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Abstract.
Rubinstein identified each node in a game with the sequence of

actions leading to it. We go further and identify each node with
the set of actions leading to it. In particular, we define a natural
isomorphism and show that it is a one-to-one correspondence be-
tween (a) the collection of sequence-tree games that do not have
an absent-minded agent and (b) the collection of set-tree games.
This equivalence is nontrivial because individual sequences have
more structure than individual sets.

This equivalence then allows us to show that the plausibility
relation of a consistent assessment can be represented by a density
function. In particular, we define for any assessment its implied
“plausibility” (i.e., infinitely-more-likely) relation over the game’s
nodes (now viewed as sets of actions). We then show that if the
assessment is consistent, its plausibility relation can be represented
by a plausibility density function which assigns a plausibility num-
ber to each action. This construction is unexpectedly intuitive
because of close analogies with the foundations of ordinary proba-
bility theory. A corollary shows that consistency embodies a sort
of stochastic independence that mimics additive separability. An-
other corollary repairs a critical gap in a Kreps-Wilson proof.
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1. Introduction

1.1. Set-Tree Games

In order to define an extensive-form game, one typically begins with

a tree consisting of nodes and edges. One then uses that tree as a skele-

ton on which to define actions, information sets (i.e. agents), players,

chance probabilities, and payoffs. By assumption, the tree must have a

distinguished node, called the initial node, which is connected to every

other node by exactly one path. This node-and-edge formulation can

be traced to Kuhn (1953, Section 1) and it appears today in Mas-Colell,

Whinston, and Green (1995, page 227).

Node-and-edge notation is complicated, even in the clean presenta-

tion of Mas-Colell, Whinston, and Green (1995). To simplify notation,

Rubinstein begins with actions rather than nodes-and-edges, and then

constructs each node as the sequence of actions leading to it. Accord-

ingly, his tree is a collection of action sequences (i.e. histories) of the

form (a1, a2, ... aN), and his initial node is the empty sequence {}. He

assumes that if (a1, a2, ... aN) is in the tree, then (a1, a2, ... aN−1) must

also be in the tree. Hence he implicitly guarantees that the initial node

is connected to every other node by exactly one path. This sequence-

tree formulation appears in Osborne and Rubinstein (1994, page 200).

In this paper, we go one step further and identify each node with the

set of actions leading to it. In particular, we define a “set tree” to be

a collection of sets, which has the property that every nonempty set in

the tree has a unique element whose removal results in another set of

the tree. This unique element is defined to be the set’s “last action.”

It is incumbent upon us to demonstrate the sense in which such a set

tree is equivalent to a sequence tree. Toward this end, we define an iso-

morphism between sequence trees and set trees: we say that a sequence

tree is “isomorphic” to a set tree if there is an invertible map from se-

quences to sets, such that removing the last action of any sequence

corresponds to removing the last action of the corresponding set. In

this manner the isomorphism formalizes the resemblance between the

concatenation of sequences and the union of sets.

Finally we define “agent recall” to mean the absence of an absent-

minded agent. This condition is weaker than perfect recall. Theorem A

then shows that sequence-tree games with agent recall are equivalent

to set-tree games. To be precise, every sequence-tree game with agent
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recall is isomorphic to exactly one set-tree game. Conversely, every set-

tree game is isomorphic to exactly one sequence-tree game, and that

sequence-tree game has agent recall.

Theorem A may seem implausible because a sequence specifies or-

der and thus has more structure than a set. Some intuition can be

gained from three observations. First, we assume that actions are

agent-specific, without loss of generality and like many authors. As

a result, the agent taking an action can be determined without know-

ing the order in which the actions are played. Second, we find that

agent recall rules out sequences which repeat actions. Such sequences

could not be faithfully represented as sets. Third, we use an example

to suggest that if two actions can be played in two different orders,

then there must be a previous action that determines the order.

Although the above remarks might assist with intuition, the theo-

rem’s proof remains nontrivial. First consider going from a sequence

tree to a set tree. This direction is relatively easy in the sense that each

sequence’s set is uniquely determined as the set of actions appearing in

the sequence. However, nontrivial issues remain: one must show that

this map from sequences to sets is invertible, that each set has a unique

last action, and that a set’s last action appears as the last element of

the sequence that generated the set.

Second, consider constructing a sequence tree from a set tree. This

direction is relatively difficult in the sense that both uniqueness and ex-

istence become nontrivial. Uniqueness seems unlikely because a given

set can be ordered as a sequence in many different ways, and, to com-

pound matters further, the theorem admits sequences that repeat ac-

tions when it admits arbitrary sequence trees that need not satisfy

agent recall. Existence is also nontrivial because sequences must be

assigned to sets in such a way that the concatenation of sequences is

isomorphic to the union of sets, and hence, assigning a sequence to any

one set places restrictions on the assignments at all the set’s subsets

and supersets. Essentially, the uniqueness result shows that a set tree

has a surprising amount of structure, and the existence result shows

that that structure is never strong enough to prevent the construction

of a sequence tree.

To our knowledge, this is the first paper to simplify games by means

of set trees. We believe that this simplification will pay substantial
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dividends. One such dividend appears in the second half of this paper,

to which we now turn.

1.2. Representing Plausibility by a Density Function

In Kreps and Wilson (1982), the definition of consistency incor-

porates some sort of stochastic independence among the agents’ be-

havioural strategies. To see this in detail, recall that an “agent” is

a synonym for an “information set”, and that an “assessment” lists

each agent’s belief over its constituent nodes and also its behavioural

strategy over its feasible actions. For any assessment, the probability

of reaching any node can be calculated by first finding the set of ac-

tions leading to it, and then multiplying the probabilities that were

assigned to these actions by the assessment’s behavioural strategies.

This calculation presumes that the behavioural strategies are stochas-

tically independent.

Further, if every behavioural strategy in an assessment has full sup-

port, every node is reached with positive probability. Then, if every

belief in such an assessment is the conditional probability distribu-

tion derived from these positive probabilities, the assessment is said

to be “full-support Bayesian”. A “consistent” assessment is the limit

of a sequence of full-support Bayesian assessments. Since every full-

support Bayesian assessment presumes that the behavioural strategies

are stochastically independent, every consistent assessment must in-

herit something similar.

One naturally hopes to directly understand this limiting sort of sto-

chastic independence without reference to the convergent sequence of

full-support Bayesian assessments. This is subtle. If a consistent as-

sessment specifies pure behavioural strategies, it is difficult to directly

understand how these degenerate distributions are stochastically inde-

pendent without reference to a convergent sequence of full-support dis-

tributions. Nonetheless much progress has been made. Blume, Bran-

denburger, and Dekel (1991a, Section 7), Hammond (1994, Section 6.5),

and Halpern (2010, Section 6) all formulate independence in terms of

non-Archimedean probability numbers. Battigalli (1996, Section 2)

formulates independence in terms of conditional probability systems.

Kohlberg and Reny (1997, Section 2) formulate independence in terms

of relative probability systems.
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We introduce a complementary perspective that is simpler. In brief,

Theorem B shows that the plausibility relation of a consistent assess-

ment can be represented by a density function. To our knowledge,

the literature has not analyzed plausibility (i.e., infinite relative like-

lihood) from the perspective of representation theory. This new ap-

proach works because Theorem A allows us to consider nodes as sets.

Theorem B’s formulation and proof are simple in that they use nothing

more than linear algebra, and they are intuitive because of surprisingly

tight analogies with the foundations of ordinary probability theory.

This and the next three paragraphs provide some more details. For

expository ease, we use “more plausible” as a synonym for “infinitely

more likely”. Formally, we define the “plausibility relation” < of an

arbitrary assessment. This relation compares nodes in only two cir-

cumstances. (a) Suppose two nodes belong to the same agent (i.e.,

information set). Then the two are equally plausible if both are in

the support of the agent’s belief, and the first is more plausible than

the second if the first is in the support while the second is not. (b)

Suppose one node immediately precedes another. Then the two nodes

are equally plausible if the intervening action is played with positive

probability, and the first node is more plausible than the second if the

intervening action is played with zero probability. In this fashion, <
is derived from the beliefs and behavioural strategies of a given assess-

ment.

By Theorem A, a node can be regarded as a set of actions. Anal-

ogously in probability theory, an event is a set of states. Further, a

plausibility relation < compares nodes. Analogously, Kraft, Pratt, and

Seidenberg (1959) take as primitive a probability relation that com-

pares events. Their probability relation embodies the notion that one

event is regarded as more probable than another. They then show that

a well-behaved probability relation can be represented by a density

function. In detail, a density function assigns probability numbers to

states. Then the probability of an event can be calculated as the sum of

the probability numbers assigned to its states. Finally, the probabilities

of all the events represent the original probability relation.

Analogously, Theorem B shows that a consistent assessment’s plau-

sibility relation can be represented by a density function. In detail,

a density function π assigns “plausibility” numbers to actions. Then
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the “plausibility” of a node can be calculated as the sum of the plau-

sibility numbers assigned to its actions. Finally, the plausibilities of

all the nodes represent the assessment’s plausibility relation. Both this

construction and the analogous one for probability are straightforward.

Neither requires more than linear algebra.

Although these constructions are very similar, plausibility numbers

are nonpositive rather than nonnegative. This happens because plau-

sibility diminishes as actions accumulate. More precisely, represen-

tation and part (b) in the definition of < together require that each

positive-probability action be given zero plausibility and that each zero-

probability action be given negative plausibility. Accordingly, a node’s

plausibility (that is, the sum of the plausibility numbers of a node’s

actions) is a measure of how far the node lies below the equilibrium

path. It is slightly more sophisticated than (the negative of) the num-

ber of the node’s zero-probability actions because each zero-probability

action can be assigned its own negative plausibility number. However,

these plausibility numbers can vary only with actions and nothing else.

In particular, they cannot vary with the different contexts in which a

zero-probability action might be played. This invariance is a sort of

stochastic independence among the zero-probability actions played by

different agents.

We conclude by drawing two corollaries from Theorem B. Corollary

1 further develops our understanding of stochastic independence. Or-

dinarily, stochastic independence states that a joint probability density

on a Cartesian product is the product of the marginal densities on the

coordinate sets. The collection of nodes is not a Cartesian product.

Yet, it can be embedded within a Cartesian product whose coordinates

are indexed by the agents. More precisely, we map each node to the

vector that lists for each agent either (a) an action of the agent that

belongs to the node or (b) a “null” action which conveys the fact that

the agent did not move prior to the node. Corollary 1 then shows

that the embedded plausibility relation of a consistent assessment has

a representation which is additive across agents. Thus, a consistent

assessment’s stochastic independence across agents is very similar to

a preference relation’s additive separability across consumption goods.

The latter concept is due to Debreu (1960) and Gorman (1968).
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Finally, while our representation approach is new, numbers resem-

bling plausibility numbers appear in the algebraic characterizations of

consistency developed by Kreps and Wilson (1982) and Perea y Mon-

suwé, Jansen, and Peters (1997). These insightful characterizations

are useful for calculations and as a basis for further results. Our intro-

duction of representation theory clarifies these characterizations and

substantially simplifies their proofs. Most notably, Corollary 3 fills a

critical gap in the proof of Kreps and Wilson (1982, Lemma A1).

1.3. Organization

Section 2 concerns set-tree games. Its Theorem A is proved in Ap-

pendix A.

Section 3 concerns the representation of plausibility by a density

function. Its Theorem B, as well as Theorem B’s two corollaries, are

proved in Appendix B.

Section 4 concludes.

2. Set-Tree Games

This section is the first half of the paper. Here we show how each of

a game’s nodes can be formally identified with the set of actions taken

to reach it.

2.1. Reviewing Sequence-Tree Games

We begin by reviewing Osborne and Rubinstein (1994, page 200)’s

formulation of an extensive-form game. For the purposes of this paper,

we call their formulation a “sequence-tree game” because it incorpo-

rates the observation that each of a game’s nodes can be identified with

the sequence of actions leading to it. Osborne (2008, Section 3) credits

Rubinstein with this observation. We take the liberty of restating their

formulation using terminology upon which we can easily build.

Let A be a set of actions. Then let t̄ = 〈t̄n〉N(t̄)
n=1 denote a finite

sequence of such actions, in which N(t̄) is the length of the sequence.1

By convention, the empty set {} is a sequence of actions of length zero.

Further, for any nonempty t̄ and any 0<m≤N(t̄), let 1t̄m denote the

sequence 〈t̄n〉mn=1. By convention, 1t̄0 equals {} regardless of t̄.

1Osborne and Rubinstein (1994) also consider infinite sequences and hence in-
finite trees.
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Let a sequence tree (A, T̄ ) be a set A of actions together with a finite

set T̄ of finite sequences t̄ of actions such that |T̄ | ≥ 2, such that

(∀t̄ 6={}) 1t̄N(t̄)−1 ∈ T̄ ,(1)

and such that every action in A appears within at least one sequence

in T̄ (this last assumption entails no loss of generality, for if it were

violated we could simply remove the superfluous actions from A). We

often refer to the sequences in a sequence tree as the nodes2 of the tree.

Given a sequence tree (A, T̄ ), let F̄ be the correspondence3 from T̄

into A that satisfies

(∀t̄) F̄ (t̄) = { a | t̄⊕(a)∈T̄ } .
where ⊕ is the concatenation operator. Since every action a in F̄ (t̄)

can be combined with the node t̄ to produce the new node t̄⊕(a), the

set F (t̄) can be understood as the set of actions that are feasible from

t̄. Then, given this feasibility correspondence F̄ , the set of nodes T̄ can

be partitioned into the set of terminal nodes, Z̄ = { t̄ | F̄ (t̄)=∅ }, and

the set of nonterminal nodes, T̄∼Z̄ = { t̄ | F̄ (t)6=∅ }.4 Note that F̄

and Z̄ are derived from (A, T̄ ).

A game will also specify a collection H̄ ⊆P(T̄∼Z̄) of agents (i.e.,

information sets) h̄ such that H̄ partitions T̄∼Z̄ and such that

(∀t̄ 1, t̄ 2) [(∃h̄){t̄ 1, t̄ 2}⊆h̄] ⇒ F̄ (t̄ 1)=F̄ (t̄ 2) and(2a)

(∀t̄ 1, t̄ 2) [(/∃h̄){t̄ 1, t̄ 2}⊆h̄] ⇒ F̄ (t̄ 1)∩F̄ (t̄ 2)=∅ .(2b)

The first of these two implications states that the same actions are

feasible from any two nodes in an agent h̄. This assumption is standard

and leads one to write F̄ (h̄) for the set of actions feasible for agent

h̄.5 The second implication states that actions are agent-specific in

the sense that nodes from different agents must have different actions.

