S(ṫ+). Since S(ṫ)⊆S(ṫ+),

the previous paragraph implies that ṫ is on the path to ṫ+. Now let ṫ1
be the first node on the path from ṫ to ṫ+. For future reference, note

(ṫ, ṫ1) ∈ E .(9)

Further, note

α(ṫ, ṫ1) = a(10)

because α(ṫ, ṫ1) cannot be inside S(ṫ) without making S(ṫ1)=S(ṫ) in

violation of the invertibility of S, and it cannot be outside S(ṫ)∪{a}
without violating either S(ṫ)∪{a}=S(ṫ+) or the fact that ṫ1 is on the

path to ṫ+.

This paragraph proves by contradiction that there cannot be a sec-

ond node on the path from ṫ to ṫ+. Accordingly, suppose ṫ2 were such a

second node. Unfortunately, α(ṫ1, ṫ2) cannot be inside S(ṫ)∪{a} with-

out making S(ṫ1) = S(ṫ2) in violation of the invertibility of S, and, it

cannot be outside S(ṫ)∪{a} without either violating S(ṫ)∪{a}=S(ṫ+)
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or the fact that ṫ2 is on the path to ṫ+. Thus (ṫ1, ṫ2) cannot be labelled,

which contradicts the definition of a labelled traditional game tree.

Since there cannot be a second node on the path from ṫ to ṫ+, it

must be that ṫ+ = ṫ1. Hence (9) and (10) provide the required results.

(A, T ) is an action tree. A ⊇
⋃
T by construction, and A∼

⋃
T = ∅

by the surjectivity of α.

More subtly, we must show that (t, a) 7→ t∪{a} is an invertible

function from F onto T∼{∅}. Since F is defined to be

{ (t, a) | a/∈t and t∪{a}∈T } ,

this is equivalent to showing

(∀t+∈T∼{∅}) (∃!(t, a)) a/∈t and t∪{a}=t+ .

Because S:Ṫ→T is invertible and S(o)=∅, this is equivalent to showing

(∀ṫ+∈Ṫ∼{o}) (∃!(ṫ, a)) a/∈S(ṫ) and S(ṫ)∪{a}=S(ṫ+) .

Accordingly, take any ṫ+ 6=o. By the definition of a traditional game

tree, there is a unique path leading from ṫ+ back to o, and thus since

ṫ+ 6=o, there is a unique ṫ such that (ṫ, ṫ+)∈E. Hence, there is a unique

(ṫ, a) such that

(ṫ, ṫ+)∈E and a = α(ṫ, ṫ+) .

Therefore by (8) and the invertibility of S, there is a unique (ṫ, a) such

that a/∈S(ṫ) and S(ṫ)∪{a}=S(ṫ+).

Derivation of (6) and (7). By the definition of H in the theorem

statement and by the invertibility of S,

(∀ṫ, ḣ) ṫ∈ḣ ⇔ S(ṫ)∈S(ḣ) .

By the definition of Ḟ , by (8), and by the definition of T as S(Ṫ ),

(∀ṫ, a) (ṫ, a) ∈ Ḟ
⇔ (∃ṫ+) (ṫ, ṫ+)∈E and a=α(ṫ, ṫ+)

⇔ (∃ṫ+) a/∈S(ṫ) and S(ṫ)∪{a}=S(ṫ+)

⇔ a/∈S(ṫ) and S(ṫ)∪{a}∈T
⇔ (S(ṫ), a) ∈ F .
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Finally, the definition of Ż, the previous equivalence, and the definition

of Z imply

(∀ṫ) ṫ∈Ż ⇔ Ḟ (ṫ)=∅ ⇔ F (S(ṫ))=∅ ⇔ S(ṫ)∈Z .

(A, T,H) is a game form. We have seen that (A, T ) is an action tree.

(6), (7), and the invertibility of S imply that (5) is equivalent to (2).

2

References

Gibbard, A. (1978): “Straightforwardness of Game Forms with Lotteries as Out-
comes,” Econometrica, 46, 595–614.

Kreps, D. M., and R. Wilson (1982): “Sequential Equilibria,” Econometrica,
50, 863–894.

Mas-Colell, A., M. D. Whinston, and J. R. Green (1995): Microeconomic
Theory. Oxford University Press.