Agent-specific actions are also assumed by Kreps and Wilson (1982),

2Osborne and Rubinstein (1994) refer to such a sequence as a “history” and
denote it by “h”. We reserve “h” for an agent (i.e., information set).

3Although this correspondence is usually denoted by “A”, we reserve “A” for
the set of all actions.

4As a matter of convention, we denote the empty set by {} when it is regarded
as a node and denote it by ∅ in all other contexts.

5As with any correspondence, the value F̄ (h̄) of the correspondence F̄ at the
set h̄ is defined to be {a|(∃t̄∈h̄)a∈F̄ (t̄)}. This construction is particularly natural
here because (2a) implies that (∀t̄∈h̄) F̄ (t̄) = F̄ (h̄).
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and the assumption entails no loss of generality because one can always

introduce enough actions so that agents never share actions.

Further, for the purposes of this paper, let an augmented partition of

a set S be a collection of disjoint sets whose union is S. Notice that ∅
can belong to an augmented partition (it cannot belong to a partition).

A sequence-tree game (A, T̄ , H̄, Ī, īc, ρ̄, ū) is a sequence tree (A, T̄ )

together with (a) a collection H̄ ⊆P(T̄∼Z̄) of agents (i.e., information

sets) h̄ such that H̄ partitions T̄∼Z̄ and satisfies (2), (b) a collection

Ī ⊆P(H̄) of players ī such that Ī is an augmented partition of H̄,

(c) a chance player īc ∈ Ī, (d) a function ρ̄ :
⋃

h̄∈īcF̄ (h̄)→ (0, 1] which

assigns a positive probability to each chance action a∈⋃h̄∈īcF (h̄), and

(e) a function ū : (Ī∼{̄ic})×Z̄ →R which specifies a payoff ūī(t̄) to each

nonchance player ī∈Ī∼{̄ic} at each terminal node t̄∈Z̄. By assumption,

the chance probabilities are assumed to satisfy (∀h̄∈īc) Σa∈F̄ (h̄)ρ̄(a) = 1

so that they specify a probability distribution at each chance agent

h̄∈īc.
Note that an empty player ī = ∅ has no agents and no actions.

Accordingly, a game “without chance” can be specified by setting the

chance player īc = ∅. We assume without loss of generality that every

nonchance player is nonempty.

2.2. Defining Set-Tree Games

This subsection introduces a new formulation of game in which the

game’s nodes are sets rather than sequences.

Given a set A of actions, let T ⊆P(A) be a collection of nodes t. Note

that each node t is a subset of A, and thus nodes have been specified

as sets of actions. Further, given such an (A, T ), let a last action of a

node t be any action a∈t such that t∼{a}∈T . In other words, a last

action of a node is any action in the node whose removal results in

another node.

Figures 1, 2, and 3 provide three examples. In each case, the figure’s

caption fully defines (A, T ), and accordingly, the definition is complete

without the illustration itself. Each illustration links two nodes with an

action-labelled line exactly when (a) that action is a last action of the

larger set and (b) the smaller set is the larger set without that action.

For example, f is the only last action of {e, f} in Figure 1, and both

f and g are last actions of {f, g} in Figure 2.
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A set tree (A, T ) is a set A and a collection T⊆P(A) such that |T | ≥ 2,

such that A =
⋃
T , and such that

every nonempty t∈T has a unique last action.(3)

For example, Figure 1 fails to define a set tree because the node {f, g}
does not have a last action, and Figure 2 fails to define a set tree because

the node {f, g} has two last actions. In contrast, Figure 3 does define

a set tree. Finally, note that the assumption A =
⋃
T entails no loss of

{} {e}
{e, f}

{e, g}
{f, g}e

f

g

Figure 1. A = {e, f, g} and T = {{}, {e}, {e, f}, {e, g},
{f, g}} violate assumption (3) since {f, g} does not have
a last action.

{}
{f}

{g}
{f, g}

f

g

g

f

Figure 2. A = {f, g} and T = {{}, {f}, {g}, {f, g}}
violate assumption (3) since {f, g} has two last actions.

r1 r2{}

{d1}

d1

{r1}

{r1, d2}

d2

{r1, r2}

Figure 3. The set tree (A, T ) defined by T = { {},
{d1}, {r1}, {r1, d2}, {r1, r2} } and A = ∪T .
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generality because A ⊇ ⋃T by construction and because A∼⋃T can

be made empty by eliminating unused actions.

Given a set tree (A, T ), let F be the correspondence from T into A

that satisfies

(∀t) F (t) = { a | a/∈t and t∪{a}∈T } .
Since every action a in F (t) can be combined with the node t to produce

a new node t∪{a}, the set F (t) can be understood as the set of actions

that are feasible from t. Then, given F , the set of nodes T can be

partitioned into the set of terminal nodes, Z = { t | F (t)=∅ }, and

the set of nonterminal nodes, T∼Z = { t | F (t)6=∅ }. In this fashion

F and Z are derived from (A, T ).

A set-tree game will also specify a collection H ⊆P(T∼Z) of agents

(i.e., information sets) h such that H partitions T∼Z and such that

(∀t1, t2) [(∃h){t1, t2}⊆h] ⇒ F (t1)=F (t2) and(4a)

(∀t1, t2) [(∃h){t1, t2}⊆h] ⇐ F (t1)∩F (t2) 6=∅ .(4b)

This assumption (4) for a set-tree game is interpreted just as assump-

tion (2) for a sequence-tree game.

Finally, a set-tree game (A, T,H, I, ic, ρ, u) is a set tree (A, T ) to-

gether with (a) a collection H ⊆P(T∼Z) of agents h such that H

partitions T∼Z and satisfies (4), (b) a collection I ⊆P(H) of players i

such that I is an augmented partition of H, (c) a chance player ic ∈ I,

(d) a function ρ :
⋃

h∈icF (h)→ (0, 1] which assigns a positive probability

to each chance action a∈⋃h∈icF (h), and (e) a function u : (I∼{ic})×Z
→R which specifies a payoff ui(t) to each nonchance player i∈I∼{ic}
at each terminal node t∈Z. The chance probabilities are assumed to

satisfy (∀h∈ic) Σa∈F (h)ρ(a) = 1 so that they specify a probability dis-

tribution at each chance agent h∈ic. Without loss of generality, every

nonchance player is assumed to be nonempty.

2.3. Defining an Isomorphism

This subsection defines a natural isomorphism between sequence-

tree games and set-tree games. Accordingly, the isomorphism switches

between nodes as sequences and nodes as sets.

Let R denote the function which takes a sequence of actions to a set

of actions according to

R(t̄) = { t̄n | n∈{1, 2, ...N(t̄)} } .
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For example, R((r, r, d)) = {d, r}, which illustrates that neither the

order of actions in the sequence nor the repetition of actions in the

sequence effects the value of R. The symbol “R” is natural in several

senses. First, the set R(t̄) is the “R”ange of the sequence t̄. Second,

R “R”educes a sequence to a set. And finally, R “R”emoves the bar as

“R(t̄) = t” suggests.

A sequence tree (A, T̄ ) is isomorphic to a set tree (A, T ) if

R|T̄ is an invertible function from T̄ onto T , and(5a)

(∀t̄∗, a, t̄) t̄∗⊕(a)=t̄ ⇔ a/∈R(t̄∗) and R(t̄∗)∪{a}=R(t̄) .(5b)

By way of analogy, recall that two algebraic groups are “isomorphic” if

there is an invertible function between the two groups which preserves

the structure of each group’s binary relation in the structure of the

other group’s binary relation. Here is something similar: R|T̄ is an in-

vertible function between T̄ and T which preserves the structure of T̄ ’s

concatenation in the structure of T ’s union, and conversely, preserves

the structure of T ’s union in T̄ ’s concatenation.

This isomorphism between trees has many consequences. For exam-

ple, suppose that (A, T̄ ) and (A, T ) are isomorphic, that F̄ is derived

from (A, T̄ ), and that F is derived from (A, T ). Then by Lemma A.3(a)

in Appendix A, we have that F̄ (t̄) = F (t) whenever R(t̄) = t.

Next, let R1 denote the function which takes an arbitrary set S̄1 of

sequences into the corresponding set of sets according to6

R1(S̄1) = { R(t̄) | t̄∈S̄1 } .
For example, R1( {(d, r, r), (d, s)} ) = {{d, r}, {d, s}}. In general, if

(A, T̄ ) and (A, T ) are isomorphic, we have that R1|P(T̄ ) is an invertible

function from P(T̄ ) onto P(T ), that R1(T̄ ) = T , and that R1(Z̄) = Z

(Lemma A.3(b) in Appendix A). In the sequel, a sequence-tree agent

h̄ will be mapped to the set-tree agent R1(h̄) = h.

Further, let R2 denote the function which takes an arbitrary set S̄2

of sets of sequences into the corresponding set of sets of sets according

6In common parlance, if f :X→Y and B⊆X then f(B) is understood to be
{f(x)|x∈B}. Thus common parlance endows the symbol f(·) with two meanings,
one for when the argument is an element of X and the other for when the argument
is a subset of X. Our introducing R1 is like dropping the second meaning of f(·)
(so that f(B) becomes undefined) and then introducing the symbol f1(·) (so that
f1(B) becomes defined). We do not use the f1 notation in general. For example,
we write F (h) rather than F1(h).
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to

R2(S̄2) = { R1(S̄1) | S̄1∈S̄2 } .
For instance, R2( {{(d, r), (d, d)}, {(x, x)}} ) = {{{d, r}, {d}}, {{x}}}.
In general, if (A, T̄ ) and (A, T ) are isomorphic, then R2|P2(T̄ ) is an

invertible function from P2(T̄ ) onto P2(T ). In the sequel, a sequence-

tree player ī will be mapped to the set-tree player R2(̄i) = i.

Finally, say that (A, T̄ , H̄, Ī, īc, ρ̄, ū) and (A, T,H, I, ic, ρ, u) are iso-

morphic if (A, T̄ ) and (A, T ) are isomorphic,

{ R1(h̄) | h̄∈H̄ } = H ,(6a)

{ R2(̄i) | ī∈Ī } = I ,(6b)

R2(̄ic) = ic ,(6c)

ρ̄ = ρ , and(6d)

(∀ī 6=īc)(∀t̄∈Z̄) ūī( t̄ ) = uR2 (̄i)(R(t̄) ) .(6e)

2.4. Showing the Isomorphism is One-to-one

This subsection contains Theorem A, which is our primary result.

The theorem shows that isomorphism is a one-to-one correspondence

between the collection of sequence-tree games with agent recall and the

collection of set-tree games.

Before we define “agent recall”, we recall the concept of absent-

mindedness defined by Piccione and Rubinstein (1997). Informally,

an agent is absent-minded if the agent does not know whether it has

already moved. Formally, an agent is absent-minded if there is a se-

quence which enters the agent more than once. In other words, an

agent h̄ is absent-minded if there exist t̄ and 0 ≤ m < n ≤ N(t̄) such

that {1t̄m, 1t̄n} ⊆ h̄.

A sequence tree (A, T̄ ) with agents H̄ is said to have agent recall

if it has no absent-minded agents. In other words, agent recall is the

absence of absent-mindedness. Agent recall is implied by perfect recall,

and perfect recall is assumed by many authors including Kreps and Wil-

son (1982). Specifically, they define perfect recall as the combination

of their equations (2.2) and (2.3). Their equation (2.2) is equivalent to

agent recall by Lemma A.4(b) in Appendix A, and their equation (2.3)

might be usefully called “player recall” as opposed to “agent recall.”
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Theorem A. Every sequence-tree game with agent recall is isomor-

phic to exactly one set-tree game. Conversely, every set-tree game is

isomorphic to exactly one sequence-tree game, and that sequence-tree

game has agent recall. (Proof: Lemmas A.7 and A.8 in Appendix A.)

Thus the theorem shows that isomorphism constitutes a one-to-one

correspondence between (a) the collection of sequence-tree games with

agent recall and (b) the collection of set-tree games. Or, to put it

another way, the structure of a sequence-tree game with agent recall is

identical to the structure of a set-tree game.

2.5. Theorem A’s Intuition

The theorem may seem implausible because individual sequences

have more structure than individual sets, simply because sets do not

specify order. To overcome this initial reaction, we make four observa-

tions which informally support the theorem.

First, considerable power comes from specifying agent-specific ac-

tions. In particular, both sequence-tree games and set-tree games as-

sume agent-specific actions (see (2) and (4)), and thus, the actions

themselves encode the agents that take them. Although this assump-

tion is powerful, it entails no loss of generality because one can always

introduce enough actions so that each agent gets its own actions.

Second, sequences which repeat actions would be problematic, but

agent recall rules them out (Lemma A.5 in Appendix A). For example,

r

h̄

{}

(d)

d

(r)

(r, d)

d

(r, r)
r

Figure 4. The sequence (r, r) repeats the action r (and
thereby precludes isomorphism). Accordingly, the agent
h̄ = {{}, (r)} is absent-minded, in violation of agent re-
call.
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consider Figure 4’s sequence-tree game, which is essentially Piccione

and Rubinstein (1997, Example 1). Here the sequence (r, r) repeats

the action r. This repetition prevents isomorphism because the distinct

sequences (r, r) and (r) map to the same set {r, r}={r}, and thus R|T̄ is

not invertible in violation of (5a). However, this example violates agent

recall because its only agent is absent-minded: the sequence t̄ = (r)

enters the agent twice, once at 1t̄0 = {} and again at t̄ = (r).

Third, assumption (1) for a sequence tree resembles assumption (3)

for a set tree. Intuitively, the “last action” of a sequence is its last

element, and assumption (1) guarantees that the sequence without this

“last action” is also a member of the tree. Formally, the last action of a

set is defined to be an action whose removal results in another member

of the tree, and assumption (3) guarantees that each set in the tree has

exactly one last action. Essentially, the “last action” of a sequence is

explicitly stated by the sequence itself, while the last action of a set is

implicitly determined by the entire tree.

Fourth, the following example suggests that a set of actions in a

set tree can only be played in one order, because if that order is not

exogenous, it must have been determined by some action(s) in the set

itself.

h̄1

h̄2

s1

ℓ1

s2

ℓ2

{}

(s1)

(s1, d1)

d1

(s1, ℓ1)

(s1, ℓ1, d2)

d2

(s1, ℓ1, ℓ2)
ℓ2

(s2)

(s2, d2)

d2

(s2, ℓ2)

(s2, ℓ2, d1)

d1

(s2, ℓ2, ℓ1)
ℓ1

Figure 5. A sequence tree in which the order of actions
appears to matter. The two agents h̄1 = {(s1), (s2, `2)}
and h̄2 = {(s2), (s1, `1)} belong to the two enemies.
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Imagine that two enemies refuse to be in the same room, and that a

peace-loving mediator volunteers to carry a box from one to the other.

While she imagines that the box will be used to convey a peace offering,

the enemies imagine sending something offensive. For some reason, the

enemies do not know who will get the box first, and thus neither enemy

knows when receiving the box if the box is empty or already loaded.

Figure 5 specifies this situation using a sequence tree. The mediator

decides to start with either the first enemy (s1) or the second enemy

(s2), and then the two enemies either look (`) in the box with intent

to load it or decline (d) to open it. Clearly the game is all about which

of the enemies moves first.

Yet, this situation can be specified as a set tree by simply turning

the figure’s sequences into sets. Each set of actions can only be played

in one order because any ambiguity is resolved by another action in the

set. For example, the set {`1, `2, s2} can only be played in the order

(s2, `2, `1) because the set contains s2.

In summary, four observations make the theorem more intuitive:

agent-specific actions encode agents within actions; agent recall pre-

cludes the repetition of actions; “last actions” in sequence trees resem-

ble last actions in set trees; and order can often be encoded within

sets.

2.6. Theorem A’s Nontriviality

Now that the theorem appears more intuitive, we argue that its proof

is still nontrivial. Many, but not all, of the difficulties stem from the

fact that a sequence has more structure than a set. In particular, a

sequence specifies the order in which moves are taken and a set does

not. The example in Figure 5 only provides encouraging intuition that

this gap can be bridged.

Going one direction, from sequences to sets, appears to be simple

because R determines the set tree by T = R1(T̄ ) and then determines

the rest of the set-tree game by (6). Additionally, Lemma A.5 (illus-

trated by Figure 4 above and proved in Appendix A below) simplifies

matters further by showing that agent recall rules out sequences that

repeat actions.

However, substantial issues of order remain. First, is R|T̄ invertible,

or could the sequence tree T̄ have two sequences with the same actions
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in different orders? Second, even if R|T̄ is invertible, could a set in T

have multiple last actions, as would be the case in Figure 4, where both

r and d would be last actions of R((r, d)) = {r, d}? Third, even if every

set in T has a unique last action, could the last action of a set be in the

middle, rather than at the end, of the sequence corresponding to the

set? These issues are addressed in Lemmas A.6 and A.7 of Appendix A.

Going the other direction, from sets to sequences, is harder in the

sense that one must figure out how to define the sequence tree. Both

uniqueness and existence are nontrivial.

The theorem’s claim about uniqueness is strong. It claims that each

set tree corresponds to no more than one sequence tree, and further,

that this uniqueness stands even if the candidate sequence trees are not

required to satisfy agent recall. This claim is different than the claim

that R|T̄ is an invertible function for any T̄ with agent recall. Rather,

it says that for any T there is at most one T̄ which makes R|T̄ an

invertible function onto T . This is a strong statement because the many

possible ways of constructing the sequences of T̄ admit many possible

ways of ordering the actions in the sets of T . Further, the possibility

of defining a T̄ without agent recall admits the further possibility of

defining sequences which repeat actions (Lemma A.5). Nonetheless,

the implicit structure of a set tree T precludes all this. This is proved

in Step 1 of Lemma A.8’s proof.

Proving existence requires finding a way to assign sequences to sets

in such a way that the concatenation of sequences is isomorphic to the

union of sets, as specified in (5b). This is nontrivial because assigning

a sequence to a set has implications for the assignments at all the

set’s subsets and supersets. The solution can be found in steps 2–6 of

Lemma A.8’s proof.

In summary, the uniqueness result shows that a set tree has a sur-

prising amount of implicit structure. Then the existence result shows

that that structure is never strong enough to prevent the construction

of a sequence tree. Thus a sequence tree with agent recall explicitly

spells out the implicit structure of a set tree.
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3. Representing Plausibility by a Density Function

This section is the second half of the paper. It shows that the plausi-

bility relation of a consistent assessment can be represented by a density

function.

3.1. Reviewing Kreps-Wilson Consistency

This section is formulated in terms of a set-tree game (A, T,H, I, ic,

ρ, u). By Theorem A, such a set-tree game implicitly assumes nothing

more than agent recall. Agent recall is weaker than perfect recall, as

discussed just before Theorem A’s statement. Perfect recall, in turn, is

a standard assumption in the literature on consistency ever since Kreps

and Wilson (1982, pages 863 and 867).

The remainder of this subsection reformulates Kreps-Wilson consis-

tency in terms of a set-tree game. First, we introduce notation that

partitions the nodes and actions into those of the chance player and

those of the strategic players. Since the set H of agents is partitioned

by the set I of players, we can partition H into the set ic of chance

agents and the set {h|h/∈ic} of strategic (i.e. nonchance) agents. Then

since the set T∼Z of nonterminal nodes is partitioned by H, we can

partition T∼Z into the set T c of chance nodes and the set T s of strate-

gic (i.e. decision) nodes:

T c =
⋃

h∈ich and T s =
⋃

h/∈ich .

Similarly, since the set A of actions has the indexed partition 〈F (h)〉h
(Lemma A.2 in Appendix A), we can partition A into the set Ac of

chance actions and the set As of strategic actions:

Ac =
⋃

h∈icF (h) and As =
⋃

h/∈icF (h) .

Note that T c, T s, Ac, and As are derived from the given game, and

that the definition of Ac allows us to write ρ:Ac→(0, 1] rather than

ρ:
⋃

h∈icF (h)→(0, 1] as we did in Subsection 2.2.

Second, we introduce notation for strategies, beliefs, and assess-

ments. A (behavioural) strategy profile is a function σ:As→[0, 1] such

that (∀h/∈ic) Σa∈F (h)σ(a)=1. Thus a strategy profile specifies a prob-

ability distribution σ|F (h) over the feasible set F (h) of each strategic

agent h. This σ|F (h) is h’s strategy. A belief system is a function

β:T s→[0, 1] such that (∀h/∈ic) Σt∈hβ(t)=1. Thus a belief system speci-

fies a probability distribution β|h over each strategic agent h. This β|h
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is h’s belief. Finally, an assessment (σ, β) consists of a strategy profile

σ and a belief system β.

Third, an assessment (σ, β) is full-support Bayesian if σ assumes only

positive values and

(∀h∈Hs)(∀t∈h) β(t) =
Πa∈t(ρ∪σ)(a)

Σt′∈hΠa∈t′(ρ∪σ)(a)
.(7)

This equation calculates the belief β|h over any strategic agent h by

means of the conditional probability law. Note that

Πa∈t(ρ∪σ)(a) = Πa∈t∩Acρ(a) × Πa∈t∩Asσ(a) .

is the probability of reaching node t. Here ρ∪σ is the union of the

functions ρ and σ. In particular, ρ∪σ:A→[0, 1] since ρ:Ac→[0, 1], since

σ:As→[0, 1], and since {Ac, As} partitions A. The positive values of ρ

and σ imply that the denominator in (7) is always positive.

Finally, an assessment is Kreps-Wilson consistent if it is the limit of

a sequence of full-support Bayesian assessments.

3.2. Defining an Assessment’s Plausibility Relation <

This subsection defines the plausibility relation < of an arbitrary as-

sessment (σ, β). The assessment need not be consistent. The relation

< compares nodes. It is constructed from five components, in the five

paragraphs that follow the next one. We introduce the word “plausi-

bility” in lieu of the familiar phrase “infinite relative likelihood” only

because it is shorter.

We illustrate this construction by repeatedly referring to the assess-

ment (σ, β) of Figure 6. This figure’s game tree is essentially that of

Kreps and Ramey (1987, Figure 1). A casual interpretation of this

game tree might be that you manage two workers, that each has a

switch, and that a lamp turns on exactly when both switches are on.

You can observe the lamp but not the switches, and then if the lamp

is dark, you can choose to penalize either the first worker or the sec-

ond worker. The figure also specifies an assessment (σ, β). Casually,

this might describe an equilibrium-like situation in which both workers

work because (a) they think that if the light is dark, you would place

probability 0.4 on only the first worker dozing, probability 0.4 on only

the second worker dozing, and probability 0.2 on both workers dozing,

(b) they see that this belief would induce you to randomize between
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the two punishments, and (c) the threat of this randomized penalty

motivates them both to work.

First, from the strategy profile σ derive the relation

σ
� = { (t, t∪{a}) | a∈F (t) and σ(a)=0 } .

As with any relation, the notations (t1, t2) ∈ σ
� and t1

σ
� t2 are equiva-

lent. Thus the definition of
σ
� says that t1

σ
� t2 iff t1 immediately pre-

cedes t2 and the action leading from t1 to t2 is played by σ with zero

probability. In such a case, we say that t1 is “more plausible” than

t2 in the sense that t1 is infinitely more likely than t2. For example,

{} σ
� {d1}, {d1} σ

� {d1, d2}, and {w1} σ
� {w1, d2} in Figure 6.

Second, from the strategy profile σ derive the relation

σ
≈ = { (t, t∪{a}) | a∈F (t) and σ(a)>0 }

≈
σ(

w 1
)=

1

≻σ(d
1 )=

0

≈
σ(w2)=

1

≻
σ(d2)=0

≈
σ(w2)=

1

≻
σ(d2)=0

≈
σ(p1)=0.5

≈
σ(p2)=0.5

≈
σ(p1)=0.5

≈
σ(p2)=0.5

≈
σ(p1)=0.5

≈
σ(p2)=0.5

≺ ≈
≈

β({})
= 1

β({w1})
= 1

β({w1, d2})
= 0.4

β({d1})
= 0

β({d1, w2})
= 0.4

β({d1, d2})
= 0.2

Figure 6. An assessment (σ, β) with its plausibility re-
lation �.
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∪ { (t∪{a}, t) | a∈F (t) and σ(a)>0 } .

The definition of
σ
≈ states that both t1

σ
≈ t2 and t2

σ
≈ t1 hold if t1 im-

mediately precedes t2 and the action leading from t1 to t2 is played

by σ with positive probability. In such a case, we say that t1 and

t2 are “tied in plausibility” in the sense that neither can be infinitely

more likely than the other. For example, Figure 6 shows {} σ
≈ {w1},

{w1} σ
≈ {w1, w2}, {d1} σ

≈ {d1, w2}, {d1, d2} σ
≈ {d1, d2, p1}, and five other

pairs like the last one which also end in terminal nodes. (The converses

of these nine pairs are also in
σ
≈ because

σ
≈ was defined to be symmetric.)

Third, this notion of tying in plausibility applies not only to strategic

actions, but also to chance actions, which are played with positive

probability by assumption. Accordingly, we define the relation

c
≈ = { (t, t∪{a}) | a∈F (t) and a∈Ac }
∪ { (t∪{a}, t) | a∈F (t) and a∈Ac } .

Thus both t1
c
≈ t2 and t2

c
≈ t1 hold if t1 is a chance node that immedi-

ately precedes t2. Unlike the other components of <,
c
≈ depends only

on the game and not the assessment.

Fourth, from the belief system β derive the two relations

β
� = { (t1, t2) | (∃h∈Hs) {t1, t2}⊆h, β(t1)>0, and β(t2)=0 } and
β
≈ = { (t1, t2) | (∃h∈Hs) {t1, t2}⊆h, t1 6=t2, β(t1)>0, and β(t2)>0 } .

Thus a node in the support of an agent’s belief is more plausible than

any node outside the support and is tied with any other node inside the

support. For example, Figure 6 shows {w1} β
� {d1}, {w1, d2} β

≈ {d1, w2},
and {d1, w2} β

≈ {d1, d2}. (The relation
β
≈ also contains ({w1, d2}, {d1, d2}),

and because the relation is symmetric, the converses of the three pairs

already mentioned.)

Fifth and finally, we define �, ≈, and <. Let � be the union of
σ
�

and
β
�. Let ≈ be the union of

σ
≈,

c
≈, and

β
≈. Let < be the union of �

and ≈. The following result is intuitive but not obvious.

Lemma 3.1. Suppose that
σ
�,

σ
≈,

c
≈,

β
�,

β
≈, �, ≈, and < are derived

from some assessment. Then � is the asymmetric part of <, and � is

partitioned by {σ�, β�}. Similarly, ≈ is the symmetric part of <, and ≈
is partitioned by {σ≈, c≈, β≈}. (Proof B.1 in Appendix B.)
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The typical plausibility relation < is pervasively incomplete in the

sense that it fails to compare many pairs of nodes. For instance, nei-

ther {} < {d1, d2} nor {d1, d2} < {} in Figure 6’s example. Further,

because of this pervasive incompleteness, the typical < is also intransi-

tive. For instance, transitivity is violated by the lack of {} < {d1, d2}
in Figure 6’s example.

Our < differs from the infinite-relative-likelihood relations in the

literature to the extent that it is derived directly from an arbitrary as-

sessment. In contrast, most contributions in the literature have shown

that a consistent assessment implies a rich probability structure which

features infinite relative likelihoods. Such rich probability structures

include the conditional probability systems of Myerson (1986), the log-

arithmic likelihood ratios of McLennan (1989), the lexicographic prob-

ability systems of Blume, Brandenburger, and Dekel (1991b), the non-

standard probability systems of Hammond (1994) and Halpern (2010),

and the relative probability systems of Kohlberg and Reny (1997). In

accord with this difference, our < is incomplete and intransitive while

theirs are complete and transitive, and our < is easier to derive because

its definition bypasses their rich probability structures.

3.3. Deriving a Density-Function Representation for <

From an abstract perspective, < is a binary relation comparing sub-

sets t⊆A of a space A of actions a. Similarly, Kraft, Pratt, and Seiden-

berg (1959) and Scott (1964) consider a binary relation % comparing

subsets e⊆Ω of a space Ω of states ω. There, the statement e1� e2

means that the event e1 is regarded as “more probable” than e2, and

the statement e1≈ e2 means that the events e1 and e2 are regarded as

“equally probable”. Kraft, Pratt, and Seidenberg (1959, Theorem 2)

and Scott (1964, Theorem 4.1) then state conditions on % which imply

the existence of a probability density function p:Ω→[0, 1] such that for

all e1 and e2

e1 � e2 ⇒ Σω∈e1p(ω) > Σω∈e2p(ω) and

e1 % e2 ⇒ Σω∈e1p(ω) ≥ Σω∈e2p(ω) .

In brief, they find conditions under which a probability relation can be

represented by a probability density function. The following theorem

is similar.
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Theorem B. Consider an assessment and its plausibility relation

<. If the assessment is consistent, there exists π:A→Z− such that for

all t1 and t2

t1 � t2 ⇒ Σa∈t1π(a) > Σa∈t2π(a) and

t1 < t2 ⇒ Σa∈t1π(a) ≥ Σa∈t2π(a) .
(8)

(Proof B.5 in Appendix B. Z− is the set of nonpositive integers.)

Subsequent subsections will interpret Theorem B in the context of

game theory. The remainder of this subsection sketches the theorem’s

proof and thereby draws further parallels with the foundations of ordi-

nary probability theory.

To begin, consider an arbitrary finite set A and an arbitrary binary

relation % comparing subsets of A, which are denoted here by s⊆A
and t⊆A. Let a cancelling sample from % be a finite indexed collection

〈(sm, tm)〉Mm=1 of pairs (sm, tm) taken from % such that

(∀a) |{m|a∈sm}| = |{m|a∈tm}| .
Note that the sample is taken “with replacement” in the sense that

a pair can appear more than once. Further, by the equation every

action appearing on the left side of some pair is “cancelled” by the

identical action appearing on the right side of that or some other pair.

For example, if {a, a′} % {a, a′}, then a cancelling sample from % is

given by M=1 and (s1, t1) = ({a, a′}, {a, a′}). The relation % is said

to satisfy the cancellation law if every cancelling sample from % must

be taken from the symmetric part of %.

The cancellation law is implied by the existence of a density-function

representation ϕ:A→R. This is easily seen if one assumes the existence

of ϕ and considers a cancelling sample 〈(sm, tm)〉Mm=1. By the sample’s

cancelling,

ΣM
m=1Σa∈smϕ(a) = ΣM

m=1Σa∈tmϕ(a) .(9)

By representation, Σa∈smϕ(a) > Σa∈tmϕ(a) for every (sm, tm) from the

asymmetric part of %, and Σa∈smϕ(a) = Σa∈tmϕ(a) for every (sm, tm)

from the symmetric part of %. Thus ΣM
m=1Σa∈smϕ(a) = ΣM

m=1Σa∈tmϕ(a)

iff every pair in the sample is taken from the symmetric part of %. Thus

by (9) the sample must have been taken from the symmetric part of %.

Interestingly, the converse also holds, and hence the cancellation law

is equivalent to the existence of a density-function representation. This
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result follows from Farkas’ Lemma. It undergirds the intuitive founda-

tions for probability in Kraft, Pratt, and Seidenberg (1959, Theorem 2)

and Scott (1964, Theorem 4.1). It also undergirds the abstract repre-

sentation theory in Krantz, Luce, Suppes, and Tversky (1971, Sections

2.3 and 9.2) and Narens (1985, pages 263-265).7 Lemma B.3 in Ap-

pendix B is a minor adaptation of this well-known result.

Now return to Theorem B. The plausibility relation < of a consis-

tent assessment (β, σ) must obey the cancellation law. To see this, let

〈(βn, σn)〉∞n=1 be a sequence of Bayesian full-support assessments that

converge to (β, σ), and take a cancelling sample 〈(sm, tm)〉Mm=1 from <.

By the sample’s cancelling,

(∀n) ΠM
m=1

Πa∈tmρ∪σn(a)

Πa∈smρ∪σn(a)
= 1 .(10)

Further, by the straightforward argument of Lemma B.4 in Appen-

dix B, consistency implies (a) that

limn
Πa∈tmρ∪σn(a)

Πa∈smρ∪σn(a)
= 0

for every (sm, tm) in the asymmetric part of < (note that sm is in the

denominator), and also (b) that

limn
Πa∈tmρ∪σn(a)

Πa∈smρ∪σn(a)
∈ (0,∞)

for every (sm, tm) in the symmetric part of <. Thus

limn ΠM
m=1

Πa∈tmρ∪σn(a)

Πa∈smρ∪σn(a)
∈ (0,∞)

iff the sample was taken from the symmetric part of <. Thus by (10),

the sample must have been taken from the symmetric part of <.

Since the plausibility relation of a consistent assessment must obey

the cancellation law by the last paragraph, and since the cancellation

law is equivalent to the existence of a density-function representation

by the paragraph before, the plausibility relation of a consistent assess-

ment must have a density-function representation. This is the gist of

Theorem B’s proof.

7These classic results over discrete spaces complement Debreu (1960)’s deriva-
tion of an additive representation over continuum product spaces. Debreu imposes
weaker cancellation assumptions (e.g., Debreu (1960, Assumption 1.3)) and com-
pensates with topological assumptions.
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In addition, the proof shows that the density function can be made

to take nonpositive and integer values. The existence of an integer-

valued density function is proved by using a version of Farkas’ Lemma

for rational matrices (Fact B.2 in Appendix B). Then, this (or any

other) density function must assume nonpositive values since (a) the

representation of
σ
≈⊆< requires that zero plausibility be assigned to

every action played with positive probability, and (b) the representation

of
σ
�⊆< requires that negative plausibility be assigned to every action

played with zero probability.

3.4. Stochastic Independence

As noted in the previous paragraph, a positive-probability action is

assigned a zero plausibility number and a zero-probability action is as-

signed a negative plausibility number. Thus a node’s plausibility is a

measure of how far the node is below the equilibrium path. This mea-

sure is slightly more sophisticated than (the negative of) the number of

the node’s zero-probability actions because each zero-probability action

can be assigned its own negative plausibility number. However, a zero-

probability action’s plausibility number cannot vary with the context

in which the action is played. That invariance is a sort of stochastic

independence among zero-probability actions.

For example, consider the assessment of Figure 6. If the assessment

were consistent, Theorem B would imply the existence of a plausibility

density function π such that, among other things, (a) π(d2) < 0 since

the second worker dozes with zero probability, (b) π(w2) = 0 since the

second worker works with positive probability, and (c) π(d1)+π(d2) =

π(d1)+π(w2) since both {d1, d2} and {d1, w2} are in the support of

the manager’s belief. Since (a) and (b) together imply π(d1)+π(d2) <

π(d1)+π(w2), this cannot be done, and thus, the assessment is incon-

sistent.8 Note that we have implicitly assigned the same plausibility

number to d1 en route to {d1, d2} as to d1 en route to {d1, w2}. This

invariance is a sort of stochastic independence: the plausibility number

of an action cannot vary with the context in which the action is played.

8There is also a faster way to show the inconsistency of this assessment.
A corollary of Theorem B is that a consistent assessment’s plausibility relation
must have an ordered extension. To prove this, one merely needs to node that
one such ordered extension is represented by ϕ(t) = Σa∈tπ(a). The assessment
of Figure 6 cannot have an ordered extension because {d1} � {d1, d2} and yet
{d1} ≈ {d1, w2} ≈ {d1, d2}.
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The remainder of this subsection provides a second perspective on

stochastic independence. It uses the concept of additive separability9

from preference theory to show that consistency implies a sort of sto-

chastic independence across agents.

Since preferences are defined over vectors of consumption goods,

the first task is to learn how to regard a node as a vector of actions

rather than a set of actions. Accordingly, we embed the set T of

nodes within a Cartesian product whose coordinates are indexed by

the agents. First, create a “null” action o, and then, for each agent h,

let Ḟ (h) = {o}⋃F (h). Thus Ḟ (h) is agent h’s “expanded action set.”

Next, consider the Cartesian product ΠhḞ (h) and let ṫ = 〈ṫh〉h denote

an arbitrary vector in this product. Finally, let V be the function that

maps each node t∈T to the vector V (t)∈ΠhḞ (h) that is defined at

each h by

[V (t)]h =

(
o if |t∩F (h)|=0

the element of t∩F (h) if |t∩F (h)|=1

)
.(11)

The following lemma proves that V is well-defined by showing that

|t∩F (h)| is 0 or 1 for any t and h. It also proves a few other basic facts

about V .

Lemma 3.2. V is a well-defined and invertible function from T

onto V (T )⊆ΠhḞ (h). Further, V −1(ṫ) = {ṫh|ṫh∈A} for every ṫ∈V (T ).

(Proof B.7 in Appendix B.)

For example, consider the set tree that is isomorphic to the sequence

tree of Figure 5’s example. The three agents are

h0 = {} with Ḟ (h0) = {o, s1, s2} ,
h1 = {{s1}, {s2, o2}} with Ḟ (h1) = {o, `1, d1} , and

h2 = {{s2}, {s1, o1}} with Ḟ (h2) = {o, `2, d2} .
Thus the product ΠhḞ (h) has 33=27 vectors. Meanwhile, the set V (T )

⊆ ΠhḞ (h) has those 11 vectors which correspond to the 11 nodes in T .

Three of these vectors are

V ({}) = (o, o, o) ,

V ({s1, `1}) = (s1, `1, o) , and

9For the additive separability of a preference relation, see Debreu (1960), Gor-
man (1968), and Blackorby, Primont, and Russell (1978, Section 4.4).
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V ({s2, `2}) = (s2, o, `2) .

Note that an action’s position in the vector is determined by its agent

and not by the order of play.

Now consider an assessment and its plausibility relation <. Let the

embedding of < in ΠhḞ (h) be the binary relation

<̇ = { (V (t1), V (t2)) | (t1, t2)∈< } .
Since V is invertible by Lemma 3.2, there is a one-to-one correspon-

dence between the pairs of < and the pairs of <̇. For example, for any

plausibility relation < over the set tree of Figure 5,

{s1, `1} < {s2, `2} ⇔ (s1, `1, o) <̇ (s2, o, `2) .

Finally, we review three standard definitions for an arbitrary binary

relation <∗ over the Cartesian product ΠhḞ (h). First, <∗ is an ordering

if it is complete and transitive. Second, <∗ extends <̇ if for all vectors

ṫ1 and ṫ2

ṫ1 <̇ ṫ2 ⇒ ṫ1 <∗ ṫ2 and

ṫ1 �̇ ṫ2 ⇒ ṫ1 �∗ ṫ2 ,
where �̇ and �∗ are the asymmetric parts of <̇ and <∗, respectively.

Third, <∗ is additively separable if there exists 〈ϕh:Ḟ (h)→R〉h such

that for all vectors ṫ1 and ṫ2

ṫ1 <∗ ṫ2 ⇔ Σhϕh(ṫ1h) ≥ Σhϕh(ṫ2h) .

Corollary 1. Let <̇ be an assessment’s plausibility relation, embed-

ded in ΠhḞ (h). If the assessment is consistent, then <̇ can be extended

to an additively separable ordering over ΠhḞ (h). (Proof B.8 in Appen-

dix B).

In other words, an assessment is consistent only if its embedded plau-

sibility relation can be extended to an additively separable ordering.

In this sense, the additivity of a consistent assessment’s plausibility

relation closely resembles the additive separability of a preference rela-

tion. Consistency implies additivity across agents much as separability

requires additivity across consumption goods.

Since additive separability expresses preference “independence” across

consumption goods, the above suggests that consistency requires an

extended sort of stochastic “independence” across agents. This is intu-

itive. By definition, a consistent assessment is the limit of a sequence
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of full-support Bayesian assessments, each of which incorporates the

ordinary sort of stochastic independence across agents. Accordingly,

Corollary 1 shows that the limiting notion of stochastic independence

mimics additive separability.

3.5. Plausibility Numbers Elsewhere

Although our perspective of density-function representation is new,

numbers like plausibility numbers are familiar. Many papers use num-

bers like plausibility numbers to show consistency. Some arbitrarily

chosen examples are the “error likelihoods” in Anderlini, Gerardi, and

Lagunoff (2008, page 359), the “orders of probability” in Kobayashi

(2007, page 525), and counting “steps off the equilibrium path” in Fu-

denberg and Levine (2006, Definition 3.2).

In contrast, there are few papers which go in the opposite and consid-

erably more difficult direction. Like Theorem B, they derive numbers

like plausibility numbers from consistency. The result closest to Theo-

rem B is Kreps and Wilson (1982, Lemma A1), which assigns integers

to actions in a fashion which “labels” the basis of a consistent assess-

ment. The latter portion of this subsection identifies and repairs a

critical lacuna in the proof of this valuable lemma.

Perea y Monsuwé, Jansen, and Peters (1997, Theorem 3.1) use a sep-

arating hyperplane to derive “order of likelihood” numbers, which then

become part of their algebraic characterization of consistency. The log-

arithms of their numbers can be regarded as (non-integer) plausibility

numbers, and accordingly, the perspective of density-function repre-

sentation can be used to simplify their argument and to deepen our

understanding of their characterization. Their insightful characteri-

zation is very useful because it enables one to search for consistent

assessments by means of linear-programming techniques.

Hereafter let KW refer to the path-breaking work of Kreps and Wilson

(1982). The remainder of this subsection identifies and repairs a gap

in the proof of KW Lemma A1. Essentially, the labelling claimed by

their proof can be derived as (the negative of) a plausibility density

function.

First we explain how KW Lemma A1 supports the other results in

their paper. KW contains three fundamental theorems in addition to its

well-known definition of sequential equilibrium. Two of the theorems
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concern the set of sequential-equilibrium outcomes: Theorem 2 shows

that this set is generically finite, and Theorem 3 shows that it generi-

cally coincides with the set of perfect-equilibrium outcomes. These two

theorems are derived from KW Theorem 1, which generically partitions

the set of sequential-equilibrium assessments into a finite collection

of tractable subsets. That theorem is based on KW Lemma 2, which

partitions the set of consistent assessments into a finite collection of

manifolds, and finally, that lemma is based on KW Lemma A1.

Next we recall definitions from KW in order to state their Lemma A1

precisely.10 In accord with KW pages 872 and 880, (a) let the basis b

of an assessment (σ, β) be the union of σ’s support and β’s support,

(b) let Ψ be the set of consistent assessments, (c) let Ψb be the set of

consistent assessment with basis b, and (d) say that a basis is consistent

if Ψb is nonempty. Then in accord with KW page 887, say that a basis

is labelled by a function K:A→Z+ if

(∀h)(∃a∈F (h)) K(a) = 0 ,(12a)

(∀a) a∈ b iff K(a) = 0 , and(12b)

(∀h)(∀t∈h) t∈ b iff t∈ argmin{JK(t′)|t′∈h} ,(12c)

where JK :T→Z+ is defined (using our formulation of nodes as sets) by

JK(t) = Σa∈tK(t) .(13)

KW Lemma A1 correctly observes that a basis is consistent iff it can be

labelled.

However, Streufert (2006) shows that the proof of KW Lemma A1

is flawed. In particular, the final paragraph on KW page 887 seeks to

establish that any consistent basis can be labelled. It takes an arbitrary

consistent basis, derives a binary relation <̇ over a set of node-like

objects, derives a function J which represents <̇, and then derives

a function K over the set of actions. Then, the last line on page 887

claims but does not demonstrate that J = JK . This equation is critical,

for it is tantamount to claiming that <̇ has an additive representation.

Yet Streufert (2006, Subsection 3.2) shows by counterexample that this

equation does not follow from their construction.

10This paragraph’s concluding sentence is somewhat more general than KW
Lemma A1 because their framework assumes that the chance player moves only
at the outset. In their framework, our Ac would be their W , our T c would be the
set {{w}|w∈W} (which consists of singleton nodes), our As would be their A, our
t∈T s would be their x∈X, and our (σ, β) would be their (π, µ).
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The KW ordering <̇ resembles our plausibility relation <. Accordingly,

our Theorem B’s derivation of a density-function representation for <
can be used to prove their Lemma A1, as the following corollary makes

explicit. Essentially, the negative of a plausibility density function π

can serve as a labelling K.

Corollary 2 (= KW Lemma A1). A basis is consistent iff it can be

labelled. (Proof B.9 in Appendix B.)

KW Theorems 2 and 3 have since been superseded by Govindan and

Wilson (2001, Theorem 2.2) and Blume and Zame (1994, Theorem 4).

Both these papers use abstract theorems about semi-algebraic sets.

However, for historical reasons, there is some merit in setting the

record straight. Further, KW Theorem 1 continues to provide an ex-

plicit partition of the set of sequential-equilibrium assessments, and

KW Lemma 2 continues to provide an explicit partition of the set Ψ of

consistent assessments into the manifolds Ψb of { Ψb | b is consistent }.
Although these partitions may be regarded as “long complicated con-

struction[s] from the appendix in Kreps and Wilson (1982),” as re-

marked by Govindan and Wilson (2001, page 765), the partitions are

less complicated when a labelling is understood as (the negative of)

a density-function representation. Accordingly, arguments using these

relatively explicit partitions may yet complement arguments using rel-

atively abstract theorems about semi-algebraic sets.

4. Conclusion

In Section 2, we introduced the concept of a set tree, in which every

node is formally identical to the set of actions which lead to it. We

then proved that there is a natural one-to-one isomorphism between the

collection of sequence-tree games with agent recall and the collection of

set-tree games. Since agent recall is very weak, this new isomorphism

allows one to simplify almost every game to its set-tree equivalent.

In Section 3, we applied this isomorphism. To set the stage, we de-

fined the plausibility relation of an arbitrary assessment. Because of

Section 2’s isomorphism, we could analyze this binary relation between

nodes as a binary relation between sets. In this fashion we discovered

that the plausibility relation of a consistent assessment must have a

density-function representation. This result was surprisingly straight-

forward and intuitive because of close parallels with the foundations
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of ordinary probability theory. Finally, we used the result (a) to show

that consistency’s extended notion of stochastic independence parallels

preference theory’s familiar concept of additive separability, and (b) to

repair a critical and yet relevant proof within Kreps and Wilson (1982).

Appendix A. Set-Tree Games and Theorem A

A.1. Partitioning Actions by Agents

The following parallel lemmas are unsurprising but necessary.

Lemma A.1. 〈F̄ (h̄)〉h̄∈H̄ is an indexed partition of A. In other

words, {F̄ (h̄)|h̄} partitions A and h̄ 7→ F̄ (h̄) is invertible.

Proof. We begin with three observations.

(a) Each F̄ (h̄) is nonempty. To see this, note H̄ partitions T̄∼Z̄ by

assumption, and thus each h̄ is a nonempty set of nonterminal nodes.

(b) If h̄1 6=h̄2 then F̄ (h̄1)∩F̄ (h̄2) = ∅. To see this, take any h̄1 6=h̄2,

any t̄ 1∈h̄1, and any t̄ 2∈h̄2. Since H̄ is a partition, we have (/∃h̄){t̄ 1, t̄ 2}⊆h̄,

and hence F̄ (t̄ 1)∩F̄ (t̄ 2) = ∅ by the contrapositive of (2b). This im-

plies F̄ (h̄1)∩F̄ (h̄2)=∅ because F̄ (t̄ 1)=F (h̄1) by t̄ 1∈h̄1 and (2a), and

because F (t̄ 2)=F (h̄2) by t̄ 2∈h̄2 and (2a).

(c)
⋃{F̄ (h̄)|h̄} = A.

⋃{F̄ (h̄)|h̄}⊆A follows from the definition of

F̄ . To see the converse, take any a. By assumption there exists some

t̄ and some m≤N(t̄) such that t̄m = a. By assumption 1 applied

N(t̄)−(m−1) times, both 1t̄m−1 and 1t̄m are elements of T̄ . Thus since

1t̄m−1⊕(a) = 1t̄m, we have a∈F̄ (1t̄m−1). Therefore since H̄ partitions

T̄∼Z̄, we have some h̄ such that 1t̄m−1∈h̄ and hence a∈F̄ (h̄).

{F̄ (h̄)|h̄} partitions A by observations (a)–(c). If h̄ 7→ F̄ (h̄) were

not invertible, there would be h̄1 6=h̄2 such that F̄ (h̄1)=F̄ (h̄2). Since

both F̄ (h̄1) and F̄ (h̄2) are both nonempty by observation (a), we would

then have h̄1 6=h̄2 such that F̄ (h̄1)∩F̄ (h̄2)6=∅. This would contradiction

observation (b). 2

Lemma A.2. {F (h)}h∈H is an indexed partition of A. In other

words, {F (h)|h} partitions A and h 7→ F (h) is invertible.

Proof. We begin with three observations.

(a) Each F (h) is nonempty. This holds because each h is a subset of

nonterminal nodes.

(b) If h1 6=h2 then F (h1)∩F (h2) = ∅. To see this, take any h1 6=h2,

any t1∈h1, and any t2∈h2. SinceH is a partition, we have (/∃h){t1, t2}⊆h,
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and hence F (t1)∩F (t2) = ∅ by the contrapositive of (4b). This implies

F (h1)∩F (h2)=∅ because F (t1)=F (h1) by t1∈h1 and (4a), and because

F (t2)=F (h2) by t2∈h2 and (4a).

(c)
⋃{F (h)|h} = A.

⋃{F (h)|h}⊆A follows from the definition of

F . To see the converse, take any a. By the assumption A=
⋃
T , there

exists at least one t owning a and we may let t∗ be the smallest such

set. Note that a must be the last action of t∗, for if a∗ 6=a were its

last action, t∗∼{a∗} would be a smaller set that also owns a. Hence

a∈F (t∗∼{a}). Further, since t∗∼{a} is nonterminal and H partitions

the collection of nonterminal nodes, there is some h owning t∗∼{a}.
Thus by the last two sentences, a∈F (h).

{F (h)|h} partitions A by observations (a)-(c). If h 7→ F (h) were

not invertible, there would be h1 6=h2 such that F (h1)=F (h2). Since

both F (h1) and F (h2) are both nonempty by observation (a), we would

then have h1 6=h2 such that F (h1)∩F (h2)6=∅. This would contradiction

observation (b). 2

A.2. Some Consequences of Isomorphism between Trees

Each of this lemma’s observations is used at least twice.

Lemma A.3. The following hold whenever (A, T ) is isomorphic to

(A, T̄ ), F and Z are derived from (A, T ), and F̄ and Z̄ are derived

from (A, T̄ ).

(a) If t=R(t̄), then F (t) = F̄ (t̄).

(b) Z = R1(Z̄).

(c) If h=R1(h̄), then F (h) = F̄ (h̄).

(d) If H = {R1(h̄)|h̄∈H̄}, then H partitions T∼Z iff H̄ partitions

T̄∼Z̄.

(e) If I = {R2(̄i)|̄i∈Ī} and ic = R2(̄ic), then (6e) is equivalent to

(∀i 6=ic)(∀t∈Z) ui(t) = ū(R2|P2(T̄ ))
−1(i) ((R|T̄ )−1(t)).

Proof. (a) Suppose t=R(t̄). Then by the assumed equality, by the

definition of F , by manipulation, by the invertibility of R|T̄ (5a), by

isomorphism condition (5b), by manipulation, and by the definition of

F̄ ,

(∀a) (t, a) ∈ F
⇔ (R(t̄), a) ∈ F
⇔ a/∈R(t̄) and R(t̄)∪{a}∈T
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⇔ (∃t′) a/∈R(t̄) and R(t̄)∪{a}=t′
⇔ (∃t̄′) a/∈R(t̄) and R(t̄)∪{a}=R(t̄′)

⇔ (∃t̄′) t̄⊕(a) = t̄′

⇔ t̄⊕(a) ∈ T̄
⇔ (t̄, a) ∈ F̄

This is equivalent to (∀a) a∈F (t) ⇔ a∈F̄ (t̄), which is in turn equiva-

lent to F (t) = F̄ (t̄).

(b) By the definition of R1, the definition of Z̄, part (a), the invert-

ibility of R|T̄ (5a), and the definition of Z,

R1(Z̄) = { R(t̄) | t̄∈Z̄ }
= { R(t̄) | F̄ (t̄)=∅ } = { R(t̄) | F (R(t̄))=∅ }

= { t | F (t)=∅ } = Z .

(c) Suppose h=R1(h̄). Then

F ( h )

= F ( R1(h̄) )

= F ( {R(t̄)|t̄∈h̄} )

= { F (R(t̄)) | t̄∈h̄ }
= { F̄ (t̄) | t̄∈h̄ }
= F̄ (h̄) ,

where the second equality is the definition of R1(h̄) and the fourth

follows from part (a).

(d) Assume H = {R1(h̄)|h̄∈H̄}. Then

H partitions T∼Z
⇔ {R1(h̄)|h̄∈H̄} partitions T∼Z
⇔ {R1(h̄)|h̄∈H̄} partitions R1(T̄ )∼R1(Z̄)

⇔ {h̄|h̄∈H̄} partitions T̄∼Z̄
⇔ H̄ partitions T̄∼Z̄ ,

where the first equivalence follows from this part (c)’s assumption, the

second from the invertibility of R|P(T̄ ) by the invertibility of R|T̄ (5a)

and from part (b), and the third from the invertibility of R|T̄ (5a).
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(e) Assume I = {R2(̄i)|̄i∈H̄} and ic = R2(̄ic). Then

(∀i 6=ic)(∀t∈Z) ui(t) = ū(R2|P2(T̄ ))
−1(i) ( (R|T̄ )−1(t) )

⇔ (∀ī 6=īc)(∀t∈Z) uR2 (̄i)(t) = ūī ( (R|T̄ )−1(t) )

⇔ (∀ī6=īc)(∀t̄∈Z̄) uR2 (̄i)(R(t̄)) = ūī(t̄)

⇔ (6e) ,

where the first and fourth equivalences are definitional, the second holds

because of part (d)’s assumption and because R2|P2(T̄ ) is invertible since

R|T̄ is invertible, and the third holds because Z = R1(Z̄) by part (b)

and because R|T̄ is invertible. 2

A.3. Agent Recall

Lemma A.4. Each of the following is equivalent to the existence of

an absent-minded agent.

(a) There exist h̄, t̄, and 0 ≤ m < n ≤ N(t̄) such that {1t̄m, 1t̄n} ⊆ h̄.

(b) There exist h̄, t̄, and 0 ≤ m < N(t̄) such that {1t̄m, t̄} ⊆ h̄.

(c) There exist h̄, t̄, and 1 ≤ m ≤ N(t̄) such that t̄m ∈ F̄ (h̄) and t̄ ∈ h̄.

(d) There exist t̄ and 1 ≤ m < n ≤ N(t̄) such that t̄m = t̄n.

(e) There exist h̄, t̄, and 1 ≤ m < n ≤ N(t̄) such that {t̄m, t̄n} ⊆ F̄ (h̄).

Proof. By inspection, (a) is equivalent to the existence of an absent-

minded agent.

(a)⇒(b). If (a) holds for t̄ = t̄∗ and n = n∗, then (b) holds for

t̄ = 1t̄
∗
n∗ .

(b)⇒(c). If (b) holds for m = m∗, then (c) holds for m = m∗+1.

(c)⇒(d). Assume (c). Since t̄m ∈ F̄ (h̄) and t̄ ∈ h̄, it must be that

t̄∗ = t̄⊕(t̄m) belongs to T̄ . Thus (d) holds at t̄ = t̄∗ because both t̄∗m
and t̄∗N(t̄∗) equal t̄m.

(d)⇒(e) Assume (d). Since H̄ partitions T̄∼Z̄, there is an h̄ such

that 1t̄m=1∈h̄ and hence t̄m∈F̄ (h̄). Since F̄ (h̄) has t̄m as an element, it

must have the singleton {t̄m, t̄n} as a subset. Thus (e) holds.

(e)⇒(a). If (e) holds at m = m∗ and n = n∗, then (a) holds at

m = m∗−1 and n = n∗−1. 2

Lemma A.5. Agent recall is equivalent to (∀t̄) |R(t̄)| = N(t̄).

Proof. By Lemma A.4(d), the negation of agent recall is equivalent

to the existence of a t̄ such that |R(t̄)| < N(t̄). This is equivalent to
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the negation of (∀t̄) |R(t̄)| = N(t̄) since |R(t̄)| can never exceed N(t̄).

2

A.4. Reducing Sequences to Sets

Lemma A.6 (“The Zipper”).11 If (A, T̄ ) has agent recall, then

(∀t̄, t̄ ∗) R(t̄) ⊇ R(t̄ ∗) ⇒ 1t̄N(t̄ ∗) = t̄ ∗ .

Proof. Take any t̄ and t̄ ∗ such that R(t̄)⊇R(t̄ ∗). By Lemma A.5, by

R(t̄)⊇R(t̄ ∗), and by Lemma A.5 again, we have

N(t̄) = |R(t̄)| ≥ |R(t̄ ∗)| = N(t̄ ∗) .

The next two paragraphs will show by induction on n∈{1, 2, ... N(t̄ ∗)}
that (∀n≤N(t̄ ∗)) 1t̄n = 1t̄

∗
n .

For the initial step at n = 1, suppose that t̄1 6= t̄ ∗1 . Let h̄ be the

agent containing the initial node {} and note that {t̄1, t̄ ∗1 } ⊆ F (h̄) (in

fact, agent recall implies that h̄ must be {{}} but this observation is

superfluous here). Since R(t̄)⊇R(t̄ ∗), it must be that t̄ ∗1 ∈ R(t̄), hence

there exists a k > 1 such that t̄k = t̄ ∗1 , and hence, by the previous

sentence, there exists a k > 1 such that {t̄1, t̄k} ⊆ F̄ (h̄). Thus by

Lemma A.4(e) there is an absent-minded agent. This violates agent

recall, and hence, it must be that t̄1 = t̄ ∗1 .

For the inductive step at n ∈ {2, 3, ...N(t̄ ∗)}, assume that 1t̄n−1 =

1t̄
∗
n−1 and suppose that t̄n 6= t̄ ∗n . Let h̄ be the agent containing 1t̄n−1(=

1t̄
∗
n−1) and note that {t̄n, t̄ ∗n} ⊆ F (h̄). Since R(t̄)⊇R(t̄ ∗), it must be

that t̄ ∗n ∈ R(t̄), hence there exists a m 6= n such that t̄m = t̄ ∗n , and

hence, by the previous sentence, there exists a m 6= n such that

{t̄n, t̄m}⊆F̄ (h̄). Thus by Lemma A.4(e) there is an absent-minded

agent. This violates agent recall, and hence, it must be that t̄n = t̄ ∗n .

Therefore (∀n≤N(t̄ ∗)) 1t̄n = 1t̄
∗
n . In particular, at n = N(t̄ ∗), we

have 1t̄N(t̄ ∗) = 1t̄
∗
N(t̄ ∗) The right-hand side is t̄ ∗. 2

Lemma A.7. Every sequence-tree game with agent recall is isomor-

phic to exactly one set-tree game.

Proof. Let (A, T̄ , H̄, Ī, īc, ρ̄, ū) be a sequence-tree game with agent

recall, and derive F̄ and Z̄ from (A, T̄ ).

11The name refers to the lemma’s inductive proof, which starts with the se-
quences’ first actions and works its way up.
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Step 1: Uniqueness. Suppose that both (A, T,H, I, ic, ρ, u) and

(A, T ′, H ′, I ′, (ic)′, ρ′, u′) are isomorphic to the given (A, T̄ , H̄, Ī, īc, ρ̄, ū).

By (5a), we have T = T ′. Further, by (6a,b,c,d), we have (H, I, ic, ρ) =

(H ′, I ′, (ic)′, ρ′). Finally, by (6b,c,e) and Lemma A.3(e), we have u = u′.

Step 2: Two preliminary observations. This paragraph shows

(∀t̄ ∗, a, t̄) t̄ ∗⊕(a)=t̄ ⇒ a/∈R(t̄ ∗) and R(t̄ ∗)∪{a}=R(t̄) .(14)

Accordingly, take any t̄ ∗, a, and t̄ such that t̄ ∗⊕(a) = t̄. Note

|R(t̄ ∗)|+ 1 = N(t̄ ∗) + 1 = N(t̄) = |R(t̄)| .
by Lemma A.5, by t̄ ∗⊕(a) = t̄, and by Lemma A.5 again. This and

t̄ ∗⊕(a) = t̄ yield a/∈R(t̄ ∗), which is the first fact to be derived. Further,

t̄ ∗⊕(a) = t̄ also implies that R(t̄) = R(t̄ ∗⊕(a)) = R(t̄ ∗)∪{a}, which is

the second fact to be derived.

Conversely, this paragraph shows

(∀t̄ ∗, a, t̄) t̄ ∗⊕(a)=t̄ ⇐ a/∈R(t̄ ∗) and R(t̄ ∗)∪{a}=R(t̄) .(15)

Accordingly, take any t̄ ∗, a, and t̄ such that a/∈R(t̄ ∗) and R(t̄ ∗)∪{a} =

R(t̄). Note

N(t̄ ∗) + 1 = |R(t̄ ∗)|+ 1 = |R(t̄)| = N(t̄).

by Lemma A.5, by the assumption of the previous sentence, and by

Lemma A.5 again. Since R(t̄) = R(t̄ ∗)∪{a}⊇R(t̄ ∗), Lemma A.6 (the

“zipper”) shows that 1t̄N(t̄ ∗) = t̄ ∗. Thus by the last two sentences

together, 1t̄N(t̄)−1 = t̄ ∗. Therefore, since {a} = R(t̄)∼R(t̄ ∗), it must be

that t̄N(t̄) = a. The last two sentences together yield t̄ = t̄ ∗⊕(a).

Step 3: An isomorphic set tree. Define (A, T ) by letting T = R1(T̄ ).

This paragraph shows

R|T̄ is an invertible function from T̄ onto T .(16)

Since T = R1(T̄ ) by definition, we only need show that R|T̄ is injective.

Accordingly, suppose that t̄ and t̄ ∗ are elements of T̄ such that R(t̄) =

R(t̄ ∗). By Lemma A.6 (the “zipper”), we have 1t̄N(t̄ ∗) = t̄ ∗. Further,

the left-hand side is t̄ because

N(t̄ ∗) = |R(t̄ ∗)| = |R(t̄)| = N(t̄)

by Lemma A.5, by R(t̄) = R(t̄ ∗), and by Lemma A.5 again.
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This paragraph shows that

(∀t∗, a, t)(17)

(R|T̄ )−1(t∗)⊕(a)=(R|T̄ )−1(t) ⇔ a/∈t∗ and t∗∪{a}=t .
Accordingly, take any t∗, a, and t. Then define t̄ ∗ = (R|T̄ )−1(t∗) and

t̄ = (R|T̄ )−1(t) and note

(R|T̄ )−1(t∗)⊕(a)=(R|T̄ )−1(t)

⇔ t̄ ∗⊕(a) = t̄

⇔ a/∈R(t̄ ∗) and R(t̄ ∗)∪{a}=R(t̄)

⇔ a/∈t∗ and t∗∪{a}=t ,
where the first equivalence follows from the definitions of t̄ ∗ and t̄, the

second from (14) and (15), and the third from the definitions of t̄ ∗ and

t̄ and from the invertibility (16) of R|T̄ .

We now show that (A, T ) is a set tree. Since A =
⋃{R(t̄)|t̄} by

assumption and since {R(t̄)|t̄} = T by the definition of T , we have

that A =
⋃
T . It remains to be shown that every nonempty t has a

unique last action.

Accordingly, take any nonempty t. First consider uniqueness. By

(17) in the direction ⇐, every last action of t must be the last element

of the sequence (R|T̄ )−1(t). To see existence, define t̄ = (R|T̄ )−1(t),

and then from this t̄ derive t∗ = R(1t̄N(t̄)−1) and a = t̄N(t̄). Then by

substitution and manipulation,

(R|T̄ )−1(t∗)⊕(a)

= (R|T̄ )−1(R(1t̄N(t̄)−1))⊕(t̄N(t̄))

= 1t̄N(t̄)−1⊕(t̄N(t̄))

= t̄

= (R|T̄ )−1(t) .

Since this is the left-hand side of (17), we have the right-hand side of

(17), which states that this a is a last action of t.

Finally, we note that (A, T̄ ) and (A, T ) are isomorphic by (16), (14),

and (15).

Step 4: An isomorphic set-tree game. Derive F and Z from (A, T ).

Then define (H, I, ic, ρ, u) by

H = { R1(h̄) | h̄∈H̄ }(18a)
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I = { R2(̄i) | ī∈Ī }(18b)

ic = R2(̄ic)(18c)

ρ = ρ̄ and(18d)

(∀i 6=ic)(∀t∈Z) ui(t) = ū(R2|P2(T̄ ))
−1(i) ( (R|T̄ )−1(t) ) .(18e)

This paragraph derives assumption (4a). Accordingly, take any t1,

t2, and h, and define t̄ 1 = (R|T̄ )−1(t1), t̄ 2 = (R|T̄ )−1(t2), and h̄ =

(R1|P(T̄ ))
−1(h). Then

{t1, t2} ⊆ h

⇒ {t̄ 1, t̄ 2} ⊆ h̄

⇒ F̄ (t̄ 1) = F̄ (t̄ 2)

⇒ F (t1) = F (t2) ,

where the second implication follows from (2a) and from h̄∈H̄ by (18a),

and the last implication follows from Lemma A.3(a).

We now derive assumption (4b). Accordingly, take any t1 and t2,

and define t̄ 1 = (R|T̄ )−1(t1) and t̄ 2 = (R|T̄ )−1(t2). Then

F (t1)∩F (t1) 6= ∅
⇒ F̄ (t̄ 1)∩F̄ (t̄ 2) 6= ∅
⇒ (∃h̄){t̄ 1, t̄ 2} ⊆ h̄

⇒ (∃h){t1, t2} ⊆ h ,

where the first implication follows from Lemma A.3(a), the second from

(2b), and the last from (18a).

By Step 3 in this proof, (A, T ) is a set tree. Further, by Lemma A.3(d)

and (18a), and by the last two paragraphs, H is a partition of T∼Z
that satisfies property (4). Hence (A, T,H, I, ic, ρ, u) is a set-tree game.

Finally, by Step 3 in this proof, (A, T ) and (A, T̄ ) are isomorphic.

Additionally, (18) and Lemma A.3(e) imply (6). Hence (A, T,H, I, ic, ρ, u)

and (A, T̄ , H̄, Ī, īc, ρ̄, ū) are isomorphic. 2

A.5. Constructing Sequences from Sets

Lemma A.8. Every set-tree game is isomorphic to exactly one sequence-

tree game, and that sequence-tree game has agent recall.
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Proof. Let (A, T,H, I, ic, ρ, u) be a set-tree game, derive F and Z

from (A, T ), and let α∗:T→A be the function that takes each node

t∈T to its unique last action.

Step 1: Uniqueness. Suppose that (A, T̄ , H̄, Ī, īc, ρ̄, ū) and

(A, ¯̄T, ¯̄H, ¯̄I, ¯̄ic, ¯̄ρ, ¯̄u) are two sequence-tree games that are isomorphic

to (A, T,H, I, ic, ρ, u).

This and the next two paragraphs show that T̄ = ¯̄T . Suppose not.

Then because both (A, T̄ ) and (A, ¯̄T ) satisfy isomorphism condition

(5a), there must be t̄, ¯̄t, and t such that t̄6=¯̄t and yet R(t̄) = R(¯̄t) = t.

This long paragraph shows by induction that

(∀k∈{0, 1, ... |t|})
1t̄N(t̄)−k 6= 1

¯̄tN(¯̄t)−k ,(19a)

R(1t̄N(t̄)−k) = R(1
¯̄tN(¯̄t)−k) ,(19b)

and |R(1t̄N(t̄)−k)| = |t| − k .(19c)

The initial step at k=0 follows from the definition of t̄, ¯̄t, and t. Now

assume that (19) holds at k < |t|. By the definitions of t̄, ¯̄t, and t, it

must be N(t̄) and N(¯̄t) are at least as big as |t| and thus strictly bigger

than k. As a result, we may write

1t̄N(t̄)−k−1 ⊕ (t̄N(t̄)−k) = 1t̄N(t̄)−k and

1
¯̄tN(¯̄t)−k−1 ⊕ (¯̄tN(¯̄t)−k) = 1

¯̄tN(¯̄t)−k .
(20)

Thus, by applying isomorphism property (5b) twice, we find

t̄N(t̄)−k /∈R(1t̄N(t̄)−k−1) ,

R(1t̄N(t̄)−k−1)∪{t̄N(t̄)−k} = R(1t̄N(t̄)−k) ,

and ¯̄tN(¯̄t)−k /∈R(1
¯̄tN(¯̄t)−k−1) ,

R(1
¯̄tN(¯̄t)−k−1)∪{¯̄tN(¯̄t)−k} = R(1

¯̄tN(¯̄t)−k) .

(21)

Thus, by applying the definition of last action twice, we find

t̄N(t̄)−k = α∗(R(1t̄N(t̄)−k)) and

¯̄tN(¯̄t)−k = α∗(R(1
¯̄tN(¯̄t)−k)) .

But by (19b), the right-hand sides of these two equalities must be equal.

Thus we may define a∗ to be equal to both t̄N(t̄)−k and ¯̄tN(¯̄t)−k, and then
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substitute out both of these latter terms in (20) and (21) to obtain

1t̄N(t̄)−k−1 ⊕ (a∗) = 1t̄N(t̄)−k and

1
¯̄tN(¯̄t)−k−1 ⊕ (a∗) = 1

¯̄tN(¯̄t)−k .
(22)

and

a∗ /∈R(1t̄N(t̄)−k−1) and R(1t̄N(t̄)−k−1)∪{a∗} = R(1t̄N(t̄)−k) and

a∗ /∈R(1
¯̄tN(¯̄t)−k−1) and R(1

¯̄tN(¯̄t)−k−1)∪{a∗} = R(1
¯̄tN(¯̄t)−k) .

(23)

By (19a), the pair (22) implies that

1t̄N(t̄)−k−1 6= 1
¯̄tN(¯̄t)−k−1 .

The pair (23) implies that

R(1t̄N(t̄)−k−1) = R(1t̄N(t̄)−k) ∼ {a∗} and

R(1
¯̄tN(¯̄t)−k−1) = R(1

¯̄tN(¯̄t)−k) ∼ {a∗} ,
and thus by (19b) we have that

R(1t̄N(t̄)−k−1) = R(1
¯̄tN(¯̄t)−k−1) .

Finally, the first half of (23) together with (19c) imply that

|R(1t̄N(t̄)−k−1)| = |R(1t̄N(t̄)−k)| − 1 = |t| − k − 1 .

The last three sentences have derived (19) at k+1.

At k = |t|, equations (19b) and (19c) imply that both R(1t̄N(t̄)−|t|)

and R(1
¯̄tN(¯̄t)−|t|) are empty. Thus both 1t̄N(t̄)−|t| and 1

¯̄tN(¯̄t)−|t| are empty,

in contradiction to (19a). Therefore T̄ = ¯̄T .

Next, we show (H̄, Ī, īc) = ( ¯̄H, ¯̄I, ¯̄ic). Since T̄ = ¯̄T , we have that

R|T̄ = R| ¯̄T , that R1|P(T̄ ) = R1|P( ¯̄T ), and that R2|P2(T̄ ) = R2|P2( ¯̄T ).

Therefore, since both H̄ and ¯̄H satisfy (6a), we have

H̄ = {(R1|P(T̄ ))
−1(h)|h∈H} = {(R1|P( ¯̄T ))

−1(h)|h∈H} = ¯̄H ,(24a)

and since both Ī and ¯̄I satisfy (6b), we have

Ī = {(R2|P2(T̄ ))
−1(i)|i∈I} = {(R2|P2( ¯̄T ))

−1(i)|i∈I} = ¯̄I ,(24b)

and since both īc and ¯̄ic satisfy (6c), we have

īc = (R2|P2(T̄ ))
−1(ic) = (R2|P2( ¯̄T ))

−1(ic) = ¯̄ic .(24c)

Finally, we show (ρ̄, ū) = (¯̄ρ, ¯̄u). Trivially, ρ̄ = ρ = ¯̄ρ since both ρ̄ and
¯̄ρ satisfy (6d). To get at the payoff functions, begin by deriving Z̄ from

(A, T̄ ) and ¯̄Z from (A, ¯̄T ). Then since Ī∼{̄ic} = ¯̄I∼{̄̄ic} by (24b,c), and

since Z̄ = ¯̄Z because T̄ = ¯̄T , we have that (Ī∼{̄ic})×Z̄ = (¯̄I∼{̄̄ic})× ¯̄Z,
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or in other words, that the domain of ū equals the domain of ¯̄u. Then,

for any (̄i, t̄) in that common domain, we have

ūī( t̄ ) = uR2 (̄i)(R(t̄) ) = ¯̄uī( t̄ )

because both ū and ¯̄u satisfy (6e) (the single bars on ī and t̄ on the

right-hand side are correct). The last two sentences imply ū = ¯̄u.

Step 2: Define T̄ . We now begin the task of constructing a sequence-

tree game which is isomorphic to (A, T,H, I, ic, ρ, u). The first job is

to define T̄ .

For any n≥0, let Tn = { t | |t|=n } be the set of nodes with n el-

ements. Because A is finite, there is some N such that TN 6=∅ and

(∀n>N) Tn=∅. Thus T =
⋃N

n=0Tn. Further, let tN be some element

of TN , and for all n∈{0, 1, 2, ... N−1}, let tn be tn+1∼{α∗(tn+1)}. Since

each tn∈Tn, we have shown that (∀n≤N) Tn 6=∅. In particular, T0 6=∅
and thus T0 = {{}}.

We now define a sequence 〈Qn〉Nn=0 of functions in which each function

Qn maps each node t of Tn to some finite action sequence t̄. We do this

recursively. To begin, recall T0 = {{}} from the previous paragraph

and define the one-element function Q0 by Q0({}) = {}. Thus the

empty set t = {} is mapped to the empty sequence t̄ = {}. Then, for

any n ∈ {1, 2, ...N}, use Qn−1 to define Qn at each t ∈ Tn by

Qn(t) = Qn−1(t∼{α∗(t)})⊕(α∗(t)) .(25)

Note that Qn−1(t∼{α∗(t)}) is well-defined because t∼{α∗(t)} has n−1

elements because t ∈ Tn and α∗(t) is its last action.

Define T̄ =
⋃

nQn(Tn), where here, and for the remainder of the

proof, we implicitly assume that n ranges over {0, 1, ... N}.

Step 3: Show (A, T̄ ) is a sequence tree. First we show by induction

that

(∀n)(∀t∈Tn) R(Qn(t)) = t .(26)

This holds at n=0 because R(Q0({})) = R({}) = {}. Further, it holds

at n≥1 if it holds at n−1 because

(∀t∈Tn) R(Qn(t) ) = R
(
Qn−1(t∼{α∗(t)})⊕ (α∗(t))

)
= R

(
Qn−1(t∼{α∗(t)})

) ∪ R( (α∗(t))
)

= t∼{α∗(t)} ∪ {α∗(t)}
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= t ,

where the first equality holds by the definition (25) of Qn, and the third

holds by the inductive hypothesis.

This observation allows us to claim

A =
⋃

t̄R(t̄) .(27)

Easily, A ⊇ ⋃t̄R(t̄) because each R(t̄) is a set of actions. Conversely,

take any a. By assumption there is some t such that a∈t. Then by

construction there is some n such that t∈Tn. Thus by (26), we have

a ∈ t = R(Qn(t)). Therefore, since Qn(t) ∈ Qn(Tn) ⊆ T̄ , this Qn(t) is

a t̄ such that a ∈ R(t̄).

Next we show by induction that

(∀n)(∀t∈Tn) N(Qn(t)) = n .(28)

This holds at n = 0 because N(Q0({})) = N({}) = 0. Further, it holds

at any n≥1 if it holds at n−1 because

(∀t∈Tn) N(Qn(t) ) = N(Qn−1(t∼{α∗(t)})⊕ (α∗(t)) )

= N(Qn−1(t∼{α∗(t)}) ) +N( (α∗(t)) )

= (n−1) + 1

= n ,

where the first equality holds by the definition (25) of Qn, and the third

by the inductive hypothesis.

This observation allows us to claim

(∀n) { t̄∈T̄ | N(t̄)=n } = Qn(Tn) .(29)

The inclusion ⊇ follows from (28) at n. Conversely, if there were an

element of { t̄∈T̄ | N(t̄)=n } that was from Qm{Tm} for some m6=n it

would violate (28) at m.

Finally we show that T̄ satisfies assumption (1). Accordingly, take

any t̄∈T̄ . By (29), there exists t∈TN(t̄) such that t̄ = QN(t̄)(t), and thus

the definition (25) of QN(t̄) yields that

1t̄N(t̄)−1 = QN(t̄)−1(t∼{a∗(t)}) ∈ T̄ .

By (27) and the previous paragraph, (A, T̄ ) is a sequence tree.

Step 4: Show isomorphism between trees. Next we show that the

sequence tree (A, T̄ ) is isomorphic to the original set tree (A, T ). In
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particular, the next paragraph shows R|T̄ is invertible and the remain-

der of this step shows that concatenation is isomorphic to union.

Define Q =
⋃

nQn. The remainder of this paragraph shows (32)

below. To begin, (26) implies that each R|Qn(Tn) is the inverse of Qn.

In other words,

(∀n) Qn = (R|Qn(Tn))
−1 is(30)

an invertible function from Tn onto Qn(Tn) .

The domain of Q is T =
⋃

nTn and its range is T̄ =
⋃

nQn(Tn). Further,

T is partitioned by {Tn}n, and T̄ is partitioned by {Qn(Tn)}n (because

of (29)). Therefore (30) implies that

Q = (R|T̄ )−1 is an invertible function from T onto T̄ .(31)

This is equivalent to

R|T̄ = Q−1 is an invertible function from T̄ onto T .(32)

To begin proving that concatenation is isomorphic to union, this

paragraph shows

(∀n≥1)(∀t∗∈Tn−1)(∀a)(∀t∈Tn)(33)

Qn−1(t∗)⊕(a) = Qn(t) ⇔ a/∈t∗ and t∗∪{a} = t .

Accordingly, take any such n, t∗, a, and t. Then

Qn−1(t∗)⊕(a) = Qn(t)

⇔ Qn−1(t∗)⊕(a) = Qn−1(t∼{α∗(t)})⊕(α∗(t))

⇔ Qn−1(t∗) = Qn−1(t∼{α∗(t)}) and a = α∗(t)

⇔ t∗ = t∼{α∗(t)} and a = α∗(t)

⇔ a/∈t∗ and t∗∪{a} = t

where the first equivalence holds by the definition of Qn at (25), the sec-

ond equivalence by breaking the vector equality into two components,

the third equivalence by applying R and (32) to the first equality, and

the fourth equivalence by α∗(t) being a last action.

Essentially, this paragraph removes the n from (33). Specifically, it

shows that

(∀t∗)(∀a)(∀t)(34)

Q(t∗)⊕(a) = Q(t) ⇔ a/∈t∗ and t∗∪{a} = t .
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First suppose t∗, a, and t satisfy Q(t∗)⊕(a) = Q(t) and let n = |t|.
By (28) and the definition of Q, we have Q(t) = Qn(t) and Q(t∗) =

Qn−1(t∗). Hence a/∈t∗ and t∗∪{a} = t by (33). Conversely, suppose t∗,

a, and t satisfy a/∈t∗ and t∗∪{a} = t and let n = |t|. Then n−1 = |t∗|.
Thus since t∈Tn and t∗∈Tn−1, (33) yields that Qn−1(t∗)⊕(a) = Qn(t).

By the definition of Q, this is equivalent to Q(t∗)⊕(a) = Q(t).

Essentially, this final paragraph quantifies (34) in terms of sequences

rather than sets. Specifically, it shows that

(∀t̄∗, a, t̄)(35)

t̄∗⊕(a) = t̄ ⇔ a/∈R(t̄∗) and R(t̄∗)∪{a} = R(t̄) .

Accordingly, take any t̄∗, a, and t̄, define t∗ = R(t̄∗), and define t =

R(t̄). Then

t̄∗⊕(a) = t̄

⇔ Q(t∗)⊕(a) = Q(t)

⇔ a/∈t∗ and t∗∪{a} = t

⇔ a/∈R(t̄∗) and R(t̄∗)∪{a} = R(t̄) ,

where the first equivalence holds by the definitions of t∗ and t and by

the fact that R|T̄ = Q−1 by (32). The second equivalence holds by

(34), and the third by the definitions of t∗ and t.

Equations (32) and (35) show that the set tree (A, T ) and the se-

quence tree (A, T̄ ) are isomorphic.

Step 5: Define the sequence-tree game. Derive F̄ and Z̄ from (A, T̄ ).

Then define (H̄, Ī, īc, ρ̄, ū) by

H̄ = { (R1|P(T̄ ))
−1(h) | h∈H }(36a)

Ī = { (R2|P2(T̄ ))
−1(i) | i∈I }(36b)

īc = (R2|P2(T̄ ))
−1(ic)(36c)

ρ̄ = ρ and(36d)

(∀ī 6=īc)(∀t̄∈Z̄) ūī(t̄) = uR2 (̄i)(R(t̄)) .(36e)

Since R1|P(T̄ ) and R2|P2(T̄ ) are invertible because R is invertible, equa-

tions (36a,b,c) are equivalent to

H = { R1(h̄) | h̄∈H̄ }(37a)

I = { R2(̄i) | ī∈Ī }(37b)
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and ic = R2(̄ic) .(37c)

This paragraph derives assumption (2a). Accordingly, take any t̄1,

t̄2, and h̄. Then

{t̄1, t̄2} ⊆ h̄

⇒ {R(t̄1), R(t̄2)} ⊆ R1(h̄)

⇒ F (R(t̄1)) = F (R(t̄2))

⇒ F̄ (t̄1) = F̄ (t̄1) ,

where the first implication follows from the definitions of R and R1,

the second implication follows from assumption (4a) and the fact that

R1(h̄)∈H by (37a), and the last implication comes from Lemma A.3(a).

Then we derive assumption (2b). Accordingly, take any t̄1 and t̄2.

Then

F̄ (t̄1) = F̄ (t̄1)

⇒ F (R(t̄1)) = F (R(t̄2))

⇒ (∃h){R(t̄1), R(t̄2)} ⊆ h

⇒ (∃h){t̄1, t̄2} ⊆ (R1|P(T̄ ))
−1(h)

⇒ (∃h̄){t̄1, t̄2} ⊆ h̄ ,

where the first implication follows from Lemma A.3(a), the second

follows from assumption (4b), the third follows from the invertibil-

ity of R|T̄ and R1|P(T̄ ), and the fourth follows from the fact that

(R|P(T̄ ))
−1(h)∈H̄ by (36a).

By (37a) and Lemma A.3(d), and by the last two paragraphs, H̄ is a

partition of T̄∼Z̄ that satisfies assumption (2). Hence (A, T̄ , H̄, Ī, īc, ρ̄, ū)

is a sequence-tree game.

Step 6: Show isomorphism between games. The trees (A, T ) and

(A, T̄ ) are isomorphic by Step 4. Additionally, (37a,b,c) and (36d,e) im-

ply (6). Hence (A, T,H, I, ic, ρ, u) is isomorphic to (A, T̄ , H̄, Ī, īc, ρ̄, ū).

Step 7: Show agent recall. This last step could have been taken at

any point after (31). Equation (26), the definition of Tn, and equation

(28) yield that

(∀n)(∀t∈Tn) |R(Qn(t))| = |t| = n = N(Qn(t)) .
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Thus by the definition of Q,

(∀t) |R(Q(t))| = N(Q(t)) .

Since Q is an invertible function from T onto T̄ by (31), this is equiva-

lent to (∀t̄) |R(t̄)| = N(t̄), which by Lemma A.5 is equivalent to agent

recall. 2

Appendix B. Theorem B and its Corollaries

B.1. Basic Properties of a Plausibility Relation <

Proof B.1 (for Lemma 3.1). Note
c
≈ is symmetric and equal to

{ (t, t∪{a}) | a∈F (t) and a∈Ac }
∪ { (t∪{a}, t) | a∈F (t) and a∈Ac } .(38)

Further,
σ
≈ is symmetric,

σ
� is asymmetric, and the two are disjoint

subsets of

{ (t, t∪{a}) | a∈F (t) and a∈As }
∪ { (t∪{a}, t) | a∈F (t) and a∈As } .(39)

Similarly,
β
≈ is symmetric,

β
� is asymmetric, and the two are disjoint

subsets of

{ (t1, t2) | (∃h∈Hs) {t1, t2}∈h } .(40)

This paragraph observes that these three sets are pairwise disjoint.

(38) and (39) are disjoint because A is partitioned by {Ac, As}. Further,

the union of (38) and (39) is disjoint from (40). If this were not the

case, there would be t, a, and h such that a∈F (t) and {t, t∪{a}}∈h.

Since a∈F (t) and t and t∪{a} share an agent, assumption (4b) would

imply that a∈F (t∪{a}). However, this would contradict the definition

of F , which would require that a/∈t∪{a}.
Since the sets (38), (39), and (40) are pairwise disjoint, the disjoint-

edness observed in the first paragraph implies that < is partitioned by

{ c≈, σ≈, σ�, β≈, β�}. Thus the symmetries and asymmetries observed in the

first paragraph imply that ≈ is partitioned by { c≈, σ≈, β≈} and that � is

partitioned by {σ�, β�}. 2
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B.2. Lemma about Binary Relations Comparing Sets

Before proving Theorem B, we use Farkas’ Lemma to derive a lemma

about binary relations that compare sets. Although we could not find

this exact result in the literature, it is one of many results closely related

to Kraft, Pratt, and Seidenberg (1959) and Scott (1964). These papers

are discussed in Subsection 3.3.

Fact B.2 (Farkas Lemma for Rational Matrices). Let D ∈ Qdp and

E ∈ Qep be two rational matrices. Then the following are equivalent.

(Dπ�0 means every element of Dπ is positive and δT means the trans-

pose of δ.)

(a) (∃π∈Zp) Dπ � 0 and Eπ = 0.

(b) Not (∃δ∈Zd
+∼{0})(∃ε∈Ze) δTD + εTE = 0.

(This fact is taken from Krantz, Luce, Suppes, and Tversky (1971,

pages 62–63). We have replaced their [αi]
m′
i=1 with D and their [βi]

m′′
i=1

with E.)

Lemma B.3. Let A be a finite set and let P(A) be the collection of

all its subsets. Further, let % be a binary relation over P(A), and let

� and ≈ be its asymmetric and symmetric parts. Then the following

are equivalent (s and t denote arbitrary subsets of A).

(a) (Density-Function Representation) There exists π:A→Z such

that for all s and t

s � t ⇒ Σa∈sπ(a) > Σa∈tπ(a) and

s ≈ t ⇒ Σa∈sπ(a) = Σa∈tπ(a) .

(b) (Cancellation Laws) There is no pair (sm, tm) from � in a finite

sequence 〈(sm, tm)〉Mm=1 of pairs from % whenever the sequence satisfies

(∀a) |{m|a∈sm}| = |{m|a∈tm}|.
Proof. (a⇒b) This is straightforward. See the paragraph containing

equation (9).

(a⇐b) We begin by deriving two matrices from the relation %. For

any t, define the row vector 1t ∈ {0, 1}|A| by 1t
a = 1 if a ∈ t and 1t

a = 0

if a 6∈ t. Then define the matrices D = [1s−1t]s�t and E = [1s−1t]s≈t

whose rows are indexed by the pairs of the relations � and ≈.

Now assume (b). This paragraph will argue that there cannot be

column vectors δ ∈ Z|�|+ ∼{0} and ε ∈ Z|≈| such that δTD + εTE = 0.

To see this, suppose that there were such δ and ε. By the symmetry
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of ≈, we may define ε+ ∈ Z|≈|+ by

(∀s≈t) (ε+)(s,t) =

(
ε(s,t)−ε(t,s) if ε(s,t)−ε(t,s) ≥ 0

0 otherwise

)
so that εTE = εT

+E. Thus we have δ ∈ Z|�|+ ∼{0} and ε+ ∈ Z|≈|+ such

that δTD + εT
+E = 0. Now define the sequence 〈(sm, tm)〉Mm=1 of pairs

from % in such a way that every pair from � appears λ(s,t) times and

every pair from ≈ appears (µ+)(s,t) times. The equality δTD+εT
+E = 0

yields that this sequence satisfies (∀a) |{m|a∈sm}| = |{m|a∈tm}|, and

δ ∈ Z|≺|+ ∼{0} yields that it contains at least one pair from �. By

condition (b), this is impossible.

Since the result of the previous paragraph is equivalent to condition

(b) of Lemma B.2 (Farkas), there is a vector π ∈ Z|A| such that Dπ � 0

and Eπ = 0. By the definitions of D and E, this is equivalent to

condition (a) of this lemma. 2

B.3. Proof of Theorem B

Lemma B.4 assembles elementary observations about consistency.

Proof B.5 then combines Lemmas B.3 and B.4 to prove Theorem B.

Lemma B.4. Take an assessment (σ, β) and its plausibility relation

<. Assume (σ, β) is consistent and let 〈(σn, βn)〉n be a sequence of

full-support Bayesian assessments that converges to it. Then

(∀ t1� t2) limn
Πa∈t2(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)
= 0 and

(∀ t1≈ t2) limn
Πa∈t2(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)
∈ (0,∞)

(where Πa∈{}(ρ∪σn)(a) is defined to be one).

Proof. This paragraph shows

(∀ t1 σ
� t2) limn

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= 0 .(41)

Accordingly, suppose t1
σ
� t2. By the definition of

σ
�, there exists a such

that σ(a)=0, a∈F (t1), and t1∪{a} = t2. Thus, since a/∈t1 by the

definition of F ,

limn
Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= limn σn(a) = σ(a) = 0 .
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This paragraph shows

(∀ t1 σ
≈ t2) limn

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
∈ (0,∞) .(42)

Suppose t1
σ
≈ t2. By the definition of

σ
≈, there exists a with σ(a)>0 such

that either, a∈F (t1) and t1∪{a}=t2, or, a∈F (t2) and t2∪{a}=t1. In

the first case, a/∈t1 by the definition of F and thus

limn
Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= limn σn(a) = σ(a) ∈ (0, 1] ,

and in the second case, a/∈t2 by the definition of F and thus

limn
Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= limn

1

σn(a)
=

1

σ(a)
∈ [1,∞) .

In a similar fashion, this paragraph shows

(∀ t1 c
≈ t2) limn

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
∈ (0,∞) .(43)

Suppose t1
c
≈ t2. By the definition of

c
≈, there exists a∈Ac such that

either, a∈F (t1) and t1∪{a}=t2, or, a∈F (t2) and t2∪{a}=t1. In the

first case, a/∈t1 and thus

limn
Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= limn ρ(a) ∈ (0, 1] ,

and in the second case, a/∈t2 and thus

limn
Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= limn

1

ρ(a)
∈ [1,∞) .

Finally, note that if t1 and t2 share some h∈Hs, and if β(t1) > 0,

then

limn
Πa∈t2(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)

= limn
Πa∈t2(ρ∪σn)(a)/Σt∈hΠa∈t(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)/Σt∈hΠa∈t(ρ∪σn)(a)

= limn
βn(t2)

βn(t1)
=
β(t2)

β(t1)
,

where the second equality follows from (7), and the third follows from

consistency and the assumption that β(t1) > 0. Thus by the definitions

of
β
� and

β
≈ we have

(∀ t1 β
� t2) limn

Πa∈t2(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)
=
β(t2)

β(t1)
= 0 and(44)
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(∀ t1 β
≈ t2) limn

Πa∈t2(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)
=
β(t2)

β(t1)
∈ (0,∞) .(45)

The lemma’s conclusion follows from (41)–(45) and the definitions

of � and ≈. 2

Proof B.5 (for Theorem B). Take an assessment (σ, β) and its plau-

sibility relation <. Assume (σ, β) is consistent and let 〈(σn, βn)〉n be a

sequence of full-support Bayesian assessments which converges to it.

This paragraph shows that there is no pair (sm, tm) from � in a finite

sequence 〈(sm, tm)〉Mm=1 of pairs from < whenever the sequence satisfies

(∀a) |{m|a∈sm}| = |{m|a∈tm}|. Accordingly, let 〈(sm, tm)〉Mm=1 be such

a sequence. By the equalities over actions a we have

(∀n) ΠM
m=1Πa∈sm(ρ∪σn)(a) = ΠM

m=1Πa∈tm(ρ∪σn)(a) ,

which is equivalent to

(∀n) ΠM
m=1

Πa∈tm(ρ∪σn)(a)

Πa∈sm(ρ∪σn)(a)
= 1 ,

which obviously yields

limn ΠM
m=1

Πa∈tm(ρ∪σn)(a)

Πa∈sm(ρ∪σn)(a)
= 1 .

Yet by Lemma B.4 we have

(∀ sm� tm) limn
Πa∈tm(ρ∪σn)(a)

Πa∈sm(ρ∪σn)(a)
= 0 and

(∀ sm≈ tm) limn
Πa∈tm(ρ∪σn)(a)

Πa∈sm(ρ∪σn)(a)
∈ (0,∞) .

The last two sentences contradict if 〈(sm, tm)〉Mm=1 has a pair from �.

Hence no such pair exists.

Since the previous paragraph has derived condition (b) of Lemma B.3,

that lemma provides the existence of π:A→Z such that for all s and t,

s � t ⇒ Σa∈sπ(a) > Σa∈tπ(a) and

s ≈ t ⇒ Σa∈sπ(a) = Σa∈tπ(a) .
(46)

It only remains to show that π is nonpositive-valued. If this were

not the case, there would be some a for which π(a) > 0. Then, since

{F (h)|h} partitions A by Lemma A.2, there is some t for which a∈F (t).

Since a/∈t by the definition of F and since π(a) > 0 by assumption,

we have that Σa′∈tπ(a′) < Σa′∈t∪{a}π(a′), and thus by (46), we have

that both t
σ
� t∪{a} and t

σ
≈ t∪{a} are false. Yet by a∈F (t) and the
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definitions of
σ
� and

σ
≈, it must be that either t

σ
� t∪{a} or t

σ
≈ t∪{a} is

true. The last two sentences contradict, and hence there cannot be an

a for which π(a) > 0. 2

B.4. Additive Separability

Although this lemma could be proved directly from the definition of

a set-tree game, it is quicker to use Theorem A’s isomorphism.

Lemma B.6. (∀t)(∀h) |t∩F (h)|∈{0, 1}. In other words, a node t

can contain no more than one element from each F (h).

Proof. Consider any (A, T,H, I, ic, ρ, u). By Theorem A, this set-

tree game is isomorphic to a sequence-tree game (A, T̄ , H̄, Ī, īc, ρ, ū)

with agent recall.

Now suppose there are t and h such that |t∩F (h)| > 1. Then

there are distinct a and a′ such that {a, a′}⊆t∩F (h). First let h̄ =

(R1|P(T̄ ))
−1(h), and note that {a, a′}⊆F̄ (h̄) because F̄ (h̄) = F (h) by

Lemma A.3(c). Second let t̄ = (R|T̄ )−1(t), and note that there are dis-

tinct m and n such that t̄m = a and t̄n = a′. By the last two sentences

there are distinct m and n such that {t̄m, t̄n}∈F̄ (h̄). By Lemma A.4(d)

this violates agent recall. 2

Proof B.7 (for Lemma 3.2). V is well-defined because Lemma B.6

shows that t∩F (h) has no more than one element for any t and any h.

It remains to show that, for any t, t is equal to {ṫh|ṫh∈A} evaluated

at ṫ = V (t). Accordingly take any t and note that

{ ṫh | ṫh∈A } evaluated at ṫ = V (t)

= { [V (t)]h | [V (t)]h∈A }
= { a | (∃h) a=[V (t)]h }
= { a | (∃h) {a}=t∩F (h) }
=
⋃

h(t∩F (h))

= t ,

where the first two equalities follow from manipulation, the third from

the definition of V (t), the fourth from Lemma B.6, and the last from

Lemma A.2. 2
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Proof B.8 (for Corollary 1). Take any consistent assessment. By

Theorem B, there exists π:A→Z− to satisfy (8). Since A is partitioned

by {F (h)|h} by Lemma A.2, we may define 〈π̇h:Ȧh→Z−〉h at each h by

π̇h(ȧh) =

(
0 if ȧh=o

π(ȧh) if ȧh∈F (h)

)
.

By Ȧh = {o}∪F (h), by the definition of π̇h, by F (h) = Ȧh∩A, and by

the second half of Lemma 3.2, we have that for all ṫ∈V (T )

Σhπ̇h(ṫh) = Σh|ṫh=oπ̇h(ṫh) + Σh|ṫh∈F (h)π̇h(ṫh)

= Σh|ṫh=o0 + Σh|ṫh∈F (h)π(ṫh)

= Σh|ṫh∈Aπ(ṫh)

= Σa∈{ṫh|ṫh∈A}π(a)

= Σa∈V −1(ṫ)π(a) .

By the definition of �̇, by (8), and by the previous sentence we have

that for all ṫ1 and ṫ2

ṫ1 �̇ ṫ2 ⇒ V −1(ṫ1) � V −1(ṫ2)

⇒ Σa∈V −1(ṫ1)π(a) > Σa∈V −1(ṫ2)π(a)

⇒ Σhπ̇h(ṫ1h) > Σhπ̇h(ṫ2h) .

Identical reasoning shows ṫ1 ≈̇ ṫ2 implies Σhπ̇h(ṫ1h) = Σhπ̇h(ṫ2h). 2

B.5. Proof of Kreps-Wilson Lemma A1

Proof B.9 (for Corollary 2 = KW Lemma A1). The first paragraph

of KW’s proof shows that a labelled basis must be consistent.

Conversely, suppose b is consistent. By definition this means Ψb 6= ∅,

and thus there is a consistent assessment (σ, β) such that

b∩A = {a|σ(a)>0} and(47a)

b∩(T∼Z) = {t|β(t)>0} .(47b)

Let < be (π, β)’s plausibility relation. By Theorem B, there exists

π:A→Z− such that for all t1 and t2

t1 � t2 ⇒ Σa∈t1π(a) > Σa∈t2π(a) and(48a)

t1 ≈ t2 ⇒ Σa∈t1π(a) = Σa∈t2π(a) .(48b)

Set K = −π. We will show that K labels b. Since K is nonnegative-

valued as required, only (12a–c) remain.
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We begin with (12b). Take any a and, by Lemma A.2, let t be

such that a∈F (t). First, if a∈b, then σ(a)>0 by (47a), which implies

t
σ
≈ t∪{a} by the definition of

σ
≈, which implies t≈ t∪{a}, which implies

Σa′∈tπ(a′) = Σa′∈t∪{a}π(a′) by (48b), which implies π(a)=0 by a/∈t
by the definition of F , which implies K(a) = 0. Conversely, if a/∈b,
then σ(a)=0 by (47a), which implies t

σ
� t∪{a} by the definition of

σ
�,

which implies t� t∪{a}, which implies Σa′∈tπ(a′) > Σa′∈t∪{a}π(a′) by

(48a), which implies π(a) < 0, which implies K(a) > 0, which implies

K(a)6=0.

Next we turn to (12a). Since σ|F (h) is a probability distribution,

there is some a∈F (h) such that σ(a)>0. This implies a∈b by (47a),

and hence K(a)=0 by (12b), which has already been proved by the

previous paragraph.

Finally, turn to (12c). Take any h and any t∈h. First, suppose

t∈b. Then β(t)>0 by (47b). Now consider any other t′∈h. By the

definitions of
β
� and

β
≈, either t

β
� t′ or t

β
≈ t′, and thus in either event

we have t< t′. Hence by (48), Σa∈tπ(a) ≥ Σa∈t′π(a), which implies

Σa∈tK(a) ≤ Σa∈t′K(a), which implies JK(t) ≤ JK(t′). Since this holds

for any other t′∈h, we have that t ∈ argmin{JK(t′)|t′∈h}. Conversely,

suppose t/∈b. Then β(t)=0 by (47b). Since β|h is a probability distribu-

tion, there is some t∗ such that β(t∗)>0. Thus t∗
β
� t by the definition of

β
�, which implies t∗� t, which implies Σa∈t∗π(a) > Σa∈tπ(a) by (48a),

which implies Σa∈t∗K(a) < Σa∈tK(a), which implies JK(t∗) < JK(t),

which implies t /∈ argmin{JK(t′)|t′∈h}. 2
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